Universal Radio Hacker
Investigate Wireless Protocols like a Boss

User Guide / Tutorial

Guide version: 1.1
Refers to URH version: 2.0

Contact: Johannes.Pohl90@gmail.com
Andreas.Noack@hochschule-stralsund.de

mailto:Johannes.Pohl90@gmail.com
mailto:Andreas.Noack@hochschule-stralsund.de

Contents

1 Introduction
B Y/ o 5 1 (0% K
1.2 Installation . . . v v v vt e

2 Device interaction

21 Configuring DEVICES . v v v v v i vttt et e et e et e et et e e
211 NativeBackend i it e e e e e e
21.2 GNURadioBackendouvurumemeneneneneneenn
2.2 Scanningthespectrumttt
2.3 Recordingasignalt e e e

3 Interpretation

3.1 Importingasignalttt ittt
3.2 Signalediting v ittt e e e e e e e e e e e e e
3.3 Replay signal and view signaldetails
34 Demodulationttt e e e e e e e
3.5 SPECLIOZram . . . v v vttt i e e e e e e e e e e e e e e e
3.6 Filters (advanced feature) v v it ittt it e e

3.6.1 Bandpassfilterttt

3.6.2 Movingaveragefilter e

4 Analysis

41 Gettingdataintoanalysisot ittt i e e
42 Projectfiles. o e e
4.3 View data from different perspectives
44 DeCOodiNg v v v v vttt e e e e e e e e e e e e e e e e
44.1 Configure Decodings v v vt vt vttt ittt et
442 External Decodingsot v it it it e e e e e e
443 Choosedecoding . .« v v v v vt ittt e e e e e e e e
4.5 Participants vttt e e e e e e e e e
46 Labels e e e e e e e e e e e e e
4.6.1 Assigningandeditinglabels
4.6.2 Field Types . . . v v v it ittt et e e
46.3 Checksumlabels i
47 Message Types . . . v v i i i i e
5 Generation
51 FUuzzing it e e e e e e e e e e e e e e
52 Modulationttt e e e e e e e e e
53 Sendingitback i e e e e e e

6 Simulation
6.1 Gettingstarted v i it e e e e e e e e e e

12
12
13
14
15
15
16
16
16
18
18
19
20
21

22
22
25
26

27

6.2 Configuration Options v v v ittt e e e e e e e e e 28

6.2.1 Message direction (participants), 28
6.2.2 Rules e e e e e e e e e e 28
6.2.3 ACHONS . v v vttt e e e e e e e e e e 28
6.24 Labelconfigurationttt ineteennennn 29
6.3 Startingthesimulation.ttt nnennenenas. 29
Configuring Look and Feel 31
Plugins 32

1 Introduction

1.1 Motivation

The Universal Radio Hacker (URH) is a tool for analyzing unknown wireless protocols.
With the rise of Internet of Things (IoT) such protocols often appear in the wild. Many IoT
devices operate on frequencies like 433.92 MHz or 868.3 MHz and use proprietary protocols
for communication. Reverse-engineering such protocols can be fascinating (»What does
my fridge talks about?«) and reveal serious security leaks e.g. when bypassing smart alarm
systems and door locks.

So how can we join this game? Software Defined Radios (SDR) are the answer for this. Such
devices allow sending and receiving on nearly arbitrary frequencies. Figure 1 shows two
examples. Both devices cost about 200 euro.

(a) HackRF One can send and receive on frequen- (b) SDRplay RSP2pro can receive on frequencies
cies from 1 MHz to 6 GHz. from 1kHz to 2 GHz.

Figure 1: Two examples for Software Defined Radios.

Like the name suggests SDRs need software to be properly operated. This is where the
Universal Radio Hacker comes into play: It takes the samples from the SDR and transforms
them into binary information (bits). But this is only the beginning: URH is designed to help
you throughout the entire process of attacking the wireless communication of IoT devices.
In the upcoming sections you will learn how to use URH and reverse engineer wireless
protocols in minutes.

1.2 Installation

URH runs on Linux, OSX and Windows and is easy to install. You can find the latest instal-
lation instructions here: https://github.com/jopohl/urh#installation

https://greatscottgadgets.com/hackrf/
https://www.sdrplay.com/rsp2pro/
https://github.com/jopohl/urh#installation

2 Device interaction

To get started with investigating a wireless signal we need to capture it with a Software
Defined Radio. URH offers support for a wide range of common SDRs. In this section you
will learn how to configure your SDR and use it inside URH.

2.1 Configuring Devices

First, lets ensure that your device is enabled in Edit » Options > Device. You will see a list
of supported devices like shown in fig. 2a.

A Options /# Health check for native extensions

Generation = View | Fieldtypes @ Plugins Device airspy - 0K
hackrf — OK
AirSpy R2 - enabled v/| Enabled limesdr - OK

AirSpy Mini - enabled rtlsdr — OK (using fallback)
Bladerf - enabled ® Native backend (recommended) sdrplay - OK

FUNcube-Dongle - enabled usrp - 0K
HackRF - enabled

LimeSDR - enabled | @ Health Check |
RTL-SDR - enabled

RTL-TCP - enabled

SDRPlay - enabled

USRP - enabled

Gnuradio backend

device supports receiving only

Default sending repititions: Infinite

Use this percentage of available RAM for buffer allocation: | 60,00% -

Gnuradio options
Needed for Gnuradio backend only
@ Python2 interpreter | /usr/bin/python2
Gnuradio Directory

Gnuradio interface is working.

Native options

You can rebuild the native device extensions here. This is useful, when you installed a device
driver afterwards or your drivers are stored in an unusual location.

Library directories: |Comma separated list of additional library directories

& Rebuild

(a) Device options tab. (b) Health check native backend.

Figure 2: Configuring devices

If you select a device in the list you can either enable/disable it via the Enabled checkbox.
Disabling a device will prevent it from showing up in the device selection in the main
program. Furthermore, you can choose between native and GNU Radio backend. More
on this in the following sections.

2.1.1 Native Backend

The native device backend should be used whenever possible. If native backend is greyed
out for a device, there may be a library missing. You can check this by clicking the Health
Check button. A dialog like shown in fig. 2b will pop up and give you more information
about the status of native device backend. If you indeed miss a library you can install it on
your system. For example, install HackRF library on Ubuntu with sudo apt-get install
libhackrf-dev. After that, hit the Rebuild button at the bottom of the dialog.

2.1.2 GNU Radio Backend

As a fallback to the native backend, you can use GNU Radio to access your device. In order
to do that configure either the path to your Python 2 interpreter or (on Windows) the GNU
Radio installation directory. Then, you get notified that GNU Radio backend is available
and can choose it after selecting your desired device from the device list in fig. 2a.

2.2 Scanning the spectrum

Having configured our SDR let’s start by scanning the wireless spectrum and find the center
frequency of the device we want to attack. To open the spectrum analyzer use File > Spec-
trum Analyzer, this will give you a dialog as shown in fig. 3.

wls Spectrum Analyzer

N 5 Y-Scale
¥ Device settings

Tyne tol4: 132M

Device: SDRPlay

Antenna: Antenna A

Frequency (Hz): 433,920M

Sample rate (Sps) 2,000M

(]
Bandwidth (Hz): 1,000M
Gain: — 39 |2
Y RN PP RTET
| R il L
IF Gain - 450 |3 ’,-r"

Stop Clear

SDRPlay:
CONNECTED DEVICES: RSP 2 (170200F100)
SDRPlay-SET DEVICE NUMBER to 0: Success
SDRPlay-SET_ANTENNA_INDEX to 0: Success
SDRPIlay-Start RX MODE with
FREQUENCY=433920000.0
SAMPLE_RATE=2000000.0
BANDWIDTH=1000000.0
GAIN=39
IF_GAIN=450: Success

Figure 3: Spectrum Analyzer dialog.

Device settings can be made on the left. After starting the spectrum analyzer, you can watch
how URH tunes your device to the desired parameters in the bottom left.

When spectrum analysis starts, you see the spectrum at the top right and a waterfall plot
of the spectrum in the bottom right. Both views together give you a good impression of the
spectrum and allow you to find the target frequency easily. To change the current frequency
you can either use the spinbox on the left or click on the desired point in the spectrum. This
way, you can navigate through the spectrum and visually find the desired frequency.

2.3 Recording a signal

Having found the target frequency it is time to record a signal for later analysis. Open up
the recording dialog via File > Record Signal and you will see that it saved your parameters
from Spectrum Analyzer, so you can simply start the recording with the record button on
the middle left. In fig. 4 recording is already running and a wireless remote control was
pressed two times. You can clearly see the two signals in the preview on the right.

© Record Signal =

N . Y-Scale
¥ Device settings

Device:

Antenna:

Frequency (Hz):

Sample rate (Sps):

Bandwidth (Hz):

Gain: e

IF Gain: =

Stop

Samples captured:
5.032.944

Receive buffer full:

Signal size (in MiB):

Time (in seconds):

SDRPlay:
CONNECTED DEVICES: RSP 2 (170200F100)
SDRPlay-SET DEVICE NUMBER to 0: Success
SDRPlay-SET_ANTENNA_INDEX to 0: Success
SDRPlay-Start RX MODE with
FREQUENCY=433920000.0
SAMPLE_RATE=2000000.0
BANDWIDTH=1000000.0
GAIN=50
IF_GAIN=450: Success

Figure 4: Record signals in this dialog-

Stop the recording with the stop button. After this you can save the signal and make another
recording or simply close the dialog. You will be asked if you want to save your current
recording. Congratulations, you successfully recorded your first signal!

3 Interpretation

Having recorded a signal, URH adds it automatically to the Interpretation Tab (fig. 5). Before
we explore this tab, let’s have a look at other ways of opening and importing a signal.

3.1 Importing a signal
Apart from recording, a signal can be added to Interpretation tab via File > Open. File end-
ing determines how URH handles the signal. URH understands these file endings:

+ .complex files with complex64 samples (32 Bit float for I and Q, respectively). This is
the default signal file format and will also be used in case the file has no ending at all.

+ .complex16u using two unsigned 8 Bit integers for I and Q
« .complex16s using two signed 8 Bit integers for I and Q
+ .wav files can be imported, but must not be compressed, i.e., they should be PCM.

+ .csv e.g. from USB oscilloscope can be imported using a CSV wizard available with
File > Import » IQ samples from csv.

3.2 Signal editing

Having loaded a signal into Interpretation it can be zoomed using the mouse wheel or
context menu. Make a selection with the mouse and navigate via drag by holding the shift
key. This can be changed with the checkbox Edit » Options - Hold shift to drag.

1: Complex Signal (O]
SDRPlay-433_920MHz-2MSps-TMHz

Y-Scale

Noise: 00104
Center: 00265
Bit Length: 262

5

ASK

select 19 ms : 0, 7 Filter (moving average) |*/
#& [12373 selected | 619ms | RSSI:0213 Fi

[RLPLPEPls2 2082208220 [Pause: 10550 samples]
& [Pause: 2715 samples]
082208

[Pause: 10584 samples]
Signal View: Analog ~ | 8 [Pause: 2720 samples]

[Pause: 10582 samples]
| Show Signal as | Hex ~ |8 [Pause: 2719 samples]

Figure 5: Recorded signal gets automatically added to Interpretation tab.

Apart from these basic functions URH has a powerful signal editor. After making a selection
use the context menu to:

 Copy/paste parts of the signal
« Delete the selection

+ Crop to current selection, i.e., remove everything that is not selected.

« Mute the selection, i.e., set the selected part to zero.
+ Create a new signal from the selection

+ Assign a participant more on this in section 4.5.

+ Set noise level from selection

Using these features you can isolate interesting signal parts and fix noisy recordings.

3.3 Replay signal and view signal details

with the ® button in the top of fig. 5 you can replay the captured signal. The @ button
opens signal detail dialog (fig. 6) where you can also edit the sample rate. This influences
the displayed time in Interpretation and Analysis.

Name: SDRPlay-433_920MHz-2MSps-1MHz

File: /home/joe/SDRPlay-433_920MHz-2MSps-1MHz.complex
File size: 30,27MB

File created: Fri Dec 15 14:04:21 2017

Samples: 3.967.488

Sample Rate (Sps): ‘T.OUM

Duration: 397s

Figure 6: Signal detail dialog.

3.4 Demodulation

Demodulation is the process of converting the recorded sine waves into bits. URH does this
automatically for you whenever you add a signal to Interpretation tab. You see the resulting
bits right below the signal.

You can change the modulation type using the combobox on the left. Whenever you change
the modulation type the demodulation parameters are newly detected by URH. You can
disable this by clicking the Autodetect parameters button. Of course, you can fine tune the
parameters by using the spinboxes.

The demodulation parameters are
« Noise: Define which power must the surpassed to be not counted as noise.

« Bit Length: The sample length of a bit. You can find this out by selecting a pulse with
minimum length and looking at the number of selected samples as shown in fig. 7a.

+ Center: The center in demodulated view separating the ones from the zeros. To
tune this value either use the spinbox or change the Signal View from Analog to
Demodulated (see fig. 7b) and move the center between the areas with the mouse.

« Error Tolerance: Fine tune how tolerant (in samples) the demodulation routine shall
be against errors.

Note that these parameters are found automatically and only need to be changed manually
in rare cases e.g. bad signal recordings.

1 Complexsignal |® (@ @ |
SDRPlay-433_920MHz 2MSps-1MHz

Noise: 00104 B

Center. 00265 B!

Bit Length: 262 &

Error Tolerance: 5 &

Modulation: ASK <[y
¥ Autodetect parameters

& 261 selected | 13050 s | RSSI:0213

10000010100000. flo100

01010006

.

| 3 seizn) 254004s | Rssr0209 Sravon | Qe 3| oo arsosassosssassass
(a) Finding the bit length manually. (b) Setting the center for demodulation.

Figure 7: Finding bit length and center visually.

In case of ASK demodulation you can make advanced settings using the button next to the
demodulation combobox.

3.5 Spectrogram

With the spectrogram view (fig. 8) you can view the frequency spectrum of your signal
during time. Simply switch to this view via Signal View > Spectrogram.

1: Complex Signal ® 0 e
SDRPlay-433_920MHz-2MSps-1MHz

Noise: 00104 =

Y-Scale

<

Center: 00265 B
Bit Length: 262 P
Error Tolerance: 5 <
Modulation: lask - |[#
4 Autodetect parameters
| & 258 selected | 503,906kHz | RSSI:0213 | Fitter (moving average) |~
Signal View: | Spectrogram - e
— 1G00901910@00@10100@00101@00@01090090]910100@00100@0010 110000010000016. 10000010100000100000. 10000010100000. 000001010000010101000 |
RS Col 2es 00100000101000001010000010101000001010000010000010100000101000001010000010100000101 [Pause: 10590 samples]
Datama: o | 1 [Pause: 2719 samples]
o 16000010100000 16000010100000101010000010000010. 16000010000010 16000010100000100000. 1600001010000 1600001010000016101000
e ©0100000: 10000010, 10000010000010100000! 100000101 [Pause: 10584 samples]
| Show Signal as | Bits ~ |1 [Pause: 2720 samples] c

Figure 8: Spectrogram view for a signal.

The spectrogram view has three parameters:

1. FFT Window Size is the used STFT (Short-Time-Fourier-Transform) window size and
determines the time resolution of the spectrogram.

2. Data;, is the minimal frequency magnitude for the spectrogram. All magnitudes
below Data,;, will be set to this value.

3. Data,,,, is the maximal frequency magnitude for the spectrogramm. All magnitudes
above Data,,,, will be set to this value.

You can change the spectrogram appearance using Edit > Options > View.

10

3.6 Filters (advanced feature)

URH supports filters to get the most of your signals. There are two types of filters available:
bandpass filter and moving average filter. We will see both filter types in the next two
sections. Note, this is an advanced feature and not needed in most cases.

3.6.1 Bandpass filter

You can apply a bandpass filter in the spectrogram view (section 3.5) to a defined selection
and seperate channels from each other or correct misaligned signals. To do this, make a
selection around your desired frequency band like in fig. 9.

4: Complex Signal (G %]

three_channels

Y-Scale

Noise: 1,0000
Center. 00000

Bit Length: 100

ErrorTolerance: |5

Modulation: FsK - .
TS| :
Signal View: Spectiogram - | 4| 121 selected | 118,164z | T Fitter (moving average) ||

Figure 9: Select your desired frequency range for filtering.

After that, right click on the spectrogram and select Create signal from frequency selection.
A filtered signal will be created and added under the original signal. If you are not pleased
with the result, try tuning the filter bandwidth using context menu and click Configure filter
bandwidth... to make a configuration dialog appear. Here you can e.g. increase accuracy
of the filter by choosing a lower bandwidth.

3.6.2 Moving average filter

Have a look at the signal in fig. 10. The demodulation does not look good.

1: Complex Signal

(CAC (<}

Scale
averaged -

ADNUAMA A
VV UV VIV

 Filter (moving average) |~

Center:

Bit Length:
Error Tolerance:
Modulation:

¥ Autodetect parameters

| & 4000 selected | 400ms | Rss: 0.208

1001

[Pause: 13961 samples]

Figure 10: Signal with quantization errors.

The reason for this is, that there are quantization errors in the signal. This can either be
fixed with better recording hardware or by clicking the filter button below the signal. This
will improve demodulation results by applying a moving average filter to the signal. The
filter can be fine tuned and customized using the little arrow on the right of the button and
choosing Configure filter.... This opens the filter configuration dialog.

4 Analysis

In Interpretation phase we demodulated a signal and transformed the sine waves into bits.
But what do these bits mean? To find out we need to perform protocol reverse engineering.
URH supports this process with the Analysis tab (fig. 11). We will break down the various
features of this tab in this section.

Protocols | Participants

~ V! 5 New Group
Vv on_off

View data as:
Hex
Configure Decoding:
Wireless Short Packet
Decoding errors for message:
0(0.00%)

Meark diffs in protocol
Show only diffs in protocol
Show only labels in protocol

Analyze

<
2

: 10101010

Message type:
defauit ~| 4| Name

Vv preamble preamble
hronizati
synchronization
v data

V eof data
v cre

rorg

source address

eof

cre

© © © w W W © © © = =4 4 «

@8 Search |+ | - /- |
7 8 9 10 1112 13 14 15 16
4

6
0
J
0
0
0
0
0
0
0
J
0
0

o o o o o o o v T T T o

N T T S

Hex: aa

Display format Value

Bit

10101010
1001
0110
00010000
002¢1c02
1011

4 (should be 4)

RSSI: 0,07

Decimal: 170

Label values for message #3

Figure 11: Analysis tab.

4.1 Getting data into analysis

Timestamp: 25,81 ms (+22,15 ms) H

2 column(s) selected

Before we explore this tab in more detail let’s see how you can get data into the Analysis
tab. There are three ways:

1. From Interpretation tab: This is the default way. The bits from each signal you open

in Interpretation tab will automatically be added to Analysis tab.

2. Load a .proto file: With the save button in the top right of the Analysis tab you can

save your protocol and load it again via File > Open.

3. Load plain bits from . txt file: Got some bits lying around you want to make a quick
analysis for? Just save your bits into a file that ends with . txt and open it via File
> Open. Make sure your file only contains characters 1 and 0. This is also useful when
your bits come from an external application.

12

4.2 Project files

A word of caution here: You already made some adjustments in the Interpretation tab and
will probably do a lot more in Analysis tab. Your work will be lost when you close the
program unless you create a project. You can convert your current work to a project any
time via File > New Project. This will give you a dialog (fig. 12) for your new project.

= Create a new project

New Project

test

Choose a path: /tmp/test

Note: A new directory will be created.

Default sample rate: 1,000M ~| Sps
Default frequency: 433,920M S| Hz
Default bandwidth: 1,000M 2l Hz
Default gain: 20 -

Tip: Open spectrum analyzer to find these values.

Description:

Name Shortname Color Relative RSSI Address (hex) 3;-
1| Device A A] ~ | 0 (low) - -
2|Device B B] ~ | 1 (high -

Participants: (high)
Broadcast address (hex): ffff
| Create new project | Cancel

Figure 12: Dialog for creating a new project. All your changes from a non-project will be
transferred to the new project.

Allyou need to do is to choose a directory where your project shall be saved to. Furthermore,
you can make some default settings for your project and add a description. You can also
configure the participants (see section 4.5) such as a remote control or a smart home central
that are investigated in this project. Although you create a new project, your current work
will be transferred, given that you are not already working on a project. If you want to make
a fresh start, just close everything before creating a new project via File > Close all.

13

4.3 View data from different perspectives

Let’s start exploring the Analysis tab by looking at the top of it first as shown in fig. 13.

Protocols Participants Search Pattern @8 Search [+ | </ - /- & RSSI: 007 Timestamp: 2581 ms (+22,15 ms) H

~ /£S5 New Group 1.2 3 4
Vv on_off

10 11 12 13 14 15 16
c 0 2 4

View data as:

Hex
Configure Decoding:

Wireless Short Packet
Decoding errors for message:
0(0,00%)

© ©o ©o ©o ©o ©o o © © © o o]~

9
2
2
2
2
2
2 ¢
2
2
2
2
2
2

© v o o v v o T T o o o

1
q
f
1
.
1

c 1 ¢
1
1
1
1
1

@ a0 a0 e e o e oo oo o o
© ©o o ©o ©o © o © © o o
LT N e S S Y
N NN e e e NN N s A

V| Mark diffs in protocol
Show only diffs in protocol
Show only labels in protocol

Analyze ~| sit: 10101001 Hex: a9 Decimal: 169 2 column(s) selected

Figure 13: Top part of the Analysis tab.

All messages are aligned under each other in the center table for easy comparison. For
convenience, you can mark differences using the checkbox at the bottom left of fig. 13.

The top row above the table allows to:
+ Search for patterns in the data.
+ View the Received Signal Strength Indicator RSSI of the selected message.
+ View the absolute and relative timestamp for the selected message.
+ Save the current protocol with the button on the right.
Right below the table you see current selection in Bit, Hex and Decimal representation.

Now, let’s have a look at the left part of fig. 13. In the Protocols tab you can define which
protocols you want to see in the table. Simply uncheck a protocol to hide it. For a better
structure you can also create groups using the context menu and move your protocols
around these groups using drag and drop or using the context menu. In the participants
tab you can hide messages from certain participants (see section 4.5).

With the View data as combobox you can choose how the data in the table should be pre-
sented: Bit, Hex and ASCII view are supported. When opening the program, the view will
default to the value set in Edit » Options » View > Default View.

With the Configure decoding combobox you can assign a decoding to the currently selected
messages. You will learn more about decodings in section 4.4. Below this combobox you
see how many errors occurred during decodind the selected message.

The Analyze button at the bottom left of fig. 13 automates many Analysis steps. It can
+ Assign participants based on the RSSI of each message.

+ Assign decodings based on the decoding errors for each message.

14

+ Assign messagetypes based on the configured rules described in section 4.7.
« Assign labels based on heuristics for protocol labels.

You can configure Analysis button behavior using the arrow on it’s right. Especially when
assigning different participants to many messages this button becomes useful.

4.4 Decoding

Wireless protocols may use sophisticated encodings to prevent transmission errors or in-
crease their energy efficiency. While this is a great idea for designing good IoT protocols it
somehow hinders you investigating the (true) transmitted data.

4.4.1 Configure Decodings

Therefore, URH comes with a powerful decoding component. You can access it via Edit
> Decoding from the main menu or by selecting ... as decoding in the Analysis tab. This
will open the decoding dialog shown in fig. 14.

Decoding o

My Elite Decoding - || Delete || saveas..

Base Functions Decoder Information and Options
Edge Trigger S5 ## DECODING PROCESS ##
Morse Code
;
Substitution e
External Program All bits are inverted, i.e. 0->1 and 1->0.
Additional Functions
Invert
Differential Encoding
Change Bitorder
Remove Redundancy
Remove Carrier
Remove Data Whitening (CC1101)
Wireless Short Packet (WSP)
Cut before/after Decoded Bits
Signal {0,1}:
Test ~ 10010110

N N R
S IR S

Decoded Bits: [Decoding Errors = 0]
01101001

Figure 14: In the decoding dialog custom decodings can be crafted.

A decoding consists of (at least one) primitives that are chained together and processed
based on their position in the list from top to bottom. You can add primitives by drag&drop.

You can preview the effect of your decoding with the fields in the lower area of the dialog.
This way you can make experiments without leaving the dialog.

15

4.4.2 External Decodings
Have a very tough encoding and can't find a way to build it with the given primitives? No wor-
ries! You can program your decoding in your favored language and use it right in URH!
The interface for your external program is simple:
+ Read the input as string (e.g. 11000) as command line argument
« Write the result to STDOUT

You learn more about external decodings in our GitHub wiki:
https://github.com/jopohl/urh/wiki/Decodings#use-external-program.

4.4.3 Choose decoding

Save your new decoding with the Save as... button and it will be added to the list of available
decodings in the Analysis tab. To apply your crafted decoding to your data, just select

the messages you want to set it for (| Ctrl + for all) and use the Configure Decoding
combobox in the Analysis tab.

4.5 Participants

Protocol reverse engineering gets really complicated when multiple participants are in-
volved. For example, a wireless socket may be switched from a smart home central which
is triggered by a remote control. To keep an overview, URH offers configurable participants.
To use this feature, you need to create or load a project (section 4.2) and configure your
participants via File > Project settings. Here, you will find the table from fig. 15.

Name Shortname Color Relative RSSI Address (hex) dﬂ-
1| Alice A] ~ | 0 (low) - —
. 2|Bob B] -1 -
Participants:
3|carl C [| ~ | 2 (high) ~

Figure 15: Use this table in project settings to configure participants.

Use the % and = buttons right to the table to add or remove participants, respectively. You
can configure name, shortname and color of a participant to adapt it to your project. The
relative RSSI will be used from URH to assign participants automatically when pressing the
Analyze button (section 4.3). If you know a address of a participant, you can enter it here
to help URH during automatic finding of labels when pressing the Analyze button.

16

https://github.com/jopohl/urh/wiki/Decodings#use-external-program

To assign participants, you can either use Analyze button to do this automatically or use
the context menu of the message table as shown in fig. 16

123 |4 |5 6| /891011121314 |15|16|1/|18 19| 20|21 |22|23 | 24|25 26|22/ 2829|3031 32|33 |34 35|36 |3/|38 39404~
tro1010101010o10o10o10o10101 01010101001 1T 001 1 11
it o101010101010101010101701010101001 1T 001 1 11
tro1r01010101010101010101010101T01T00O01T 1T 001 1T 11

tro1r0111010101010101010101010101T01T00O01 1T 001 1 11

10 1 0 Message type (default) 3

-Ji"- Add protocol label

Participant (Bob) 4 one
roo1o Copy selection Ctrl+C
10 10 Hide selected rows H * Bob (B)
Carl (C)

1 Show selection in Interpretation

o
o
{

Writeable (decouples from signal)

T o016901601010101011011011T010101 0101010011 001 1 11

T o101 0110110101011011011010101 0101010011 001 1 11

Figure 16: Manually assign a participant to selected messages with context menu.

As shown in fig. 16, each row header gets the background color of the assigned participant
of the respective message. Furthermore, the participants shortname is added behind the
row number.

With the context menu you can also show the current selection in Interpretation. This
tight integration with Interpretation allows to find bit errors easily. Furthermore, the mes-
sages in Interpretation are also colored according to the assigned participants as shown in
fig. 17.

Y-Scale
« vl
& 0 selected [0,00 ns [T Filter (moving average) [~
aaaaaaaabT686768ec490d6aed842844d97ad26d705dd2300a91134d19400 [Pause: 127665 samples] =

aaaaaaaa67686768ecc16d818db64bc6637ade88467d5a71807633bb408 2R PL RS [\IN-T])
aaaaaaaabT7686768fc99ff1398fbc [Pause: 71534 samples]
aaaaaaaa67686768e5c16db1f38f4bc6637ade88f58a081718ff174a5e504bc406a76T06T5b

[Pause: 17763 samples]

aaaaaaaa67686768eccl6de20fOc183aed7ad239710763e35718975d3369IEIET IS Ko REET T J LY |

Figure 17: Participants are also visualized in Interpretation.

17

4.6 Labels

Messages of a protocol contain fields like Length, Address or Synchronization. During
Analysis, you will reveal protocol fields one by one. To help you with this task, URH sup-
ports assigning labels to arbitrary parts of messages. These labels represent your current
hypothesis for a field. You will learn how to master labels in this section.

4.6.1 Assigning and editing labels

To assign a label simply select your desired range in message table and use context menu
(right click) > Add protocol label. After adding a label, you can enter a name for it in the
list view on the list view in bottom left (see fig. 18) or choose a predefined name based on
the configured field types (section 4.6.2).

Protocols Participants Search Pattern @8 Search |7| |G| -/ - &
~ V| E5 New Group 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
¥ on.oft 1a a 9 610002 ¢ 1 c 0 2 4 b
2 a a 9 6 1 0 0 0 2 ¢ 1 ¢ 0 2 4 b
View data as: 3 a a 9 6 1 0 0 0 2 ¢ 1 ¢ 0 2 4 b
Hex - 4 ' a a 9 5 0 0 0 0 2 ¢ 1 ¢ 0 2 2 b
Configure Decoding: 5 aa 9 500002 ¢ 1 ¢ 0 2 2 b
Wireless Short Packet -
6 a a 9 5 0 0 0 0 2 ¢ 1 ¢ 0 2 2 b
Decoding errors for message:
7 9 6 [3 0 NI 1 0 2 6 b
o 0o . o
Mark diffs in protocol 8 a a 9 63 000 2 ¢ 1 c 0 26 b
Show only diffs in protocol 9 a a 9 63 000 2 ¢ 1 ¢ 0 2 6 b
Show only labels in protocol Ma a 9 5/0 0 0 0 2 ¢c 1 ¢ 0 2 2 b
Analyze = Bit: |000000000010110000011100 Hex: 002c1c
Message type:
default - éw.‘ Name Display format Value
V| preamble preamble Bit 10101010
V| data
data Hex 30

Figure 18: Assigned labels will be added to label list view and Wireshark like preview.

Once the label is added, you notice three changes on Analysis tab:
» The according data in message table is colored in label color.

« The label is added to the label list on bottom left. You can also uncheck a label here
to hide all ranges with this label from message table.

« When moving the selection in message table you see the values of all labels for the
current message in a Wireshark like table view below the message table. You can
configure the Display format here using the combobox in second column. Possible
values are Bit, Hex, ASCII and Decimal.

In order to edit a label simply right click on it either in message table or label list. This will
open a new dialog, where you can edit name, start, end and color of each label.

18

4.6.2 Field Types

Field types can speed up the assigning of labels even further by defining default values for
label names. Field type configuration dialog can be opened either via context menu of label
list view or Edit - Options - Fieldtypes. By default, the field types from fig. 19 are available.

Caption Function Default display type ‘:‘u‘
1|preamble PREAMBLE Bit -
2|synchronization SYNC Bit
3|length LENGTH Decimal
4 source address SRC_ADDRESS Hex
5| destination address DST_ADDRESS Hex
6| sequence number SEQUENCE_MNUMBER Decimal
7 checksum CHECKSUM Hex
8| custom CUSTOM Bit

Figure 19: Configure the field types you want to use.

You can add or remove field types with the buttons right to the table. All Captions will be
available when adding new labels in Analysis and also considered in autocompletion when
entering a label name. This way, you can spare yourself from typing the same label names
again and again for each new project.

The Default display type is the initial option for the Display format of the label preview
table (bottom of fig. 18) when a new label with this field type is added.

The Function of a field type is mostly used internally by URH when it assigns labels auto-
matically. The CHECKSUM function, however, is an exception, because it unlocks advanced
functionality. Let’s explore this feature in the next section.

19

4.6.3 Checksum labels

If your protocol has checksums, URH can verify these for you. Simply assign a label with a
field type that has CHECKSUM function configured and you will get instant feedback if mes-
sage’s checksum matches the expectation in label preview table as shown in fig. 20.

default - ‘Jw‘ Name Display format Value

+| preamble preamble Bit 10101010
V data

v ElcohEan data Hex 10

checksum Hex 4 (should be 33)

Figure 20: Feedback about checksum.

You can configure the type of the checksum in the label detail dialog. This dialog can be
opening using context menu of the label in label list view or message table. Whenever
a checksum label is present in the set of labels the checksum configuration as shown in
fig. 21 will appear. Here you can define a CRC polynomial (generic category) or choose the
Wireless Short Packet (WSP) checksum which is included by default.

Protocol Label Settings

Name Start End Color Apply decoding *
21 data 5 6] ~ v true
3 checksum 15 15 D - true

View Type: Hex ~

Advanced Settings

checksum

Checksum category:

generic -
CRC function: 8_standard -
CRC polynomial (hex): d5

Start value (hex): 00

Final XOR (hex): 00
CRC Summary:
 Polynomial = x% + x” +x® + x* +x2 + 1
* Length of checksum = 8 bit
* start value length = 8 bit
= final XOR length = 8 bit
Configure data ranges for CRC
Start End 5=
13 14 -

Figure 21: Checksum configuration.

In the generic category you will always see a preview of your configured CRC so you have
instant feedback when editing it. In the table at the bottom you define for which ranges of
the message the checksum shall be calculated. By default, these ranges exclude labels of
type PREAMBLE and SYNC. Note, you can also add multiple ranges using the % button when
you have a more complicated checksum that excludes certain ranges.

20

4.7 Message Types

Message types take the label concept to the next level. Complex protocols tend to have
different message types like ACK and DATA. By default, URH uses only one message type
and applies configured labels to all messages based on their position only. With message
types, you gain another level of control as you can configure labels per message type.

Message types can be added with the % button next to the message type combobox right
above the label list view. New message types will be bootstrapped with the labels from
the default message type. You can assign message types to messages by selecting them in
message table and use the context menu. This way, you can handle complex protocols like
the one shown in fig. 11.

v FB_12_gain70
V/ FB1.2.3.4 gain6s

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57°

2 4 8 4 b 7 e f 78

sss s 272 s oo NN
-0

a
6
[
170 2 d 4 e 637 eeec 18 a4 8 5 7
b

6 0 - @ oo o® e o

‘Show only diffs in protocol

12503 e 9 a4d3 ac (b 2b 9 3 8-
Show only labels in protocol v

1 column(s) selected

essage tpe:
mirame . =] [Name Disploy format_ Value

preamble preamble 8 To101010101010101010101010101010

B
- synchvonizaton Bt 11101001110010101110100111001010
len:

atn Decimal "

e
lpe sequence number Decimal w
; controt H o
:I‘: imma"d ype H 25

Hex 383303

ress Hex actibab

Hex 86af

crc Hex 6465 (should be 6d65)

Figure 22: A more complex protocol with various message types.

Assigning message types manually can be tedious. Therefore, URH has a feature to assign
message types automatically based on rules. You can configure these rules for a message
type by clicking the highlighted button in fig. 22. This will pop up the rule configuration
dialog. Configuring rules is straightforward using the shown table.

_ Assign manually @ Assign automatically

All rules must apply (AND) -

Start End Viewtype Operator Value -J‘L—
117 18 Hex ~ | equal ~ | 0b -
l Save and apply l Close

Figure 23: Rules for automatic message type assignment can be configured in this dialog.
When hitting the Save and apply button URH will close the dialog and apply the message

types based on the rules. You can also enforce the update of automatically assigned message
types using the context menu of the label list view.

21

5 Generation

So far we have demodulated wireless signals in Interpretation and reverse engineered
protocol logic in Analyis. It is time to get the reward for this work and finally break a
wireless protocol. This is exactly what the Generator tab (fig. 24) is for.

Universal Radio Hacker

File Edit Help

Interpretation Analysis | Generator |

‘ Protocols | Pauses Fuzzing Generated data ‘E|

~ [New Group 1,2 3 4, 5 6 7 8 9 10 11,12 13 14 15 16

- - - o oo ~J o o £ w =] -
] - o

-]

o

a a
Encoding: WSP Sample Rate: M
a a
Carrier Frequency: 1,05kHz Modulation Type: ASK
Carrier Phase: 0° Amplitude for 0: 0% a d
Bit Length: 16 Amplitude for 1: 100% a a
Modulation: | Edit .. | 2 e
©Generate file.. | (DSenddata.. | Estimated Time: 8,0738 seconds Viewtype: | Hex =~ |

Figure 24: Generator tab.

You can add a protocol via drag&drop from the tree view on the right. As you see, all your
labels from Analysis are transferred when doing this. The table is editable so you can
manipulate the data. Furthermore, you can add columns or empty messages using the
context menu of the table.

The Generator has also a special feature for checksum labels: It will automatically recal-
culate the checksum whenever you change message data. This way, you do not need to
worry about the checksums when manipulating data. Moreover, a checksum label’s tooltip
identifies whether the checksum is correct or not.

5.1 Fuzzing

While it is possible to edit messages by hand it is much faster to let URH do the dirty work
for us. This is the purpose of the fuzzing component. You can enter a range of values for a
label you want to fuzz and just hit a button while URH takes care of the rest. Let’s see how
this works.

22

Start by selecting your desired label in message table, then right click on it and choose Edit
fuzzing label. This will open the fuzzing dialog from fig. 25

vt Fuzzing o

Fuzzing Label: data h
Source Message: aa%6 10 002c1c024
Message to fuzz: 1 -

Fuzzing Label Start Index: |5

L]

Fuzzing Label End Index: |6

Fuzzed Values

Remove Duplicates

1 2 - ;nr

1 10 -
2 00 =
3 0 1
4 0 2 =
Add Range Add Boundaries Add random values from range

Start (Decimal): |0 |2 V| LowerBound 0 |2 Number: 1 -

End (Decimal): |255/|, v Upper Bound 255, Range Minimum: 0 -

Step (Decimal): |1 - Border Values: 1 - Range Maximum: 255 -

| Add to Fuzzed Values Add to Fuzzed Values Add to Fuzzed Values

Save and Close

Figure 25: With the fuzzing dialog you can quickly add value ranges for labels.

In this example, we fuzz the label data. The bold 10 indicate the original value for this
message. In the center table you define which values should be set for this label during
fuzzing. With the buttons right to the table you can add values manually (%), or remove
(=) and repeat (£)) selected values, respectively.

The controls at the bottom allow to automate the adding of values in the following ways:
+ Add a full range of values from Start to End e.g. 0...255.
« Add boundaries only, e.g. {0, 1,254,255} for Start = 0 End = 255, Border Values = 2.

+ Add random values from specified range.

23

When you are done hit the Save and Close button and go to the Fuzzing tab in Generator as
shown in fig. 26. Note, you configure the fuzzing settings per message so make sure you
select the message you want to fuzz before making fuzzing settings. You see the number of
fuzzing values behind the label name in this case 256. Make sure you check the label you
want to fuzz to activate it.

Universal Radio Hacker

File Edit Help
Interpretation Analysis | Generator |
Protocols ~ Pauses Generated data ‘E|
preamble (empty) 1, 2(3|4 5|6(7 |8 9 |(10{11|12 13|14|15|[~
synchronization (empty) 1
a a
2 a a
3 a a
4 a a
q 5 a a
Add fuzzing values to generated data
|6 a a
Fuzz ® 7 la a
8 a a
Encoding: WSP Sample Rate: M 3
a a
Carrier Frequency: 1,05kHz Modulation Type: ASK —
Carrier Phase: 0° Amplitude for 0: 0% 10 a a
Bit Length: 16 Amplitude for 1: 100% 11 'a a
Modulation: | Edit .. || |t N
©Generatefile.. | (PDSenddata.. | Estimated Time: 264,3424 seconds Viewtype: |Hex - |

Figure 26: Fuzzing is as easy as clicking a button.

An active fuzzing label will be marked orange in the Generator table. Now everything is set
up, just hit the Fuzz button and watch how URH generates all the messages. As can be seen
from fig. 26 it also takes care of recalculating the checksum for each fuzzed message.

By default, URH adds a pause of one mega sample before each fuzzed message. You can
change this via Options > Generation. Pauses between messages are itself configurable in
the Pauses tab left to Fuzzing tab.

In case you want to fuzz different ranges within the same message, use the radio buttons
next to the Fuzz button to select a mode to control how the values should be added:

* Successive: Fuzzed values are inserted one-by-one.
+ Concurrent: Labels are fuzzed at the same time.
+ Exhaustive: Fuzzed values are inserted in all possible combinations.

Note, you can save the current fuzzing profile with the save button at the top right cor-
ner.

24

5.2 Modulation

Now we have manipulated the data and can send it back to the air, right? Almost! It may
be necessary to fine tune the modulation first. You can do this with the Edit button left to
the generator table. Whenever you drop a protocol to Generator, URH will automatically
determine reasonable modulation settings. Complicated modulations, however, may need
some manual fine-tuning. The modulation dialog (fig. 27) which opens after clicking the
Edit button helps you with this.

Modulation R

Carrier

Frequency: | 25,964K ©

Phase: 0,000° .
Auto detect from original signal ‘
4

Data (raw bits) +
1010101010

Bit Length: 100 :

Sample Rate (Sps): | 1,000M s

Modulation

Amplitude Shift Keying (ASK) -

—
Amplitude for 0: | 0% = A A
Amplitude for 1: | 100% - |
Samples in View: 1094
“
?

Samples selected: 0
Original Signal (drag&drop)

~ [New Group
on_off

esaver

V| Lock view to original signal

Show Only Data Sequence
(1010101010)

<« 1 / 51 L
Samples in View: 1094

Samples selected: 0 < v

Save and Close

Figure 27: Fine-tune the modulation in the modulation dialog.

Simply verify all settings from top to bottom in this dialog. Each time you make a change
the modulated preview will change. You can add an original signal via drag&drop from the
tree view on the bottom and use the comboboxes to only show certain ranges that represent
the customizable Data (raw bits). This way, you can visually verify your modulation settings
by comparing the modulation result to the original signal.

You can review modulation settings in the area left of the generator table (see fig. 26) so
you do not need to open modulation dialog for this.

Note, URH automatically applies the decoding chain (section 4.4) in reverted order before
modulating the data, so you do not need to bother with encoding at this stage.

25

5.3 Sending it back

Having made all necessary configurations it is time to generate data. URH will take care of
applying the encoding and modulating the bits. You can either use Generate file button to
save thistoa . complex file or hit the Send data button to open the send dialog (fig. 28).

© Send Signal = @

N N Y-Scale
¥ Device settings

Device: HackRF -
Frequency (Hz) 433,920M -
Sample rate (Sps): 2,000M :
Bandwidth (Hz): 2,000M : a

Gain: 0 .

IF Gain: E— 23 s
Repeat: Infinite -
o @ €&
Start .
Current iteration:
0
Current message:
0/3
Current sample:
0/205074 i

Hint: You can edit the raw signal before sending.

Figure 28: The send dialog will use the configured SDR to send out the data.

You see the modulated data on the right of the dialog. You can also edit the signal before
sending using the context menu, if required. On the left side SDR related settings can be
made. As soon as you hit the start button, send progress will be visualized in three ways.
First, you see the current message in the progress bar on the right. Second, right below
this the current sample is shown. Third, in the graphic view on the right an indicator will
be drawn and updated during sending.

Could you trigger an action on the target device? Welcome to the circle of IoT hackers!

26

6 Simulation

There are protocols where it is not enough to fire a bunch of fuzzed packets against the
device and hope to break them. More adavanced protocols have several states and use
e.g. sequence numbers to refer to previous messages in a session. These data must be
captured during interacting with the device and manipulated in a certain way e.g. increase
a sequence number by one.

This is were the Simulator tab comes into play. Here you can configure label values to be
learned during simulation time and even apply formulas to these values or get them from
external programs. We will explore the features of the Simulator tab based on the challenge
response procedure between a smart home central and a wireless remote control.

6.1 Getting started

First we start as usual by capturing messages with a Software Defined Radio and label the
data in Analysis tab (see fig. 29). Of course, you can edit the labels later in the Simulator
tab but the protocols from Analysis are useful for bootstrapping.

1

1R) a
a

m)‘ a

-

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

02 d 7 ¢ 0 7

2 d 61 a 16076 9 7

® o o 8 N
® o o o &
® o o o o
5 o o o o
5 o o o N
5 o o o
e o o o ©
© v o

s o ® o

© © © ©

s o ® o

©w - w o

7 35
a f 23 1 ba5dfc5b35 41 c 20
4 3 2

o o o
o o

® o w
© o -

o o o
o o o
o o o

©

a 4 6 6 8 a

Bit: (00100100 Hex: 24 Decimal: |36 2 column(s) selected

Message type: Label values for message #1
mframe || 4| =] |Name Display format Bit order Value

v preamble preamble Bit MSB 10101010101010101010101010101010

v synchronization

v length
oo
v control

v type sequence number Decimal MsB 36

control Hex MsB a6

v command
He MSB 40
v checksum i =

synchronization Hex MsB e9caedca

length Decimal MsB il

source address. Hex MsB 3927cc
destination address Hex MsB 3101ce
command Hex MsB 02d7

checksum Hex MSB ©097 (should be c097)

Figure 29: Labeled protocol in Analysis tab.
Now, move to the Simulator Tab and drop your protocol from the tree view on the left to

the flow graph on the right. You will see the logical flow of your messages as shown in
fig. 30.

27

Protocols (Drag&Drop to Flow Graph):

~ [New Group
challenge_response

FlowGraph | Messages | Participants S~
c R

2. [preamble|[synchronization|[length ro
< Treomn]menronszsron] g S o] o] e Bt) s st] o] v e

Detail view for item #1 (mframe)

Coding: Homematic Pro

Copies: |1
SRR P T Labels: Name Display format Value type Value
vicau (e preamble Bit Constant value 10101010101010101010101010101010
Remote (R)
synchronization Hex Constantvalue e9caedca
length Decimal Constant value 1
Decimal Constantvalue 36
Hex Constantvalue a6
type. Hex Constantvalue 40
Hex Constantvalue 3927cc
Hex Constantvale 3101cc
command Hex Constantvalue 02d7
checksum Hex Checksum <097

Repeat simulation this often: 1

Timeout: 2500ms

In case of an overdue response: | Restart simulation
Maximum retries: 10

(®simulate.

Figure 30: Overview of Simulator tab.

6.2 Configuration options
6.2.1 Message direction (participants)

Next, we want to configure the flow graph to match our use case. Simply right click on a
message in the flow graph to edit it’s source and destination. You can choose any partic-
ipant that you have defined in project settings. For convenience, you can also configure
available participants in the Participants tab located on the most right of the Flow Graph
tab.

6.2.2 Rules

Use the context menu of the flow graph to add rules (if then else). This allows you to
model protocol state machines and e.g. send responses only when certain conditions are
met.

6.2.3 Actions

Using the context menu (right click) of the flow graph you can add actions to arbitrary
positions allowing you to deal with more complex scenarios:

+ Goto enables to jump to arbitrary items in the flow graph. Simply choose the desired
item from a dropdown menu.

28

Counter actions increase their value by a (configurable) number each time they are hit
during simulation. In combination with rules and Goto actions this enables stateful
fuzzing.

Sleep will pause the simulation for a selected time.

Trigger Command enables you to call external programs so you can e.g. send an
E-Mail as soon as simulation reaches a certain state.

6.2.4 Label configuration

Using the table on the bottom of the Simulator tab you can define how the values of labels
shall be determined. You have five options for this:

Constant valuewill match against the defined value of the label. If the value does not
match during simulation the message will not be accepted. You can configure the
value in the Messages tab on the right of the Flow Graph tab.

Live input will insert the value of the label during simulation time. This is especially
useful if a value is not known beforehand e.g. a sequence number.

Formula allows you to calculate a value based on previous messages. You can write
arbitrary python expressions here and also refer to previous label values, for example,
with iteml.sequence_number + 1. This will insert the value of the first message’s
sequence number (which may be a live input) incremented by one. This way to can
refer to previous values and manipulate them as desired.

External program is useful when you have an external program (e.g. AES encryption)
that produces the desired value for a label. When called during simulation, your
external program will get all previously received and sent messages for the certain
participant. These messages will be passed to STDIN of your program.

Random value will insert a random value from a customizable range.

6.3 Starting the simulation

Once everything is configured, you can click the Simulate... button on the bottom left of
the Simulator tab. This will bring up the simulation dialog shown in fig. 31.

Before starting the simulation, you should configure a SDR for receiving and transmitting
in the RX settings and TX settings tab, respectively.

During simulation, the currently captured signal will be shown under RX status so you can
quickly debug RX issues. This capture is limited in size, if you want to capture everything
simply check the Capture complete RX checkbox, but be aware that this will constantly use
more and more RAM. With the save button on the right you can save the current capture
to further investigate it in Interpretation.

29

irH - Simulation

Log settings RX settings =~ TXsettings | Simulation

¥ Simulation Status

/SDR Status\/Transcript\/Messages\

Current iteration: 0 Current item: 0 [
¥ RX Status
Capture complete RX [
(®)Start

Figure 31: Simulation dialog.

To start the simulation use the Start button at the bottom of the dialog. During simulation,
you will see a log what is currently happening and be informed e.g. about mismatching

constant values like shown in fig. 32.

Feb 28 09:54:01.938252: Waiting for message 8
Feb 28 09:54:01.938343: Attempt for message 8 [1/10]

Mismatch for label: data
Expected: 100008811
Got: 186000106
Feb 28 09:54:01.938399: Attempt for message 8 [2/10]
Mismatch for label: data
Expected: 100008811
Got:
Feb 28 09:54:01.938496: Attempt for message 8 [3/10]
Mismatch for label: data
Expected: 100008811
Got: 1060060010

Figure 32: Example of simulator log.

After simulation, you will find the transcript in the Transcript tab located at the left of the
Simulator tab. You can also save this transcript or open directly in Analysis for further

investigations.

30

7 Configuring Look and Feel

URH gives you a native look and feel regardless if you install it on Linux, Windows or OSX.
However, if you would like to customize it there are two fallback themes available. Figure 33
gives you an impression how the three themes compare to each other on Windows.

B Universal Radio Hacker = =} x
File Edt Help

[@

- 1 Complex Signal (C(IN(x] g

PYCharmCE2017.2 Aoy R2-433_520Ve42-2_S00MSps

PyCharmCE20173 Nose: ooz :
B 30 Otjects center 00055 B
- BitLength: 21 5
- Error Tolerance: s L
: s Modulation: F =r
"~ Autodetectporameters
ts >

&) 0 selected | 000ms 7 Fiter (moving average) =

7 gt

HackRF-433 920MHz-2MSps-2MHzcon | Sonal Vew: Ansiog
LimeSOR-433_920MHz-2MSps-2MHzcd 3 (] showSgnales B
=) protocol.protomi I

Warmog: i your 1 Project, Don'tshow thishint

(a) Native theme on Windows.

(b) Light theme. (c) Dark theme.

Figure 33: URH in the three different themes on Windows.

You can configure the theme using Edit » Options > View > Choose application theme.

Linux users can also configure icon theme. This allows using system icons instead of the
bundled icon theme that come with URH. You can choose this via Edit > Options > View
> Choose icon theme.

Note to KDE users: If you experience icon issues in file dialogs it is necessary to switch the
icon theme to native icon theme using Edit > Options > View > Choose icon theme.

31

8 Plugins

URH can be enhanced using plugins. To activate a plugin simply check it’s checkbox using
Edit » Options - Plugins. In this section you find an overview of available plugins.

“«

ZeroHide: This plugin allows you to entirely crop long sequences of zeros in your
protocol and focus on relevant data. You can set a threshold below. All sequences of
directly following zeros, which are longer than this threshold will be removed. This
will give you a new entry in Analysis message table context menu.

RfCat: With this plugin we support sending bytestreams via RfCat (e.g. using YARD
Stick One). Therefore, a new button below generator table will be created.

InsertSine: This plugin enables you to insert custom sine waves into your signal as
shown in fig. 34. You will find a new context menu entry in Interpretation signal view.
Transform URH into a full fledged signal editor!

NetworkSDRInterface: With this plugin you can interface external applications using
TCP. You can use your external application for performing protocol simulation on
logical level or advanced modulation/decoding. If you activate this plugin, a new SDR
will be selectable in device dialogs. Furthermore, a new button below generator table
will be created.

MessageBreak: This plugin enables you to break a protocol message on an arbitrary
position. This is helpful when you have redundancy in your messages. This will give
you a new entry in Analysis message table context menu.

4 | 1345 selected | 1,34 ms | RSSI: 0,870 7 Filter (moving aver

10101010101010101010101010101016101010101

Amplitude: 1,000 -

Frequency (Hz): | 10,000K :

samples]
01010l0101010101010161610101010101010101

[11001010001111001001108 [Pause: 5059

Phase: 0,000°

Sample Rate: | 1,000M -
Samples: 1,345K -

Time (seconds): |1,345m

Ok Abort 7 5

Figure 34: Insert arbitrary sine waves in Interpretation with the InsertSine plugin.

32

	Introduction
	Motivation
	Installation

	Device interaction
	Configuring Devices
	Native Backend
	GNU Radio Backend

	Scanning the spectrum
	Recording a signal

	Interpretation
	Importing a signal
	Signal editing
	Replay signal and view signal details
	Demodulation
	Spectrogram
	Filters (advanced feature)
	Bandpass filter
	Moving average filter

	Analysis
	Getting data into analysis
	Project files
	View data from different perspectives
	Decoding
	Configure Decodings
	External Decodings
	Choose decoding

	Participants
	Labels
	Assigning and editing labels
	Field Types
	Checksum labels

	Message Types

	Generation
	Fuzzing
	Modulation
	Sending it back

	Simulation
	Getting started
	Configuration options
	Message direction (participants)
	Rules
	Actions
	Label configuration

	Starting the simulation

	Configuring Look and Feel
	Plugins

