
The extra package
(a collection of various convenience functions for hansl

programming)

The GRETL team*

September 2024

Contents

1 Usage 2

2 Matrix-related functions 2
2.1 combinations . 2
2.2 drawbootres . 2
2.3 drill . 3
2.4 duplicate . 3
2.5 eliminate . 4
2.6 mat2latex . 4
2.7 nearPSD . 5
2.8 qformvech . 5
2.9 zeroifclose . 5

3 Other functions working without a dataset in place 6
3.1 get settings . 6
3.2 multi instrings . 6
3.3 onemode . 6
3.4 powerset . 6
3.5 scores2x2 . 6
3.6 splitfname . 7
3.7 truncnorm . 8
3.8 WSRcritical . 8
3.9 WSRpvalue . 8

4 Functions requiring a dataset 8
4.1 combine . 8
4.2 correspondence . 9
4.3 fracorder . 9
4.4 gap filler . 10
4.5 winsor . 10

*Currently coordinated by Sven Schreiber.

1

5 Authors 10

6 Changelog 11

1 Usage

This package is intended for hansl scripting, not for gretl’s GUI. (But of course other
contributed function packages that make use of functions in extra.gfn can provide GUI
access for themselves.)

The usual one-time requirement is to do pkg install extra.zip to get a copy on
the local system (or install it via gretl’s graphical mechanism), and then in the respective
hansl script have a line include extra.gfn.

Note that functions that are exact lookalikes of Matlab/Octave functions do not live
here, but would go into the matlab utilities package.

2 Matrix-related functions

2.1 combinations

Arguments: matrix x, int h

Return type: matrix

This function returns a matrix whose rows are all the possible subsets of x containing
h elements; for h > 2, a recursive algorithm is used.

For example: combinations({1,2,3}, 2) returns

1 2
1 3
2 3

The argument x must be a (row or column) vector. The returned matrix will have (n
k)

rows if successful, otherwise it will be a 1x1 matrix with an NA value.
Nota bene: The recursive algorithm used may be a little slow if the number of elements

of x is large.

2.2 drawbootres

Arguments: const matrix U, bundle bparams (optional), int bootcode (optional)
Return type: matrix

Construct a new draw of innovations (residuals) for bootstrapping, based on the input
matrix U, interpreted to be T-by-K (observations in rows). The return value has the same
shape. U can be original residuals or some pre-processed input – the pre-processing is not
done here to avoid doing it repeatedly during the bootstrap.

Two ways of choosing the bootstrap type are supported: Either by adding a string el-
ement to the bparams bundle under the key ‘btypestr’, or by using the associated number
code in the bootcode argument, where the bundle-based choice takes precedence. Both
ways are optional, the general default is plain resampling. Here is a brief description of
the meanings of the codes (see also the SVAR addon’s documentation):

2

1. plain resampling – A standard draw with replacement based on libgretl’s resample
function; so if this is all that’s needed, you might be better off using resample di-
rectly. (Allowed string code: any word starting with “re”, e.g. “resampling”.)

2. wild, Normal – A draw for the wild bootstrapping scheme, where each row of the
input matrix is scaled randomly according to Gaussian noise. (string code “wildN”
or simply “wild”)

3. wild, Rademacher – Here the signs of all rows are flipped randomly. (string code
“wildR”)

4. wild, Mammen – Here the multiplicative factors for the rows are the ones proposed
by Mammen (see the SVAR documenation; string code “wildM”).

5. moving blocks – Provides a draw of moving blocks of the input, see for example
Brüggemann, Jentsch & Trenkler (2016; Journal of Econometrics, vol. 191, issue 1,
69-85). By default a block length of 10% of the input length T is used (rounded,
at least 2). The block length can be overridden by supplying the ‘moveblocklen’
scalar element inside the bparams bundle argument. (Allowed string codes: any
word starting with “mov”, or “MBB”.)

Note that this function is included in extra’s version 1.7 and made public for conve-
nience of potential users, but it may be moved to another separate addon in the future.

2.3 drill

Arguments: matrices array, matrix rowspec (optional), matrix colspec (optional)
Return type: matrix

This function “drills through” a matrix array and returns a matrix; if one sees a matrix
array whose elements are equally sized as a 3-way tensor, this function can be used for
extracting what are known as fibers and/or slices in tensor algebra, that is matrices with
subsets of the tensor entries.1

for example, drill(x, 2, 3) returns a vector with the [2,3] elements of all matrices
in the x array (a “fiber”). Omitting one of rowspec, colspec or entering “0” means to
select all rows or columns respectively; the matrix thus obtained is a “slice”. Of course,
at least one of rowspeca and colspec must be specified.

Nota bene: all matrices in the array must be of the same dimensions.

2.4 duplicate

Arguments: matrix vechA

Return type: matrix

The input is a vector assumed to come from an operation like vech(A). Returns vec(A),
which is the result of pre-multiplying vech(A) with the “duplication” matrix Dm. If
vechA has several columns, each column is treated separately as described above (and
the results stacked side-by-side).

1See eg Kolda, T. G., and Bader, B. W. (2009). Tensor decompositions and applications. SIAM review,
51(3), 455–500.

3

2.5 eliminate

Arguments: matrix vecA

Return type: matrix

Each column of the input vecA is assumed to come from the operation vec(A) on a
square matrix, thus rows(vecA) must be a square number. Returns vech(A), which is the
result of pre-multiplying vec(A) with the “elimination” matrix Lm. If vecA has several
columns, each column is treated separately as described above (and the results stacked
side-by-side).

2.6 mat2latex

Arguments: matrix X, bundle opts (optional)
Return type: string

Produces a string containing the representation of matrix X as a LATEX tabular envi-
ronment. For example,

eval mat2latex(mshape(seq(1,6), 2, 3))

produces

\begin{tabular}{lccc}
\hline
& & Col 1 & Col 2 & Col 3 \\ \hline

Row 1 & 1.000 & 3.000 & 5.000 \\
Row 2 & 2.000 & 4.000 & 6.000 \\
\hline
\end{tabular}

Note that, if a matrix possesses row or column names, they will be automatically used
as labels. Some features of the results can be tweaked by setting appropriate keys in the
opts bundle:

format : a string, to be used for aligning columns. The default is to have the first column
left-aligned, and the subsequent ones centered, as in “lccc”.

decimals The number of decimals to use (default=3).

nacode The string to use for missing entries (default: empty).

rnames A string array for row headings.

cnames A string array for column headings.

For example, the code

open credscore.gdt
xtab OwnRent Selfempl --quiet
s = mat2latex($result, _(decimals=0))
print s

produces

4

\begin{tabular}{lccc}
\hline
& 0 & 1 & TOTAL \\ \hline
0 & 60 & 4 & 64 \\
1 & 35 & 1 & 36 \\

TOTAL & 95 & 5 & 100 \\
\hline
\end{tabular}

which looks, when compiled, as

0 1 TOTAL
0 60 4 64
1 35 1 36
TOTAL 95 5 100

2.7 nearPSD

Arguments: matrix pointer *m, scalar epsilon (optional)
Return type: scalar

Forces the matrix m into the positive semi-definite region. Algorithm ported from
“DomPazz” in Stackoverflow, apparently mimicking the nearPD() function in R. Because
of re-scaling (to correlation matrix), the epsilon criterion value should implicitly apply
to the correlation-based eigenvalues. The return value 0 or 1 indicates whether m was
altered or not.

2.8 qformvech

Arguments: matrix Xt

Return type: matrix

This function relies on the relation vech(X′AX) = P(X⊗X)′Q vech(A) = G vech(A),
where P and Q are certain interim results. It takes the matrix X′ and returns the ma-
trix G such that the right-hand side of the equalities becomes feasible, which should be
numerically more efficient than the direct application of the left-hand side.

2.9 zeroifclose

Arguments: matrix pointer *m, scalar thresh (optional)
Return type: scalar

Sets elements of m to zero if they are really close. The return value 0 or 1 indicates
whether m was altered or not.

The default value for the threshold has been 1e-12 since extra version 0.7. In some
applications smaller (in absolute value) but mathematically truly non-zero results may
occur, in which case a smaller threshold can be chosen.

5

3 Other functions working without a dataset in place

3.1 get settings

Arguments: string key (optional)
Return type: bundle

The returned bundle contains information on either one or (almost) all of the gretl
state variables that can be configured via the set command (“libset variables”). The
bundle members are named for the keys of the libset variables and their values are either
strings or scalars.

If no argument is given, all libset variable values are represented, with the exception
of a few that take the form of matrices (initvals, initcurv), and a few others of no
interest from a programming point of view (echo, messages, verbose). If an argument
is given, it should be the key for a particular libset variable, in which case the returned
bundle has a single element.

3.2 multi instrings

Arguments: strings lookinhere, strings tofind

Return type: matrix

Returns in a column vector the positions (indices) in ‘lookinhere’ where any of the
strings from ‘tofind’ occur. If there are duplicates in ‘tofind’ then the output may also
contain duplicate indices. Use uniq() or values() afterwards if needed.

3.3 onemode

Arguments: matrix v

Return type: matrix

Finds the mode of the empirical distribution of the input data. If the data are multi-
modal, details of internal computer arithmetic can influence which of the modes is ac-
tually found. Returns a 2-element column vector with the modal value and its absolute
frequency. If v is an empty matrix (comprises only nan values) a 1× 1 matrix with nan is
returned.

3.4 powerset

Arguments: strings S

Return type: strings (array)

Computes the powerset of the input S, i.e. all possible combinations of the string
elements in S. (Including the empty set / empty string "".) Each combination yields one
string in the output array. Being a set, the ordering is not defined and arbitrary.

3.5 scores2x2

Arguments: matrix in, bool verbose (optional)
Return type: matrix

Computes some standard score measures for a 2× 2 contingency table of the form:

6

Observed
1 0

Predicted
1 h(its) f(alse)
0 m(iss) z(eros)

and n = h + f + m + z (total observations). Returns a column vector with the elements
listed in Table 1. The input is always sanitized by taking the upper 2x2 part, using abso-
lute values, and integer-ization. Warnings are issued if verbose is 1.

Number Acronym Description Formula
1 POD prob of detection h

h+m

2 POFD prob of false detection f
f +z

3 HR hit rate h+z
n

4 FAR false alarm rate f
h+ f

5 CSI critical success index h
h+ f +m

6 OR odds ratio h·z
f ·m

7 BIAS bias score h+ f
h+m

8 TSS true skill stat (POD − POFD);
also known as the Hanssen-
Kuipers score

h
h+m −

f
f +z .

9 HSS Heidke skill score 2 h·z− f ·m
(h+m)·(m+z)+(h+ f)·(f +z)

10 ETS equitable threat score h·z− f ·m
(f +m)·n+(h·z− f ·m)

11 PRC precision h
h+ f

12 FSC F-Score 2 PRC·POD
PRC+POD = 2 h

1+h+m

Table 1: Elements returned by the scores2x2 function

3.6 splitfname

Arguments: string fn

Return type: strings (array)

The idea is to take a file name or full path and extract three components:

1. The path prefix (may be empty; without the trailing / or \)

2. The “base” component of the file name, without the extension and without the path
prefix

3. The file extension (without the dot; may be empty)

In principle this should work with both forward slashes and backslashes, and also with
doubled slashes.

Example:
Input string: "/what/on/earth/isthisfile.gdt"
Output equivalent to:
defarray("/what/on/earth", "isthisfile", "gdt")

7

3.7 truncnorm

Arguments: int n, scalar m, scalar sigma, scalar below, scalar above

Return type: matrix

Generates n truncated normal random values. Specify mean m and standard deviation
sigma, and the left/right truncation values below and above. (Pass NA for any one of
them to skip the respective truncation.) Returns a column vector of values.

3.8 WSRcritical

Arguments: int n, scalar prob (optional), bool forcenorm (optional)
Return type: matrix

Concerns the distribution of Wilcoxon’s signed rank test statistic for n trials (at least
4). Tries to find the critical values (low/hi) where the two-sided area to the outside is as
close as possible to the given prob (default: 0.05). (Note that “outside” means including
the critical values themselves in the exact/discrete case.) If we end up in the interior re-
gion not covered by the exact table (for prob far away from 0 and also from 1), we fall
back to the normal approximation. The function returns a column vector {lo; hi; epv},
where epv is the actual probability mass (close to prob but not equal in general for small
samples). lo and hi can be non-integers in the normal approximation case. The nor-
mal approximation instead of the exact table values can be enforced with the forcenorm
argument (default: zero, do not enforce).

See also the sister function WSRpvalue.

3.9 WSRpvalue

Arguments: int n, scalar W, bool forcenorm (optional)
Return type: scalar

Concerns the distribution of Wilcoxon’s signed rank test statistic for n trials (at least
4), returns P(X ≥ W). In the interior region not covered by the exact table, the true value
is ≥ 12.5% (and ≤87.5%) according to the table used,2 so typically based on such values
H0 would not be rejected. We fall back to the normal approximation in this region. In the
extreme outer regions not explicitly covered by the table, the deviation from 0 or 1 will be
smaller than 0.5% = 0.005. We return values 0.001 or 0.999 as an approximation here. The
test statistic W should usually be an integer, but in case of bindings it could be fractional
as well; in this case we also fall back to the normal approximation.

The normal approximation instead of the exact table values can be enforced with the
forcenorm argument (default: zero, do not enforce).

See also the sister function WSRcritical.

4 Functions requiring a dataset

4.1 combine

Arguments: series a, series b

Return type: series

2Source of the table: Wilfrid J Dixon and Frank J. Massey, Jr., Introduction to Statistical Analysis, 2nd ed.
(New York: McGraw-Hill, 1957), pp. 443-444.

8

This function takes as arguments two discrete series and computes all the combina-
tions of their values that occur in the selected sample of the currently open dataset. These
are stored in the resulting series.

For example, suppose you have a dataset of trade flows, with two series ic and ec for
the importing and exporting countries, respectively. Then combine(ic,ec) will generate
a series in which each pair has a distinct encoding.

If the two input series are both string-valued, then the output series will also be string-
valued, as long as it’s possible to assign unique labels to each value.

4.2 correspondence

Arguments: series a, series b

Return type: scalar

This function takes two series and establishes if there’s a 1-to-1 relationship between
them, in which case it returns 2. If there’s a 1-to-n relationship such that a could be
interpreted as a (mathematical) function of b, it returns 1. If there’s no relationship – for
example several different values of series a appear together with some value of b – it
returns 0.

One of the possible use cases is to check whether two discrete series encode the same
variable. For example, the code:

open grunfeld.gdt
c = correspondence($unit, firm)

sets c to 2, indicating that the variable firm is in fact the panel cross-sectional identifier.

4.3 fracorder

Arguments: series x, int order (optional), bool verbosity (optional)
Return type: matrix

Meta function to invoke all the various ways in gretl to estimate the order of fractional
integration of the input series, namely the Local Whittle estimator, the one by Geweke
& Porter-Hudak (GPH), and the Hurst exponent minus 0.5. The first two are executed
through gretl’s command fractint, the latter via hurst.3

Returns a matrix with three rows corresponding to the methods above; the four columns
contain (1) the point estimate, (2) its standard error, (3) the test statistic for the null hy-
pothesis of integration order zero, (4) the associated p-value. For example, to obtain the
standard error of the Local Whittle estimator one picks the 1,2-element of the output ma-
trix. The optional ‘verbosity’ switch is set to 0 (OFF) by default, otherwise the standard
output of the underlying commands is printed out.

The optional ‘order’ argument only applies to the Local Whittle and GPH estimators
and overrides gretl’s default lag order of min(T/2, T0.6).

For the Hurst method a minimum of 128 observations is required, and test results
are never available. Also note that by construction this estimator can only take values
between −0.5 and 0.5.

3Another estimation approach for the Hurst exponent is provided in the user-contributed function pack-
age gen hurst.

9

4.4 gap filler

Arguments: series x, int method (optional)
Return type: series

Simple convenience function to crudely get rid of missing values interspersed be-
tween valid observations. The function is meant to be used with time series, or panel
datasets with a time dimension. An error is returned if the function is used with a cross-
sectional dataset.

Apart from the first argument (series), it accepts an integer parameter as second ar-
gument, whose meaning is: 0: do nothing, leave the gaps; 1: NAs are replaced with pre-
vious observations; 2: NAs are replaced with a linear interpolation (this uses the internal
function interpol()). Returns the filled series.

The very existence of the “0” method for interpolation may look bizarre at first sight,
but it may make sense in the context of batch processing, as in the following example
(hopefully, self-explanatory):

k = 1
loop foreach i X

series z_$i = gap_filler($i, action[k++])
endloop

Note that the function only replaces NAs between valid observations; therefore, if the
origin series has missing values at the beginning or the end of the sample, they will be in
the returned series too.

4.5 winsor

Arguments: series x, scalar p (optional), scalar phi (optional)
Return type: series

Returns a trimmed (“winsorized”) version of the series, where outliers are replaced
with implicit threshold values. Truncation quantiles are determined according to relative
tail frequencies p and phi. Default lower and upper frequencies are 0.05, but re-settable
with p. Pass phi in addition to p for an asymmetric trimming, then p determines only the
lower frequency and phi the upper.

5 Authors

• gap filler, eliminate, duplicate, truncnorm, powerset, drill, correspondence, combi-
nations, qformvech, mat2latex, combine: Jack Lucchetti

• nearPSD, zeroifclose, scores2x2, WSRcritical, WSRpvalue, onemode, splitfname,
multi instrings, fracorder, put outofsmpl: Sven Schreiber

• winsor: Sven Schreiber, original code JoshuaHe

• drawbootres: Jack Lucchetti and Sven Schreiber

10

6 Changelog

• March 2024: add the get settings function

• September 2023: add the combine function

• July 2023: adopt the drawbootres function from the SVAR addon to make it publicly
available

• January 2023: introduce the put outofsmpl function; internal refactoring of the
mat2latex() function

• July 2022: introduce the mat2latex function

• June 2022: retire the commute function (now in libgretl)

• January 2022: retire the mat2list function (now in libgretl), update gap filler

• October 2021: add qformvech

• June 2021: add combinations, and increase gretl version requirement to 2020c

• November 2020: add mat2list

• September 2020: add fracorder, remove bwritejson

• July 2020: add multi instrings and correspondence, add deprecation warning to
bwritejson, efficiency improvement for zeroifclose

• January 2020: add drill, bwritejson, onemode, splitfname; finally remove the re-
tired sepstr2arr (use native strsplit instead); slightly revise gap filler; rearrange the
documentation a little

• October 2018: fix small commute bug; retire sepstr2arr; add powerset, eliminate,
duplicate

• February 2018: allow non-integer input in WSRpvalue

• January 2018: add WSRcritical, WSRpvalue

• December 2017: add scores2x2; switch to pdf help document

• September 2017: add winsor

• July 2017: initial release

11

	1 Usage
	2 Matrix-related functions
	2.1 combinations
	2.2 drawbootres
	2.3 drill
	2.4 duplicate
	2.5 eliminate
	2.6 mat2latex
	2.7 nearPSD
	2.8 qformvech
	2.9 zeroifclose

	3 Other functions working without a dataset in place
	3.1 get_settings
	3.2 multi_instrings
	3.3 onemode
	3.4 powerset
	3.5 scores2x2
	3.6 splitfname
	3.7 truncnorm
	3.8 WSRcritical
	3.9 WSRpvalue

	4 Functions requiring a dataset
	4.1 combine
	4.2 correspondence
	4.3 fracorder
	4.4 gap_filler
	4.5 winsor

	5 Authors
	6 Changelog

