
dbnomics for gretl

Allin Cottrell Jack Lucchetti

June 26, 2022

1 Introduction

This package offers an interface to dbnomics for gretl. For anyone who hasn’t yet caught on,
dbnomics makes available, in a uniform manner, a huge number of macroeconomic data series
drawn from many sources around the world—a truly admirable service!

The dbnomics website can be found at https://db.nomics.world/; interested users are encour-
aged to visit the site to get a better sense of what’s available. The exact mechanisms whereby
dbnomics makes data available are still under development so some changes can be expected in
future. We will endeavor to keep our package up to date and will push out updates with gretl
snapshots as required.

There are three main layers to the dbnomics “space,” as follows:

• Providers: the various statistical agencies that are the primary sources of the data. As of this
writing 62 providers are included, from the African Development Group to the WTO.

• Datasets: sets of related series offered by a given provider. Over 20,000 datasets are available.

• Series: specific time series such as the Bulgarian unemployment rate. Hundreds of millions of
series are available.

A specific series in dbnomics is identified by a triplet of the form provider/dataset/series, for
example

ECB/IRS/M.IT.L.L40.CI.0000.EUR.N.Z

Here the provider is ECB (the European Central Bank); the dataset is IRS (interest rate statistics);
and the particular series is “M.IT.L.L40.CI.0000.EUR.N.Z,” an Italian 10-year interest rate.

This package provides means of downloading a specific series if you know its identifying triplet, and
also means of navigating the dbnomics space. There are three ways of accessing the functionality
of the package:

• Via the gretl commands open and data, as with native gretl databases.

• By means of the gretl GUI.

• By calling the public functions of the package yourself, in command-line or scripting mode.

The following three sections expand on these methods in turn.

2 The open and data commands

To exploit this method you need to know the identifying triplet(s) for the series you want. Given
that, you can initiate dbnomics access via the command

1

https://db.nomics.world/

open dbnomics

From this point the data command will target dbnomics data until you “open” some other data
source. So, for example, you could download the Italian 10-year interest rate mentioned above in
this way:

data ECB/IRS/M.IT.L.L40.CI.0000.EUR.N.Z

Ah, but what about the name of the series within gretl? The full triplet is obviously not accept-
able as a gretl series-name, and even its third component won’t work since gretl identifiers can-
not contain the dot character. What happens by default is that gretl takes the third portion of
the triplet and squeezes out any illegal characters. In the case above this would give a name of
MITLL40CI0000EURNZ—not very nice-looking. However, you can take charge of the naming of the
imported series yourself, using the --name option to the data command, as in

data ECB/IRS/M.IT.L.L40.CI.0000.EUR.N.Z --name="IT_10yr"

In this case the series will be known to gretl as IT_10yr. Note that when you import a series from
dbnomics its descriptive “label” starts with the full triplet so you won’t lose that information of
record, regardless of the naming of the series.

Note that the data command takes care automatically of several details, such as for example match-
ing date or adjusting for different periodicities. For example, the following code snippet will create
an empty monthly dataset and retrieve from dbnomics the monthly index of industrial produc-
tion for Portugal, as reported by the “International Financial Statistics” dataset by the International
Monetary Fund.

nulldata 220
setobs 12 2007:1
open dbnomics
data IMF/IFS/M.PT.AIP_IX --name="pt_ip"

The nulldata and setobs commands used in the above script will generate a dataset that starts in
January 2007 and ends in April 2018, whereas the downloaded series (at the time of this writing)
starts in January 1955 and ends in December 2017, but the data command puts the numbers in
the right place. As for periodicities, suppose we import the same series into a quarterly dataset,
such as AWM17:

open AWM17.gdt --quiet
open dbnomics
data IMF/IFS/M.PT.AIP_IX --name="pt_ip"

In this case, the series is also compacted to a lower frequency by averaging, which is the default
behavior of the data command (see the Gretl User’s Guide for more details).

3 dbnomics via the gretl GUI

GUI access to dbnomics is provided in two places (see Figure 1):

• Via the Databases item under the File menu in the gretl main window.

• From the gretl databases window (opened by the database icon on the toolbar at the foot of
the main window): click the “DB” icon on the toolbar in this window.

In both cases you get a little sub-menu with entries “Browse” and “Specific series.” The latter entry
takes you to a dialog box in which you can enter a series triplet (see section 2). The Browse entry
takes you to a window which displays the available dbnomics providers: their codes and their
descriptions (see Figure 2). From here you have two options:

2

Figure 1: DB.NOMICS access via the File menu or the databases button (circled)

Figure 2: Listing of DB.NOMICS providers

3

• Select a provider and double-click to browse the datasets it supplies.

• In the search box in the top panel of the window, enter a string and search all providers for
datasets that match your specification.1

In each case a dbnomics datasets window will open. With some providers or searches more datasets
will be found than can comfortably be displayed at once. In that case the toolbar includes buttons
that let you page forward or back through the listing; you should also get a status message at the
foot of the window indicating the current position in the listing.

From a datasets window two more steps are available:

• Double-click on a dataset to open a window showing the series it contains (or one “page” of
its full list of series if there are too many).

• In a window showing dbnomics series, double-click to activate a particular series. This will
give you detailed information on the series and allow you to display its values, create a time-
series plot, or add the series to your gretl dataset.

To summarize, there are three layers to gretl’s GUI representation of the dbnomics space:

1. The providers window (with global search facility)

2. Datasets window (for a given provider, or via search)

3. Series window (for a given dataset)

4 Public functions

The package contains several public functions which both subserve the modes of access described
in sections 2 and 3, and can be called directly by the user.

At this point we just offer an “as is” listing of the signatures of these functions with brief com-
mentary. The finer points are subject to change; we can expand on them later if there’s sufficient
interest.

However, the general guiding principle is that, when you download some information from db-
nomics, be it a single series or more complex objects, the metadata are going to be as important
as the data themselves. Therefore, in most cases what you get from the functions provided by this
package are bundles, or arrays of bundles.

For example, the dbnomics_get_series function takes as its first mandatory argument a se-
ries code and returns a bundle containing both the data and the metadata: take the series
Q.AU.C.A.M.USD.A, from the “long series on total credit” dataset, itself from the Bank for In-
ternational Settlements. The code for the dataset is BIS/CNFS. Therefore, this code snippet

b = dbnomics_get_series("BIS/CNFS/Q.AU.C.A.M.USD.A")
print b

produces the following:

bundle b, created by dbnomics:
frequency = 4
series_name (string, 127 bytes)
dimensions (bundle)
dataset_name = long series on total credit

1If you wish to use this facility to find a string in the providers window itself, first select “this window” to the right of
the search box, the default being “all DB.NOMICS” as shown in Figure 2.

4

period = array of strings, length 120
error = 0
series_code = Q.AU.C.A.M.USD.A
indexed_at = 2018-12-13T17:38:15.031Z
dataset_code = CNFS
provider_code = BIS
has_data = 1
period_start_day = array of strings, length 312
T = 120
@frequency = quarterly
value (matrix: 120 x 1)

The actual data are stored as a column vector, under the key value; however, there is much more
information available to you: for example, the frequency key equals 4, thus indicating that the
data are quarterly, and so on. If you want to have this information printed in a more readable
way, you’ll want to use the dbnomics_bundle_print function, that yields (long lines broken for
readability):

Series: Q.AU.C.A.M.USD.A
Provider: BIS
Dataset: CNFS (long series on total credit)
Identifier: BIS/CNFS/Q.AU.C.A.M.USD.A
Name: Quarterly - Australia - Non financial sector - Adjusted for
breaks - Market value - US Dollar - Adjusted for breaks

Dimensions:
Frequency: ’Q’ (Quarterly)
Borrowers’ country: ’AU’ (Australia)
Borrowing sector: ’C’ (Non financial sector)
Lending sector: ’A’ (Adjusted for breaks)
Valuation: ’M’ (Market value)
Type of adjustment: ’A’ (Adjusted for breaks)
Unit type: ’USD’ (US Dollar)

pd = 4; 120 observations, 1988-Q2 - 2018-Q1

Some functions can be used for retrieving multiple series at once; therefore, what they return is an
array of bundles. The following example fetches two series for two countries from the “AMECO”
dataset as provided by the European Central Bank.

set verbose off
include dbnomics.gfn

bundle spec = null
spec.AME_ITEM = defarray("UBLGE", "OVGD")
spec.AME_REF_AREA = defarray("AUT", "BEL")
bs = dbnomics_get_multiple("ECB", "AME", 20, 0, spec)
dbnomics_bundles_print(bs)

Once the series have been downloaded, a short description of the resulting array of bundles is
obtained by the dbnomics_bundles_print (note the plural) function, and this is the output (with
long lines broken for readability, again):

Contents of bs:

Provider Code Description
1: ECB/AME A_AUT_1_0_0_0_OVGD Austria - Gross domestic product at 2...

61 observations (pd = 1) [1960:2020]
2: ECB/AME A_AUT_1_0_319_0_UBLGE Austria - Net lending (+) or net borr...

5

26 observations (pd = 1) [1995:2020]
3: ECB/AME A_BEL_1_0_0_0_OVGD Belgium - Gross domestic product at 2...

61 observations (pd = 1) [1960:2020]
4: ECB/AME A_BEL_1_0_319_0_UBLGE Belgium - Net lending (+) or net borr...

26 observations (pd = 1) [1995:2020]

Note that this package contains several test scripts that exemplify calls to the functions listed
below; this can be found in the examples subdirectory of the installation directory. Likely locations
for this are as follows (though the paths may differ by locale and otherwise):

Linux /usr/share/gretl/functions/dbnomics

Windows C:\Program Files\gretl\functions\dbnomics

Mac /Applications/Gretl.app/Contents/Resources/share/gretl/functions/dbnomics

List of public functions (in alphabetical order)

scalar dbnomics_bundle_get_data (const bundle b,
series *x,
bool verbose[0])

Given a bundle obtained by dbnomics_get_series, writes the actual data values (and description)
into the series x, which must exist already and be given in “pointer” form. Returns zero on success,
non-zero on error.

example
bundle b = dbnomics_get_series("ECB/IRS/M.IT.L.L40.CI.0000.EUR.N.Z")
series IT_10yr = NA
dbnomics_bundle_get_data(b, &IT_10yr)

void dbnomics_bundle_print (const bundle b,
bool print_data[0])

Displays the content of a bundle obtained by dbnomics_get_series. Give a non-zero value for the
second argument to print the actual values, otherwise just the metadata is shown.

void dbnomics_bundles_print (const bundles bs)

Displays a concise description of the series contained in an array of bundles, such as the ones you
get from function like dbnomics_get_multiple. For a more detailed printout of the individual
bundles, use dbnomics_bundle_print.

list dbnomics_bundles_to_list(bundles bs, string key[null])

Creates a list of series from an array of bundles containing series data, as returned by functions
such as dbnomics_get_multiple. By default the names of the series will be constructed automat-
ically but the second, optional string argument can be used to impose a chosen naming scheme:

6

for each bundle, if it contains a string value under the specified key, that string will be used as the
name of the corresponding series.

bundle dbnomics_category_tree (const string provider,
bool verbose[0])

Returns a bundle containing a representation of the “category tree” for the specified provider. For
some providers this tree just amounts to a list of datasets but for others it is a hierarchy in which
related datasets are grouped under one or more levels of headings. Each bundle in the tree will
have members code and name; those that represent groups of datasets rather then datasets proper
will in addition have a children member.

example
bundle b = dbnomics_category_tree("BLS")
print b --tree

bundle dbnomics_dsets_for_provider (const string provider,
bool verbose[0])

Returns a bundle containing basic information on the datasets associated with a given provider,
namely two arrays of strings holding the codes and names of the datasets respectively.

example
bundle b = dbnomics_dsets_for_provider("AMECO")

series dbnomics_fetch (const string datacode,
bool verbose[0])

This is just a convenience wrapper for dbnomics_get_series followed by dbnomics_bundle_get_data.

bundles dbnomics_get_cart (const string URL)

This is a convenience function that you can use to select the series you want via the “cart” facility
provided by the DB.nomics website. After choosing the series you want, you have to select the
“Copy API link” entry in the “Download” menu.

At that point, you can just paste the result into a gretl string, and use that as the argument of this
function. See the file get_cart_example.inp for an example.

bundles dbnomics_get_dataset_content (const string provider,
const string dset,
int limit[0::100],
int offset[0])

7

Returns an array of bundles each containing information on a series contained in the dataset spec-
ified by the provider and dset codes. The limit and offset arguments allow “paging”: retrieve
so many results, starting at a given offset into the full listing.

example
bundles B = dbnomics_get_dataset_content("ECB", "IRS", 50, 100)

bundles dbnomics_get_dataset_dimensions (const string provider,
const string dset,
bool verbose[0])

Returns an array of bundles, with all the “dimensions” for a given dataset, and prints it out if the
verbose argument is nonzero. The dimensions typically contain lists of the different periodicities
of the series contained in the datasets, the geographical units they refer to, and so on.

Therefore, each resulting bundle will have a key called code, which identifies the dimension, and
an array of bundles called values, describing each dimension via the keys code and label. For
example, the following code

set verbose off
include dbnomics.gfn

dims = dbnomics_get_dataset_dimensions("ECB", "AME")
code = dims[2].code
vals = dims[2].values
printf "%s\n\n", code
loop i = 1..4 --quiet

printf "%s - %s\n", vals[i].code, vals[i].label
endloop

returns

AME_REF_AREA

AUT - Austria
BEL - Belgium
BGR - Bulgaria
HRV - Croatia

Note: This may not work with some providers.

bundles dbnomics_providers (bool verbose[0])

Returns an array of bundles, one per provider. Each bundle contains basic info about the provider,
notably its dbnomics code under the code key and its full name under the name key.

bundles dbnomics_get_multiple (const string provider,
const string dset,
int limit[0::50],
int offset[0],
bundle spec[null])

8

Returns an array of bundles (defaulting to a maximum of 50), each of which contains information
(data + metadata) on a series from dataset provider/dset.

The bundle spec, if present, can be used to limit the query to certain dimensions. There are two
ways to to this:

• you may put a mask key into the bundle, which contains a string specially tailored to the
specifics of that particular dataset. For example, the string “Q.FR+DE+BE.PCPIFBT_IX” in the
context of the IMF/CPI dataset, corresponds to the quarterly price indices for “Alcoholic
Beverages, Tobacco, and Narcotics” in France, Germany and Belgium (see the example file
get_multiple_example_via_mask);

• alternatively, you may put into the spec bundle one or more string array with the “dimen-
sions” for that dataset (see the example file get_multiple_example). In order to find the di-
mensions available for a given dataset, use the function dbnomics_get_dataset_dimensions().

bundle dbnomics_get_series (const string datacode,
bool verbose[0])

Returns a bundle containing information on the series specified by datacode, which must be a
dbnomics triplet as described above.

example
bundle b = dbnomics_get_series("ECB/IRS/M.IT.L.L40.CI.0000.EUR.N.Z")

The verbose switch, if true, prints out the actual URL that the function sends to the dbnomics
website, and can be used for debugging purposes.

bundles dbnomics_search (const string key,
const string dset[null],
int limit[0::100],
int offset[0],
bool verbose[0])

The behavior of this function is dictated by the second parameter dset.

If dset is null, or an empty string, the function returns an array of bundles, each holding informa-
tion on a dataset which matches (in some way or other) the key string. If, conversely, dset contains
a valid dataset representation (eg “AMECO/ZUTN”), then the query will be limited to that particular
dataset, and the bundles returned will contain the series matching the query. See section 5 below
for further details.

The limit and offset argument should in principle work to allow paging but as of this writing
the offset argument has no effect due to a dbnomics bug.

example
bundles B = dbnomics_search("interest rates", null, 50)

5 Searching dbnomics

Given the vast size of the dbnomics space, it’s important to have effective search tools. This is work
in progress, but in this section we illustrate the current state of play. The example below shows

9

a two-stage search. We first search for relevant datasets across the whole population of providers
then we home in on a particular dataset and search for relevant series, in each case requesting
verbose results.

set verbose off
include dbnomics.gfn

target of search
key = "remittances Iraq"

search all providers for up to 10 relevant databases
bundles generic = dbnomics_search(key, null, 10, 0, 1)

search the "WDI" dataset of the World Bank for up to
10 relevant series
dataset_code = "WB/WDI"
bundles specific = dbnomics_search(key, dataset_code, 10, 0, 1)

The example produces the following output (long lines broken for readability):

Datasets containing "remittances Iraq" (1-5 of 5):

1: Eurostat.bop_rem6 (42 series)
2: WB.WDI (5 series)
3: IMF.BOP (54 series)
4: CEPII.BOP (54 series)
5: ECB.BOP (54 series)

Dataset WB/WDI, matching series 1-5 of 5:

BM.TRF.PWKR.CD.DT-IQ: Personal remittances, paid (current US$) -- Iraq
BX.TRF.PWKR.CD.DT-IQ: Personal remittances, received (current US$) -- Iraq
BX.TRF.PWKR.DT.GD.ZS-IQ: Personal remittances, received (% of GDP) -- Iraq
SI.RMT.COST.IB.ZS-IQ: Average transaction cost of sending remittances
to a specific country (%) -- Iraq

SI.RMT.COST.OB.ZS-IQ: Average transaction cost of sending remittances
from a specific country (%) -- Iraq

The same search facilities are also available through the GUI: if you go back to Figure 2, you will
notice a search text box at the top. By default, any term you insert will trigger a search for that term
on the whole dbnomics space, like the dbnomics_search function with a null second argument.
If you want to restrict the search to a particular dataset instead, you will have to “click to” that
particular data set and use the search text box there, like in Figure 3.

10

Figure 3: Search within a particular dataset

11

6 Change log

We show below a brief history of changes in the gretl dbnomics package. Details can be found at
https://sourceforge.net/p/gretl/git/ci/master/tree/addons/dbnomics/.

2022-06-26 ensure deletion of temporary data files

2022-01-12 update for absence of series_name

2021-10-21 fix handling of quarterly data with gaps

2021-03-29 cut out waste of time downloading metadata

2021-03-10 update for presence of metadata switch in API

2021-01-06 update for absence of complete_missing_periods

2020-10-22 update for absence of dimensions_labels in many
datasets

2020-02-27 add dbnomics_printer function

2020-01-25 add the commit_missing_periods flag to our dbnomics re-
quests to ensure we get a full data calendar

2019-07-01 more work on handling nested JSON arrays

2019-06-26 work around nested arrays in dbnomics “dimensions” info

2019-03-03 another fix in light of API switch

2019-02-28 fix minor breakage due to API switch

2019-01-17 update dbnomics URL

2018-12-23 switch to version 22 of dbnomics API

2018-11-28 support downloading of multiple series bundles

2018-06-27 initial entry as gretl addon

12

https://sourceforge.net/p/gretl/git/ci/master/tree/addons/dbnomics/

	1 Introduction
	2 The open and data commands
	3 dbnomics via the gretl GUI
	4 Public functions
	List of public functions (in alphabetical order)

	5 Searching dbnomics
	6 Change log

