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Chapter 1

Introduction

What hansl is and what it is not

Hansl is a recursive acronym: it stands for “Hansl’s A Neat Scripting Language”. You might there-
fore expect something very general in purpose. Not really. Hansl was born as the scripting lan-
guage for the econometrics program gretl and its role is unlikely to change. As a consequence,
hansl should not be viewed as a fully fledged programming language such as C, Fortran, Perl or
Python. Not because it lacks anything to be considered as such,! but because its aim is different.
Hansl should be considered as a special-purpose or domain-specific language, designed to make
an econometrician’s life easier. Hence it incorporates a series of conventions and choices that may
irritate purists and have some marginal impact on raw performance, but that we, as professional
econometricians, consider “nice to have”. This makes hansl somewhat different from plain matrix-
oriented interpreted languages, such as the Matlab/Octave family, Ox and so on.

On the other hand, hansl is by no means just a tool to automate rote tasks. It has several features
which support advanced work: structured programming, recursion, complex data structures, and
so on. As for style, the language which hansl most resembles is probably that of the bash shell.

The intent and structure of this document

The intended readers of this document are those who already know how to write code, and are
familiar with the associated do-s and don’t-s. Such people may wish to add hansl to their toolbox,
alongside languages like C or FORTRAN, or programs such as R, Ox, Matlab, Stata or Gauss, some
of which they are already confident with. Here, therefore, the focus is not so much on “How do I do
this?”, but rather on “How do I do this in hansI?”.

As a consequence, this document aims at making the reader a reasonably proficient hansl user in
a (relatively) short time; however, not all the features of hansl are illustrated; for those, interested
readers should consult the Gretl Command Reference and the Gretl User’s Guide.

This guide comprises two main parts. Part I (“Without a dataset”) concentrates on hansl as a pure
matrix-oriented programming language. Part II (“With a dataset”) exploits the fact that hansl scripts
are run through gretl, which has very nice facilities for handling statistical datasets (interactively
if necessary). This provides hansl with a series of extra constructs and features which make it
extremely easy to write hansl scripts to perform all sorts of statistical procedures.

In order to use hansl, you will need a working installation of gretl. We assume you have one. If you
don’t, please refer to chapter 1 of the Gretl User’s Guide.

Other resources

If you are serious about learning hansl then after working through this primer—or in the process
of doing so—you’ll want to take a look at the following additional resources.

e The Gretl Command Reference. This contains a complete listing of the commands and built-in
functions available in hansl, with a full account of their syntax and options. Examples of usage

1Hansl is in fact Turing-complete.
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are provided in some instances. This is available in an “online” version for handy reference as
well as in PDF, both accessible via the Help menu in the gretl GUL

e The Gretl User’s Guide. Chapters 10 to 16, in particular, go into more detail on some of the
programming topics discussed here (data types, loops, the definition and use of functions). In
addition Part II of the Guide, on Econometric Methods, gives many examples of hansl usage.
The Guide is available via gretl’s Help menu; the latest version can also be found online at
http://sourceforge.net/projects/gretl/files/manual/.

e Sample scripts. The gretl package comes with a large number of sample or practice scripts,
which can be found under the menu item /File/Script files/Example scripts. Many of these are
simple replication exercises for textbook problems but you will find some more interesting
examples under the Gretl tab.

o Function packages. Relatively ambitious examples of hansl coding can be found in the various
contributed “function packages”. You can download these packages via the gretl menu item
/Tools/Function packages/On server. Once a package is downloaded it appears in the listing
under /Tools/Function packages/On local machine; in that context you can right-click and
select View code to examine the hansl functions.

e The gretl-users mailing list. Most well-considered questions get answered quite quickly and
fully. See https://gretiml.univpm.it/postorius/Tists/.


http://sourceforge.net/projects/gretl/files/manual/
https://gretlml.univpm.it/postorius/lists/

Chapter 2

For the impatient

OK, so you're impatient. Then perhaps you're thinking “Do I really need to go through the whole
thing? After all, I've been coding econometric stuff for a while, and I'm pretty confident I can pick
a new scripting language if it’s not too obscure. I just need a few tips to get me started”. If that’s
not what you're thinking at all, we suggest you move along to chapter 3; but if it is, well then, we’ll
give you a hansl script which exemplifies a hefty share of the topics discussed in the rest of this
primer. We will use for our example a Vector AutoRegressive model, or VAR for short.

As you probably know, a finite-order VAR can be estimated via conditional maximum likelihood
simply by applying OLS to each equation individually. That amounts to solving a least-squares
problem and its solution can be easily written, in matrix notation, as IT = (X’X)~1X’Y, where Y con-
tains your endogenous variables and X contains their lags plus other exogenous terms (typically, a
constant term at least). But of course, you may choose to find the maximum of the concentrated
likelihood £ = —(T/2)In|3| numerically if you so wish.

The following example contains a hansl script which performs these actions:
1. Reads data from a disk file.
2. Performs some data transformation and simple visualization.
3. Estimates the VAR via

(a) the native hansl var command

(b) sequential single-equation OLS

(c) matrix algebra (in 3 different ways)

(d) numerical maximization of the log-likelihood.

4. Prints out the results.

The script also contains some concise comments.

open AWM.gdt --quiet # Tload data from disk

/* data transformations and visualisation */

series y = 100 * hpfilt(Tn(YER)) # the "series" concept: operate on

series u = 100 * URX # vectors on an element-by-element basis
series r = STN - 100*sdiff(1n(HICP)) # (but you also have special functions)
scatters y r u --output=display # command example with an option: graph data

/* in-house VAR */

scalar p = 2 # strong typing: a scalar is not a
# matrix nor a series

var py ru # estimation command
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A = $coeff
/* by iterated OLS */

Tist X =y ru

-

matrix B = {}

Toop foreach i X
ols $i const X(-1 to -p) --quiet
B ~= $coeff

endloop

FH o H

/* via matrices */

matrix mY = { y, r, u } #
matrix mX = 1 ~ mlag(mY, {1,2}) #
mY = mY[p+1l:,] #
mX = mX[p+1:,] #
Cl = mX\mY #
C2 = mols(mYy, mX) #
C3 = inv(mX’mX) * (mX’mY) #
/* or the hard, needlessly complicated wa

function scalar loglik(matrix param, cons

# this function computes the concentr
# for an unrestricted multivariate re

scalar n = cols(Y)

scalar k = cols(X)

scalar T = rows(Y)

matrix C = mshape(param, k, n)
matrix E =Y - X*C

matrix Sigma = E’E

return -T/2 * Tn(det(Sigma))

end function

matrix c = zeros(21,1) #
mle 11 = loglik(c, mX, mY) #

params c #
end mle #

D = mshape(c, 7, 3)

B3

/* print out the results */
# note: row ordering between alternatives

print AB C1 C2 C3 D

and corresponding accessor

the 1ist is yet another variable type
initialize an empty matrix

Toop over the 3 var equations

using native OLS command

and store the estimated coefficients
as matrix columns

construct a matrix from series

or from matrix operators/functions
and select the appropriate rows
via "range" syntax

matlab-style matrix inversion
or native function

or algebraic primitives

y --- just to show off */

t matrix X, const matrix Y)

ated log-Tikelihood
gression model

initialize the parameters

and maximize the Tog-Tikelihood
via BFGS, printing out the
results when done

reshape the results for conformability

is different

If you were able to follow the script above in all its parts, congratulations. You probably don’t need

to read the rest of this document (though we

don’t mind if you do). But if you find the script too

scary, never fear: we’ll take things step by step. Read on.
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Without a dataset



Chapter 3

Hello, world!

We begin with the time-honored “Hello, world” program, the obligatory first step in any program-
ming language. It’s actually very simple in hansl:

# First example
print "Hello, world!"

There are several ways to run the above example: you can put it in a text file first_ex.inp and
have gretl execute it from the command line through the command

gretlcli -b first_ex.inp

or you could just copy its contents in the editor window of a GUI gretl session and click on the
“gears” icon. It’s up to you; use whatever you like best.

From a syntactical point of view, allow us to draw attention on the following points:

1. The line that begins with a hash mark (#) is a comment: if a hash mark is encountered,
everything from that point to the end of the current line is treated as a comment, and ignored
by the interpreter.

2. The next line contains a command (print) followed by an argument; this is fairly typical of
hansl: many jobs are carried out by calling commands.

3. The quotation character is a straight double-quote.

[

4. Hansl does not have an explicit command terminator such as the “;” character in the C lan-
guage family (C++, Java, C#, ...) or GAUSS; instead it uses the newline character as an implicit
terminator. So at the end of a command, you must insert a newline. Conversely, you can’t
split a single command over more than one line unless (a) the line to be continued ends with a
comma or (b) you insert a “\” (backslash) character, which causes gretl to ignore the following
line break.

Note also that the print command automatically appends a line break, and does not recognize
“escape” sequences such as “\n”. Such sequences are just printed literally —with a single exception,
namely that a backslash immediately followed by double-quote produces an embedded double-
quote. The printf command can be used for greater control over output; see chapter 5.

Let’s now examine a simple variant of the above:

/:':
Second example
7':/
string foo = "Hello, world"
print foo

In this example, the comment is written using the convention adopted in the C programming lan-
guage: everything between “/*” and “*/” is ignored.! Comments of this type cannot be nested.

Then we have the line

1Each type of comment can be masked by the other:
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string foo = "Hello, world"
In this line, we assign the value “Hel1lo, worl1d” to the variable named foo. Note that

1. The assignment operator is the equals sign (=).

2. The name of the variable (its identifier) must follow the following convention: identifiers can
be at most 31 characters long and must be plain ASCII. They must start with a letter, and can
contain only letters, numbers and the underscore character.’ Identifiers in hansl are case-
sensitive, so foo, Foo and FOO are three distinct names. Of course, some words are reserved
and can’t be used as identifiers (however, nearly all reserved words only contain lowercase
characters).

3. The string delimiter is the double quote (").

In hansl, a variable has to be of one of these types: scalar, series, matrix, 1ist, string, bundle
or array. As we've just seen, string variables are used to hold sequences of alphanumeric charac-
ters. We'll introduce the other ones gradually; for example, the matrix type will be the object of
the next chapter.

The reader may have noticed that the line
string foo = "Hello, world"

implicitly performs two tasks: it declares foo as a variable of type string and, at the same time,
assigns a value to foo. The declaration component is not strictly required. In most cases gretl
is able to figure out by itself what type a newly introduced variable should have, and the line
foo = "Hello, world" (without a type specifier) would have worked just fine. However, it is
more elegant (and leads to more legible and maintainable code) to use a type specifier at least the
first time you introduce a variable.

In the next example, we will use a variable of the scalar type:

scalar x = 42
print x

A scalar is a double-precision floating point number, so 42 is the same as 42.0 or 4.20000E+01.
Note that hansl doesn’t have a separate variable type for integers.

An important detail to note is that, contrary to most other matrix-oriented languages in use in the
econometrics community, hansl is strongly typed. That is, you cannot assign a value of one type to
a variable that has already been declared as having a different type. For example, this will return
an error:

n n

string a = "zoo
a = 3.14 # no, no, no!

If you try running the example above, an error will be flagged. However, it is acceptable to destroy
the original variable, via the deTete command, and then re-declare it, as in

scalar X 3.1415
delete X
string X = "apple pie"

o If /* follows # on a given line which does not already start in ignore mode, then there’s nothing special about /*,
it’s just part of a #-style comment.

o If # occurs when we'’re already in comment mode, it is just part of a comment.

2Actually one exception to this rule is supported: identifiers taking the form of a single Greek letter. See chapter 15
for details.
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There is no “type-casting” as in C, but some automatic type conversions are possible (more on this
later).

Many commands can take more than one argument, as in
set verbose off

scalar x = 42
string foo = "not bad"
print x foo

In this example, one print is used to print the values of two variables; more generally, print can
be followed by as many arguments as desired. The other difference with respect to the previous
code examples is in the use of the set command. Describing this command in detail would lead
us to an overly long diversion; suffice it to say that it is used to set the values of various “state
variables” that influence the behavior of the program; here it is used as a way to silence unwanted
output. See the Gretl Command Reference for more on set.

The eval command is useful when you want to look at the result of an expression without assigning
it to a variable; for example

eval 2+3%4

will print the number 14. This is most useful when running gretl interactively, like a calculator, but
it is usable in a hansl script for checking purposes, as in the following (rather silly) example:

scalar a = 1

scalar b = -1

# this ought to be 0
eval a+b

3.1 Manipulation of scalars

Algebraic operations work in the obvious way, with the classic algebraic operators having their
traditional precedence rules. The caret (A) is used for exponentiation. For example,

scalar phi = exp(-0.5 * (x-m)A2 / s2) / sqrt(2 * $pi * s2)

in which we assume that x, m and s2 are pre-existing scalars. The example above contains two
noteworthy points:

e The usage of the exp (exponential) and sqrt (square root) functions; it goes without saying
that hansl possesses a reasonably wide repertoire of such functions. See the Gretl Command
Reference for the complete list.

e The usage of $pi for the constant 7r. While user-specified identifiers must begin with a letter,
built-in identifiers for internal objects typically have a “dollar” prefix; these are known as
accessors (basically, read-only variables). Most accessors are defined in the context of an open
dataset (see part II), but some represent pre-defined constants, such as 1. Again, see the Gretl
Command Reference for a comprehensive list.

Hansl does not possess a specific Boolean type, but scalars can be used for holding true/false
values. It follows that you can also use the logical operators and (&&), or (| |), and not (!) with
scalars, as in the following example:

a=1
b=20
c="!(a & b)
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In the example above, c will equal 1 (true), since (a && b) is false, and the exclamation mark is the
negation operator. Note that 0 evaluates to false, and anything else (not necessarily 1) evaluates to
true.

A few constructs are taken from the C language family: one is the postfix increment operator:

a=>5
b = a++
print a b

the second line is equivalent to b = a, followed by a++, which in turn is shorthand for a = a+1,
so running the code above will result in b containing 5 and a containing 6. Postfix subtraction is
also supported; prefix operators, however, are not supported. Another C borrowing is inflected
assignment, as in a += b, which is equivalent to a = a + b; several other similar operators are
available, such as -=, *= and more. See the Gretl Command Reference for details.

The internal representation for a missing value is NaN (“not a number”), as defined by the IEEE 754
floating point standard. This is what you get if you try to compute quantities like the square root
or the logarithm of a negative number. You can also set a value to “missing” directly using the
keyword NA. The complementary functions missing and ok can be used to determine whether a
scalar is NA. In the following example a value of zero is assigned to the variable named test:

scalar not_really = NA
scalar test = ok(not_really)

Note that you cannot test for equality to NA, as in
if x == NA ... # wrong!

because a missing value is taken as indeterminate and hence not equal to anything. This last
example, despite being wrong, illustrates a point worth noting: the test-for-equality operator in
hansl is the double equals sign, “==" (as opposed to plain “=” which indicates assignment).

3.2 Manipulation of strings

Most of the previous section applies, with obvious modifications, to strings: you may manipulate
strings via operators and/or functions. Hansl’s repertoire of functions for manipulating strings
offers all the standard capabilities one would expect, such as toupper, tolower, strlen, etc., plus
some more specialized ones. Again, see the Gretl Command Reference for a complete list.

In order to access part of a string, you may use the substr function,® as in

string s = "endogenous"
string pet = substr(s, 3, 5)

which would result to assigning the value dog to the variable pet.

The following are useful operators for strings:

e the ~ operator, to join two or more strings, as in*

string sl = "sweet"
string s2 = "Home, " ~ sl ~ " home."

3 Actually, there is a cooler method, which uses the same syntax as matrix slicing (see chapter 4): substr(s, 3, 5) is
functionally equivalent to s[3:5].

40n some national keyboards, you don’t have the tilde (*) character. In gretl’s script editor, this can be obtained via its
Unicode representation: type Ctrl-Shift-U, followed by 7e.
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¢ the closely related ~= operator, which acts as an inflected assignment operator (soa ~= "_ij"
is equivalenttoa = a ~ "_ij");

¢ the offset operator +, which yields a substring of the preceding element, starting at the given
character offset. An empty string is returned if the offset is greater than the length of the
string in question.

A noteworthy point: strings may be (almost) arbitrarily long; moreover, they can contain special
characters such as line breaks and tabs. It is therefore possible to use hansl for performing rather
complex operations on text files by loading them into memory as a very long string and then
operating on that; interested readers should take a look at the readfile, getTline, strsub and
regsub functions in the Gretl Command Reference.’

For creating complex strings, the most flexible tool is the sprintf function. Its usage is illustrated
in Chapter 5.

>We are not claiming that hansl would be the tool of choice for text processing in general. Nonetheless the functions
mentioned here can be very useful for tasks such as pre-processing plain text data files that do not meet the requirements
for direct importation into gretl.
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Matrices

Matrices are one- or two-dimensional arrays of double-precision floating-point numbers. Matri-
ces have rows and columns, and that’s it (but see Section 6.2 for means of constructing higher-
dimensional compound objects).

4.1 Matrix indexing

Individual matrix elements are accessed through the [r,c] syntax, where indexing starts at 1. For
example, X[3,4] indicates the element of X on the third row, fourth column. For example,

matrix X =
X[2,1] = 4
print X

zeros(2,3)

produces

X @2 x 3)

Here are some more advanced ways to access matrix elements:

1. In case the matrix has only one row (column), the column (row) specification can be omitted,
as in x[3].

2. Including the comma but omitting the row or column specification means “take them all”, as
in x[4,] (fourth row, all columns).

3. For square matrices, the special syntax x[diag] can be used to access the diagonal.

4. Consecutive rows or columns can be specified via the colon (:) character, as in x[,2:4]
(columns 2 to 4). But note that, unlike some other matrix languages, the syntax [m:n] is
illegal if m > n.

5. It is possible to use a vector to hold indices to a matrix. E.g. if e = [2,3,6], then X[, e]
contains the second, third and sixth columns of X.

Moreover, matrices can be empty (zero rows and columns).

In the example above, the matrix X was constructed using the function zeros (), whose meaning
should be obvious, but matrix elements can also be specified directly, as in

x

scalar a “3
1, 2, 3; 4,5, atl

2
matrix A = {

The matrix is defined by rows; the elements on each row are separated by commas and rows are
separated by semicolons. The whole expression must be wrapped in braces. Spaces within the
braces are not significant. The above expression defines a 2 X 3 matrix.

11
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Note that each element should be a numerical value, the name of a scalar variable, or an expression
that evaluates to a scalar. In the example above the scalar a was first assigned a value and then
used in matrix construction. (Also note, in passing, that a and A are two separate identifiers, due
to case-sensitivity.)

4.2 Matrix operations

Matrix sum, difference and product are obtained via +, - and *, respectively. The prime operator
(’) can act as a unary operator, in which case it transposes the preceding matrix, or as a binary
operator, in which case it acts as in ordinary matrix algebra, multiplying the transpose of the first
matrix into the second one.! Errors are flagged if conformability is a problem. For example:

matrix a = {11, 22 ; 33, 44} # a is square 2 x 2

matrix b = {1,2,3; 3,2,1} # b is 2 x 3

matrix c = a’ # c is the transpose of a

matrix d = a*b # d is a 2x3 matrix equal to a times b

matrix gina
matrix Tina

b’d # valid: gina 1is 3x3
d+b # valid: 1ina 1is 2x3

/* -- these would generate errors if uncommented ----- */
# pina = a + b # sum non-conformability
# rina =d * # product non-conformability

Other noteworthy matrix operators include ~ (matrix power), ** (Kronecker product), and the “con-
catenation” operators, ~ (horizontal) and | (vertical). Readers are invited to try them out by running
the following code

matrix A = {2,1;0,1}
matrix B = {1,1;1,0}

matrix KP = A ** B
matrix PWR = AA3

matrix HC = A ~ B
matrix VC = A | B

print A B KP PWR HC VC

Note, in particular, that A3 = A- A - A, which is different from what you get by computing the cubes
of each element of A separately.

Hansl also supports matrix left- and right-“division”, via the \ and / operators, respectively. The
expression A\b solves Ax = b for the unknown x. A is assumed to be an m x n matrix with full
column rank. If A is square the method is LU decomposition. If m > n the QR decomposition is
used to find the least squares solution. In most cases, this is numerically more robust and more
efficient than inverting A explicitly.

Element-by-element operations are supported by the so-called “dot” operators, which are obtained

“ »

by putting a dot (“.”) before the corresponding operator. For example, the code

A={1,2; 3,4}
B={-1,0; 1,-1}
eval A * B

eval A .* B

IIn fact, in this case an optimized algorithm is used; you should always use a’a instead of a’*a for maximal precision
and performance.
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produces
1 -2
1 -4
-1 0
3 -4

It’s easy to verify that the first operation performed is regular matrix multiplication A - B, whereas
the second one is the Hadamard (element-by-element) product A © B. In fact, dot operators are
more general and powerful than shown in the example above; see the chapter on matrices in the
Gretl User’s Guide for details.

Dot and concatenation operators are less rigid than ordinary matrix operations in terms of con-
formability requirements: in most cases hansl will try to do “the obvious thing”. For example, a
common idiom in hanslis Y = X ./ w, where X is an n x k matrix and w is an n x 1 vector. The
result Y is an n x k matrix in which each row of X is divided by the corresponding element of w.
In proper matrix notation, this operation should be written as

Y = (w)71X,

where the (-) indicates a diagonal matrix. Translating literally the above expression would imply
creating a diagonal matrix out of w and then inverting it, which is computationally much more
expensive than using the dot operation. A detailed discussion is provided in the Gretl User’s Guide.

Hansl provides a reasonably comprehensive set of matrix functions, that is, functions that produce
and/or operate on matrices. For a full list, see the Gretl Command Reference, but a basic “survival
kit” is provided in Table 4.1. Moreover, most scalar functions, such as abs(), log() etc., will
operate on a matrix element-by-element.

Function(s) Purpose
rows(X), cols(X) return the number of rows and columns of X, respectively

zeros(r,c), ones(r,c) produce matrices with » rows and ¢ columns, filled with zeros
and ones, respectively

mshape(X,r,c) rearrange the elements of X into a matrix with » rows and c
columns

I(n) identity matrix of size n
seq(a,b) generate a row vector containing integers from a to b
inv(A) invert, if possible, the matrix A
maxc(A), minc(A), meanc(A) return a row vector with the max, min, means of each column of
A, respectively
maxr(A), minr(A), meanr(A) return a column vector with the max, min, means of each row of
A, respectively
mnormal(r,c), muniform(r,c) generate + xc matrices filled with standard Gaussian and uniform
pseudo-random numbers, respectively

Table 4.1: Essential set of hansl matrix functions

The following piece of code is meant to provide a concise example of all the features mentioned
above.

# example: OLS using matrices

# fix the sample size
scalar T = 256

# construct vector of coefficients by direct imputation
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matrix beta = {1.5, 2.5, -0.5} # note: row vector

# construct the matrix of independent variables
matrix Z = mnormal (T, cols(beta)) # built-in functions

# now construct the dependent variable: note the
# usage of the "dot" and transpose operators

matrix y = {1.2} .+ Z*beta’ + mnormal(T, 1)

# now do estimation

matrix X = 1 ~ Z # concatenation operator

matrix beta_hatl = inv(X’X) * (X’y) # OLS by hand

matrix beta_hat2 = mols(y, X) # via the built-in function
matrix beta_hat3 = X\y # via matrix division

print beta_hatl beta_hat2 beta_hat3

4.3 Matrix pointers

Hansl uses the “by value” convention for passing parameters to functions. That is, when a variable
is passed to a function as an argument, what the function actually gets is a copy of the variable,
which means that the value of the variable at the caller level is not modified by anything that goes
on inside the function. But the use of pointers allows a function and its caller to cooperate such
that an outer variable can be modified by the function.

This mechanism is used by some built-in matrix functions to provide more than one “return” value.
The primary result is always provided by the return value proper but certain auxiliary values may be
retrieved via “pointerized” arguments; this usage is flagged by prepending the ampersand symbol,
“&”, to the name of the argument variable.

The eigensym function, which performs the eigen-analysis of symmetric matrices, is a case in
point. In the example below the first argument A represents the input data, that is, the matrix
whose analysis is required. This variable will not be modified in any way by the function call. The
primary result is the vector of eigenvalues of A, which is here assigned to the variable ev. The
(optional) second argument, &V (which may be read as “the address of V”), is used to retrieve the
right eigenvectors of A. A variable named in this way must be already declared, but it need not be
of the right dimensions to receive the result; it will be resized as needed.

matrix A = {1,2 ; 2,5}
matrix V

matrix ev = eigensym(A, &V)
print A ev V
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Nice-looking output

5.1 Formatted output

A common occurrence when you're writing a script— particularly when you intend for the script to
be used by others, and you’d like the output to be reasonably self-explanatory—is that you want to
output something along the following lines:

The coefficient on X is Y, with standard error Z

where X, Y and Z are placeholders for values not known at the time of writing the script; they will
be filled out as the values of variables or expressions when the script is run. Let’s say that at run
time the replacements in the sentence above should come from variables named vname (a string),
b (a scalar value) and se (also a scalar value), respectively.

Across the spectrum of programming languages there are basically two ways of arranging for this.
One way originates in the C language and goes under the name printf. In this approach we (a)
replace the generic placeholders X, Y and Z with more informative conversion specifiers, and (b)
append the variables (or expressions) that are to be stuck into the text, in order. Here’s the hansl
version:

printf "The coefficient on %s is %g, with standard error %g\n", vname, b, se

The value of vname replaces the conversion specifier “%s,” and the values of b and se replace the
two “%g” specifiers, left to right. In relation to hansl, here are the basic points you need to know:
“%s” pairs with a string argument, and “%g” pairs with a numeric argument.

The C-derived printf (either in the form of a function, or in the form of a command as shown
above) is present in most “serious” programming languages. It is extremely versatile, and in its
advanced forms affords the programmer fine control over the output.

In some scripting languages, however, printf is reckoned “too difficult” for non-specialist users.
In that case some sort of substitute is typically offered. We're skeptical: “simplified” alternatives
to printf can be quite confusing, and if at some point you want fine control over the output, they
either do not support it, or support it only via some convoluted mechanism. A typical alternative
looks something like this (please note, display is not a hansl command, it’s just illustrative):

v

display "The coefficient on ", vname, "is ", b,

, with standard error ", se, "\n"

That is, you break the string into pieces and intersperse the names of the variables to be printed.
The requirement to provide conversion specifiers is replaced by a default automatic formatting of
the variables based on their type. By the same token, the command line becomes peppered with
multiple commas and quotation marks. If this looks preferable to you, you are welcome to join one
of the gretl mailing lists and argue for its provision!

Anyway, to be a bit more precise about printf, its syntax goes like this:
printf format, arguments
The format is used to specify the precise way in which you want the arguments to be printed.

15
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The format string

In the general case the printf format must be an expression that evaluates to a string, but in
most cases will just be a string literal (an alphanumeric sequence surrounded by double quotes).
However, some character sequences in the format have a special meaning. As illustrated above,
those beginning with a percent sign (%) are interpreted as placeholders for the items contained in
the argument list. In addition, special characters such as the newline character are represented via
a combination beginning with a backslash (\).

For example,

printf "The square root of %d is (roughly) %6.4f.\n", 5, sqrt(5)
will print

The square root of 5 is (roughly) 2.2361.
Let’s see how:

e The first special sequence is %d: this indicates that we want an integer at that place in the
output; since it is the leftmost “percent” expression, it is matched to the first argument, that
is 5.

e The second special sequence is %6 .4f, which stands for a decimal value with 4 digits after the
decimal separator! and at least 6 digits wide; this will be matched to the second argument.
Note that arguments are separated by commas. Also note that the second argument is neither
a scalar constant nor a scalar variable, but an expression that evaluates to a scalar.

o The format string ends with the sequence \n, which inserts a newline.

The conversion specifiers in the square-root example are relatively fancy, but as we noted earlier
%g will work fine for almost all numerical values in hansl. So we could have used the simpler form:

printf "The square root of %g is (roughly) %g.\n", 5, sqrt(5)

The effect of %g is to print a number using up to 6 significant digits (but dropping trailing zeros); it
automatically switches to scientific notation if the number is very large or very small. So the result
here is

The square root of 5 is (roughly) 2.23607.

The escape sequences \n (newline), \t (tab), \v (vertical tab) and \\ (literal backslash) are recog-
nized. To print a literal percent sign, use %%.

Apart from those shown in the above example, recognized numeric formats are %e, %E, %f, %g, %G
and %X, in each case with the various modifiers available in C. The format %s should be used for
strings. As in C, numerical values that form part of the format (width and or precision) may be
given directly as numbers, as in %$10.4f, or they may be given as variables. In the latter case, one
puts asterisks into the format string and supplies corresponding arguments in order. For example,

scalar width = 12
scalar precision = 6
printf "x = %*.*f\n", width, precision, x

If a matrix argument is given in association with a numeric format, the entire matrix is printed
using the specified format for each element. A few more examples are given in table 5.1.

1The decimal separator is the dot in English, but may be different in other locales.
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Command effect
printf "%12.3f", $pi 3.142
printf "%12.7f", $pi 3.1415927
printf "%6s%12.5f%12.5f %d\n", "alpha",

3.5, 9.1, 3 alpha 3.50000 9.10000 3
printf "%6s%12.5f%12.5f\t%d\n", "beta",

1.2345, 1123.432, %11 beta 1.23450 1123.43200 11
printf "%d, %10d, %04d\n", 1,2,3 1, 2, 0003

printf "%6.0f (%5.2f%%)\n", 32, 11.232 32 (11.23%)

Table 5.1: Print format examples

Output to a string

A closely related effect can be achieved via the sprintf function: instead of being printed directly
the result is stored in a named string variable, as in

string G = sprintf("x = %*.*f\n", width, precision, x)

after which the variable G can be the object of further processing.

Output to a file

Hansl does not have a file or “stream” type as such, but the outfile command can be used to
divert output to a named text file. To start such redirection you must give the name of a file;
by default a new file is created or an existing one overwritten but the --append can be used to
append material to an existing file. Only one file can be opened in this way at any given time. The
redirection of output continues until the command end outfile is given; then output reverts to
the default stream.

Here’s an example of usage:

printf "One!\n"

outfile "myfile.txt"
printf "Two!\n"

end outfile

printf "Three!\n"

outfile "myfile.txt" --append
printf "Four!\n"

end outfile

printf "Five!\n"

After execution of the above the file myfile. txt will contain the lines

Two'!
Four!

Three special variants on the above are available. If you give the keyword nul1 in place of a real
filename along with the write option, the effect is to suppress all printed output until redirection
is ended. If either of the keywords stdout or stderr are given in place of a regular filename the
effect is to redirect output to standard output or standard error output, respectively.

This command also supports a --quiet option: its effect is to turn off the echoing of commands
and the printing of auxiliary messages while output is redirected. It is equivalent to doing

set verbose off
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before invoking outfile, except that when redirection is ended the prior value of the verbose
state variable is restored.

5.2 Graphics

The primary graphing command in hansl is gnuplot which, as the name suggests, in fact provides
an interface to the gnuplot program. It is used for plotting series in a dataset (see part II) or
columns in a matrix. For an account of this command (and some other more specialized ones, such
as boxplot and qqplot), see the Gretl Command Reference.
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Structured data types

Hansl possesses two kinds of “structured data type”: associative arrays, called bundles and arrays
in the proper sense of the word. Loosely speaking, the main difference between the two is that
in a bundle you can pack together variables of different types, while arrays can hold one type of
variable only.

6.1 Bundles

Bundles are associative arrays, that is, generic containers for any assortment of hansl types (in-
cluding other bundles) in which each element is identified by a string. Python users call these
dictionaries; in C++ and Java, they are referred to as maps; they are known as hashes in Perl. We
call them bundles. Each item placed in the bundle is associated with a key which can used to retrieve
it subsequently.

To use a bundle you first either “declare” it, as in
bundle foo

or define an empty bundle using the defbundle function without any arguments:
bundle foo = defbundle()

However, since defining a bundle is a common trope in hansl a handy abbreviation is supported:
_Q is short for defbundle().

The formulations above are basically equivalent, in that they both create an empty bundle. The
difference is that the second variant, with explicit assignment, may be reused —if a bundle named
foo already exists the effect is to empty it—while the first may only be used once in a given gretl
session; it is an error to declare a variable that already exists.

To add an object to a bundle you assign to a compound left-hand value: the name of the bundle
followed by the key. The most common way to do this is to join the key to the bundle name with a
dot, as in

foo.matrixl = m

which adds an object called m (presumably a matrix) to bundle foo under the key matrix1. The key
must satisfy the rules for a gretl variable name (31 characters maximum, starting with a letter and
composed of just letters, numbers or underscore)

An alternative way to achieve the same effect is to give the key as a quoted string literal enclosed
in square brackets, as in

foo["matrix1"] =m

When using the more elaborate syntax, keys do not have to be valid as variable names—for example,
they can include spaces—but they are still limited to 31 characters.

To get an item out of a bundle, again use the name of the bundle followed by the key, as in

19
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matrix bm = foo.matrixl
# or using the Tong-hand notation
matrix m = foo["matrixl"]

Note that the key identifying an object within a given bundle is necessarily unique. If you reuse an
existing key in a new assignment, the effect is to replace the object which was previously stored
under the given key. In this context it is not required that the type of the replacement object is the
same as that of the original.

A quicker way is to use defbundle or _(), as in
bundle b = _(s="Sample string", m=I(3))

Note that in this style the key-strings are not quoted; this works only if they do not contain spaces.
An alternative syntax can handle arbitrary keys:

bundle b = _("s", "Sample string", "m", I(3))

Here every odd-numbered argument must evaluate to a key, and every even-numbered argument to
an object of a type that can be included in a bundle.

Note that when you add an object to a bundle, what in fact happens is that the bundle acquires
a copy of the object. The external object retains its own identity and is unaffected if the bundled
object is replaced by another. Consider the following script fragment:

bundle foo
matrix m = I(3)
foo.mykey = m
scalar x = 20
foo.mykey = x

After the above commands are completed bundle foo does not contain a matrix under mykey, but
the original matrix m is still in good standing.

To delete an object from a bundle use the delete command, with the bundle/key combination, as
in

delete foo.mykey
delete foo["quoted key"]

This destroys the object associated with the key and removes the key from the hash table.!

Besides adding, accessing, replacing and deleting individual items, the other operations that are
supported for bundles are union and printing. As regards union, if bundles b1 and b2 are defined
you can say

bundle b3 = bl + b2

to create a new bundle that is the union of the two others. The algorithm is: create a new bundle
that is a copy of bl, then add any items from b2 whose keys are not already present in the new
bundle. (This means that bundle union is not necessarily commutative if the bundles have one or
more key strings in common.)

If b is a bundle and you say print b, you get a listing of the bundle’s keys along with the types of
the corresponding objects, as in

Internally, gretl bundles in fact take the form of GLib hash table.
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? print b
bundle b:

x (scalar)

mat (matrix)
inside (bundle)

Bundle usage

To illustrate the way a bundle can hold information, we will use the Ordinary Least Squares (OLS)
model as an example: the following code estimates an OLS regression and stores all the results in
a bundle.

/% assume y and X are given T x 1 and T x k matrices */
bundle my_model = _() # initialization

my_model.T = rows(X) # sample size

my_model.k = cols(X) # number of regressors

matrix e # will hold the residuals

b = mols(y, X, &e) # perform OLS via native function
s2 = meanc(e.A2) # compute variance estimator
matrix V = s2 .* invpd(X’X) # compute covariance matrix

/* now store estimated quantities into the bundle */

my_model.betahat = b
my_model.s2 = s2

my_model.vcv = V
my_model.stderr = sqrt(diag(V))

The bundle so obtained is a container that can be used for all sort of purposes. For example, the
next code snippet illustrates how to use a bundle with the same structure as the one created above
to perform an out-of sample forecast. Imagine that k = 4 and the value of x for which we want to
forecast y is

x' =[10 1 -3 0.5]

The formulae for the forecast would then be

yr = xPB
spo= \EZ+xV(B)x
ClI = pr+1.96sy

where CI is the (approximate) 95 percent confidence interval. The above formulae translate into

x=4{110, 1, -3, 0.5}

scalar ypred = X * my_model.betahat

scalar varpred my_model.s2 + gqform(x, my_model.vcv)
scalar sepred = sqrt(varpred)

matrix CI_95 = ypred + {-1, 1} .* (1.96*sepred)
print ypred CI_95

6.2 Arrays

A gretl array is a container which can hold zero or more objects of a certain type, indexed by
consecutive integers starting at 1. It is one-dimensional. This type is implemented by a quite
“generic” back-end. The types of object that can be put into arrays are strings, matrices, bundles,
lists and arrays (that is, arrays can be nested). A given array can hold only one of these types.
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Array operations

The following is, we believe, rather self-explanatory:

strings S1 = array(3)

matrices M = array(4)

strings S2 = defarray("fish", "chips")
S1[1] = ":H"

S1[3] = ": ("

M[2] = mnormal(2,2)

print S1

eval inv(M[2])

S =51+ S2

print S

22

The array () takes an integer argument for the array size; the defarray() function takes a variable
number of arguments (one or more), each of which may be the name of a variable of the given type

or an expression which evaluates to an object of that type. The corresponding output is

Array of strings, length 3

[1] Il:)ll

[2] null

[3] ":("
0.52696 0.28883
-0.15332 -0.68140

Array of strings, length 5

[1] ":)"
[2] null
[3] ":("
[4] "fish"
[5] "chips"

In order to find the number of elements in an array, you can use the neTem() function.

High-dimensional objects

Since one can construct an array of matrices, and arrays can be nested, it is possible to build nu-
merical objects of higher dimensionality than matrices. For example a 3-tensor can be represented

as an array of matrices, and a 4-tensor as an array of arrays of matrices.

But since such objects are compound you have be careful to get indexation right. For example, if
you have an array M holding at least three matrices and you want to access element 2,2 of matrix 3

you’ll need two sets of square brackets, as in

M[3]1[2,2]
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Numerical methods

7.1 Numerical optimization

Many, if not most, cases in which an econometrician wants to use a programming language such
as hansl, rather than relying on pre-canned routines, involve some form of numerical optimization.
This could take the form of maximization of a likelihood or similar methods of inferential statistics.
Alternatively, optimization could be used in a more general and abstract way, for example to solve
portfolio choice or analogous resource allocation problems.

Since hansl is Turing-complete, in principle any numerical optimization technique could be pro-
grammed in hansl itself. Some such techniques, however, are included in hansl’s set of native
functions, in the interest of both simplicity of use and efficiency. These are geared towards the
most common kind of problem encountered in economics and econometrics, that is unconstrained
optimization of differentiable functions.

In this chapter, we will briefly review what hansl offers to solve generic problems of the kind

X = Argmax f(x;a),
xeRk

where f(x;a) is a function of x, whose shape depends on a vector of parameters a. The objective
function f(-) is assumed to return a scalar real value. In most cases, it will be assumed it is also
continuous and differentiable, although this need not necessarily be the case. (Note that while
hansl’s built-in functions maximize the given objective function, minimization can be achieved
simply by flipping the sign of f(-).)

A special case of the above occurs when x is a vector of parameters and a represents “data”. In
these cases, the objective function is usually a (log-)likelihood and the problem is one of estimation.
For such cases hansl offers several special constructs, reviewed in section 12.2. Here we deal with
more generic problems; nevertheless, the differences are only in the hansl syntax involved: the
mathematical algorithms that gretl employs to solve the optimization problem are the same.

The reader is invited to read the “Numerical methods” chapter of the Gretl User’s Guide for a
comprehensive treatment. Here, we will only give a small example which should give an idea of
how things are done.

function scalar Himmelblau(matrix x)
/* extrema:
(3.0, 2.0) = 0.0,
f(-2.805118, 3.131312) = 0.0,
f(-3.779310, -3.283186) = 0.0
£(3.584428, -1.848126) = 0.0
*/
scalar ret = (x[1]A2 + x[2] - 11)A2
return -(ret + (X[1] + x[2]A2 - 7)A2)
end function

set max_verbose 1

23
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matrix thetal = { 0, 0 }

yl = BFGSmax(thetal, "Himmelblau(thetal)")
matrix theta2 = { 0, -1 }

y2 = NRmax(theta2, "Himmelblau(theta2)")

print yl y2 thetal theta2

We use for illustration here a classic “nasty” function from the numerical optimization literature,
namely the Himmelblau function, which has four different minima; f(x,y) = (x2+y —-11)% + (x +
y2 — 7)2. The example proceeds as follows.

6.

. First we define the function to optimize: it must return a scalar and have among its arguments

the vector to optimize. In this particular case that is its only argument, but there could have
been other ones if necessary. Since in this case we are solving for a minimum our definition
returns the negative of the Himmelblau function proper.

. We next set max_verbose to 1. This is another example of the usage of the set command; its

meaning is “let me see how the iterations go” and it defaults to 0. By using the set command
with appropriate parameters, you control several features of the optimization process, such
as numerical tolerances, visualization of the iterations, and so forth.

Define 0, = [0, 0] as the starting point.

Invoke the BFGSmax function; this will seek the maximum via the BFGS technique. Its base
syntax is BFGSmax(argl, arg2), where argl is the vector contining the optimization variable
and arg?2 is a string containing the invocation of the function to maximize. BFGS will try
several values of 0; until the maximum is reached. On successful completion, the vector
thetal will contain the final point. (Note: there’s much more to this. For details, be sure to
read the Gretl User’s Guide and the Gretl Command Reference.)

. Then we tackle the same problem but with a different starting point and a different optimiza-

tion technique. We start from 0, = [0, —1] and use Newton-Raphson instead of BFGS, calling
the NRmax () function instead if BFGSmax (). The syntax, however, is the same.

Finally we print the results.

Table 7.1 on page 27 contains a selected portion of the output. Note that the second run converges
to a different local optimum than the first one. This is a consequence of having initialized the
algorithm with a different starting point. In this example, numerical derivatives were used, but
you can supply analytically computed derivatives to both methods if you have a hansl function for
them; see the Gretl User’s Guide for more detail.

The optimization methods hansl puts at your disposal are:

e BFGS, via the BFGSmax () function. This is in most cases the best compromise between perfor-

mance and robustness. It assumes that the function to maximize is differentiable and will try
to approximate its curvature by clever use of the change in the gradient between iterations.
You can supply it with an analytically-computed gradient for speed and accuracy, but if you
don’t, the first derivatives will be computed numerically.

Newton-Raphson, via the NRmax () function. Actually, the function is less specific than the
name implies. This is a “curvature-based” method, relying on the iterations

xiv1 = —AiC(x1) "1 g(xi)

where g(x) is the gradient and C(x;) is some measure of curvature of the function to opti-
mize; if C(x) is the Hessian matrix, you get Newton-Raphson proper. Again, you can code
your own functions for g(-) and C(-), but if you don’t then numerical approximations to
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7.2

the gradient and the Hessian will be used, respectively. Other popular optimization methods
(such as BHHH and the scoring algorithm) can be implemented by supplying to NRmax () the
appropriate curvature matrix C(-). This method is very efficient when it works, but is less
robust than BFGS; for example, if C(x;) happens to be non-negative definite at some iteration
convergence may become problematic.

Derivative-free methods: hansl offers simulated annealing, via the simann function, and the
Nelder-Mead simplex algorithm (also known as the “amoeba” method) via the NMmax function.
These methods work even when the function to be maximized has some form of disconinuity
or is not everywhere differentiable; however, they may be slow and CPU-intensive.

Numerical differentiation

For numerical differentiation we have fdjac. For example:

set
set

fun

end

fun

end

fun

end

a =
b =

loo

end

echo off
messages off

ction scalar beta(scalar x, scalar a, scalar b)
return xA(a-1) * (1-x)A(b-1)
function

ction scalar ad_beta(scalar x, scalar a, scalar b)
scalar g = beta(x, a-1, b-1)

fl = (a-1) * (1-x)

f2 = (b-1) * x

return (f1 - f2) * g

function

ction scalar nd_beta(scalar x, scalar a, scalar b)
matrix mx = {x}

return fdjac(mx, beta(mx, a, b))

function

3.5

2.5
p for (x=0; x<=1; x+=0.1)

printf "x = %3.1f; beta(x) = %7.5f, ", x, beta(x, a, b)
A = ad_beta(x, a, b)

N = nd_beta(x, a, b)

printf "analytical der. = %8.5f, numerical der. = %8.5f\n", A, N
Toop

returns
x = 0.0; beta(x) = 0.00000, analytical der. = 0.00000, numerical der. = 0.00000
x = 0.1; beta(x) = 0.00270, analytical der. = 0.06300, numerical der. = 0.06300
x = 0.2; beta(x) = 0.01280, analytical der. = 0.13600, numerical der. = 0.13600
x = 0.3; beta(x) = 0.02887, analytical der. = 0.17872, numerical der. = 0.17872
x = 0.4; beta(x) = 0.04703, analytical der. = 0.17636, numerical der. = 0.17636
x = 0.5; beta(x) = 0.06250, analytical der. = 0.12500, numerical der. = 0.12500
x = 0.6; beta(x) = 0.07055, analytical der. = 0.02939, numerical der. = 0.02939
x = 0.7; beta(x) = 0.06736, analytical der. = -0.09623, numerical der. = -0.09623
x = 0.8; beta(x) = 0.05120, analytical der. = -0.22400, numerical der. = -0.22400
X = 0.9; beta(x) = 0.02430, analytical der. = -0.29700, numerical der. = -0.29700
x = 1.0; beta(x) = 0.00000, analytical der. = -0.00000, numerical der. = NA
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Details on the algorithm used can be found in the Gretl Command Reference. Suffice it to say
here that you have a fdjac_quality setting that goes from O to 2. The default value is to O,
which gives you forward-difference approximation: this is the fastest algorithm, but sometimes
may not be precise enough. The value of 1 gives you bilateral difference, while 2 uses Richardson
extrapolation. Higher values give greater accuracy but the method becomes considerably more
CPU-intensive.
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? matrix thetal = { 0, 0 }

Replaced matrix thetal

? yl = BFGSmax(thetal, "Himmelblau(ll, thetal)")
Iteration 1: Criterion = -170.000000000

Parameters: 0.0000 0.0000

Gradients: 14.000 22.000 (norm 0.00e+00)
Iteration 2: Criterion = -128.264504038 (steplength = 0.04)
Parameters: 0.56000 0.88000

Gradients: 33.298 39.556 (norm 5.17e+00)

--- FINAL VALUES:

Criterion = -1.83015730011e-28 (steplength = 0.0016)
Parameters: 3.0000 2.0000

Gradients: 1.7231e-13 -3.7481e-13 (norm 7.96e-07)

Function evaluations: 39

Evaluations of gradient: 16

Replaced scalar yl = -1.83016e-28

? matrix theta2 = { 0, -1 }

Replaced matrix theta2

? y2 = NRmax(theta2, "Himmelblau(ll, theta2)")

Iteration 1: Criterion = -179.999876556 (steplength = 1)

Parameters: 1.0287e-05 -1.0000

Gradients: 12.000 2.8422e-06 (norm 7.95e-03)
Iteration 2: Criterion = -175.440691085 (steplength = 1)
Parameters: 0.25534 -1.0000

Gradients: 12.000 4.5475e-05 (norm 1.24e+00)

--- FINAL VALUES:

Criterion = -3.77420797114e-22 (steplength = 1)
Parameters: 3.5844 -1.8481

Gradients: -2.6649e-10 2.9536e-11 (norm 2.25e-05)

Gradient within tolerance (1e-07)
Replaced scalar y2 = -1.05814e-07
? print yl y2 thetal theta2

-1.8301573e-28

yl

-1.0581385e-07

y2
thetal (1 x 2)
3 2
theta2 (1 x 2)

3.5844 -1.8481

Table 7.1: Output from maximization
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Control flow

The primary means for controlling the flow of execution in a hansl script are the if statement
(conditional execution), the Toop statement (repeated execution), the catch modifier (which enables
the trapping of errors that would otherwise halt execution), and the quit command (which forces
termination).

8.1 The if statement
Conditional execution in hansl uses the if keyword. Its fullest usage is as follows
if <condition>
e1i%.;cond1tion>
el sé. .
end'i f

Points to note:

The <condition> can be any expression that evaluates to a scalar: 0 is interpreted as “false”,
non-zero is interpreted as “true”; NA generates an error.

Following i f, “then” is implicit; there is no then keyword as found in, e.g., Pascal or Basic.

The e1if and else clauses are optional: the minimal form is just if ... endif.

Conditional blocks of this sort can be nested up to a maximum depth of 1024.
Example:

scalar x = 15

# --- simple if -- === - - - -~
if x >= 100

printf "%g is more than two digits long\n", x
endif
# -—- if with else -~ ——=-m oo o
if x >=0

printf "%g is non-negative\n", x
else

printf "%g is negative\n", x
endif
# --- multiple branches -----—————--e

if missing(x)
printf "%g is missing\n", X
elif x < 0

28
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printf "%g is negative\n", x
elif floor(x) == x

printf "%g is an integer\n", x
else

printf "%g is a positive number with a fractional part\n", x
endif

Note, from the example above, that the e11 f keyword can be repeated, making hansl’s i f statement
a multi-way branch statement. There is no separate switch or case statement in hansl. With one
or more elifs, hansl will execute the first one for which the logical condition is satisfied and then
jump to endif.

= Stata users, beware: hansl’s if statement is fundamentally different from Stata’s if option: the latter se-
lects a subsample of observations for some action, while the former is used to decide if a group of statements
should be executed or not; hansl’s if is what Stata calls “branching if”.

The ternary query operator

Besides use of if, the ternary query operator, ?:, can be used to perform conditional assignment
on a more “micro” level. This has the form

result = <condition> ? <value-if-true> : <value-if-false>

If <condition> evaluates as “true” (non-zero) then the first following value is assigned to result,
otherwise the value after the colon is so assigned.! This is obviously more compact than if ...
else ... endif. The following example replicates the abs function by hand:

scalar ax = x>=0 ? x : -Xx

Of course, in the above case it would have been much simpler to just write ax = abs(x). Consider,
however, the following case, which exploits the fact that the ternary operator can be nested:

scalar days = (m==2) ? 28 : maxr(m.={4,6,9,11}) ? 30 : 31

This example deserves a few comments. We want to compute the number of days in a month, coded
in the variable m. The value we assign to the scalar days comes from the following pathway.

1. First we check if the month is February (m==2); if so, we set days to 28 and we’re done.?

2. Otherwise, we compute a matrix of zeros and ones via the operation m.={4,6,9,11} (note
the use of the “dot” operator to perform an element-by element comparison— see section 4.2);
if m equals any of the elements in the vector, the corresponding element of the result will be
1, and O otherwise;

3. The maxr function gives the maximum of this vector, so we’re checking whether m is any one
of the four values corresponding to 30-day months.

4. Since the above evaluates to a scalar, we put the correct value into days.

The ternary operator is more flexible than the ordinary if statement. With if, the <condition>
to be evaluated must always come down to a scalar, but the query operator just requires that the
condition is of “suitable” type in light of the types of the operands. So, for example, suppose you
have a square matrix A and you want to switch the sign of the negative elements of A on and above
its diagonal. You could use a loop (see below) and write a piece of code such as

1Some readers may find it helpful to note that the conditional assignment operator works in exactly the same way as
the =IF() function in spreadsheets.
20K, we’re ignoring leap years here.
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matrix A = mnormal(4,4)

matrix B = A

Joop r =1 .. rows(A)
Toop c = r .. cols(A)

if Alr,c] < O
B[r,c] = -A[r,c]
endif
endloop
endTloop

By using the ternary operator, you can achieve the same effect via a considerably shorter (and
faster) construct:

matrix A = mnormal(4,4)
matrix B upper(A.<0) ? -A : A

= At this point some readers may be thinking “Well, this may be as cool as you want, but it’s way too
complicated for me; I’ll just use the traditional if”. Of course, there’s nothing wrong with that, but in some
cases the ternary assignment operator can lead to substantially faster code, and it becomes surprisingly
natural when one gets used to it.

8.2 Loops
The basic hansl command for looping is (doh!) Toop, and takes the form
Toop <control-expression> <options>
endl] oop
In other words, the pair of statements Toop and endloop enclose the statements to repeat. Of

course, loops can be nested. Several variants of the <control-expression> for a loop are sup-
ported, as follows:

unconditional loop
while loop

index loop

Ll A

foreach loop

5. for loop.
These variants are briefly described below.
Unconditional loop
This is the simplest variant. It takes the form
loop <times>
end'-l c.x.)p
where <times> is any expression that evaluates to a scalar, namely the required number of itera-

tions. This is only evaluated at the beginning of the loop, so the number of iterations cannot be
changed from within the loop itself. Example:
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# triangular numbers
scalar n = 6

scalar count = 1
scalar x = 0

Tloop n
scalar x += count
count++
print x
endloop
yields
x = 1.0000000
X = 3.0000000
X = 6.0000000
x = 10.000000
x = 15.000000
x = 21.000000

Note the usage of the increment (count++) and of the inflected assignment (x += count) operators.

Index loop

The unconditional loop is used quite rarely, as in most cases it is useful to have a counter variable
(count in the previous example). This is easily accomplished via the index loop, whose syntax is

loop <counter>=<min>..<max>
endloop
The limits <min> and <max> must evaluate to scalars; they are automatically turned into integers if

they have a fractional part. The <counter> variable is started at <min> and incremented by 1 on
each iteration until it equals <max>.

The counter is “read-only” inside the loop. You can access either its numerical value through the
scalar i or use the accessor $i, which will perform string substitution: inside the loop, the hansl
interpreter will substitute for the expression $i the string representation of the current value of
the index variable. An example should made this clearer: the following input

57
85
13

scalar a_1
scalar a_2
scalar a_3

Toop i=1..3
print i a_$i
endTloop

has for output

i 1.0000000
_1 = 57.000000
i 2.0000000
_2 = 85.000000
.i
_3

a

QO

3.0000000
13.000000

a

In the example above, at the first iteration the value of i is 1, so the interpreter expands the
expression a_$1i to a_1, finds that a scalar by that name exists, and prints it. The same happens
through the rest of the iterations. If one of the automatically constructed identifiers had not been
defined, execution would have stopped with an error.
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While loop

Here you have

loop while <condition>
endTloop

where <condition> should evaluate to a scalar, which is re-evaluated at each iteration. Looping
stops as soon as <condition> becomes false (0). If <condition> becomes NA, an error is flagged
and execution stops. By default, whiTe loops cannot exceed 100,000 iterations. This is intended as
a safeguard against potentially infinite loops. This setting can be overridden if necessary by setting
the Toop_maxiter state variable to a different value.

Foreach loop

In this case the syntax is

loop foreach <counter> <catalogue>
endloop

where <catalogue> can be either a collection of space-separated strings, or a variable of type Tist
(see section 11.2). The counter variable automatically takes on the numerical values 1, 2, 3, and so
on as execution proceeds, but its string value (accessed by prepending a dollar sign) shadows the
names of the series in the list or the space-separated strings; this sort of loop is designed for string
substitution.

Here is an example in which the <catalogue> is a collection of names of functions that return a
scalar value when given a scalar argument.

scalar x = 1

loop foreach f sqrt exp TIn
scalar y = $f(x)
print y

endloop

This will produce

y = 1.0000000
y = 2.7182818
y 0.0000000

For loop
The final form of loop control emulates the for statement in the C programming language. The
syntax is Toop for, followed by three component expressions, separated by semicolons and sur-
rounded by parentheses, that is

loop for (<init>; <cont>; <modifier>)

endloop
The three components are as follows:

1. Initialization (<init>): this must be an assignment statement, evaluated at the start of the
loop.
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2. Continuation condition (<cont>): this is evaluated at the top of each iteration (including the
first). If the expression evaluates as true (non-zero), iteration continues, otherwise it stops.

3. Modifier (<modifier>): an expression which modifies the value of some variable. This is
evaluated prior to checking the continuation condition, on each iteration after the first.

Here’s an example, in which we find the square root of a number by successive approximations:

# find the square root of x iteratively via Newton’s method
scalar x = 256

d=1

Toop for (y=(x+1)/2; abs(d) > 1.0e-7; y -= d/(2*y))
d=y*y - x
printf "y = %15.10f, d = %g\n", y, d

endloop

printf "sqrt(%g) = %g\n", x, y

Running the example gives

y = 128.5000000000, d = 16256.3
y = 65.2461089494, d = 4001.05
y = 34.5848572866, d = 940.112
y = 20.9934703720, d = 184.726
y = 16.5938690915, d = 19.3565
y = 16.0106268314, d = 0.340172
y = 16.0000035267, d = 0.000112855
y = 16.0000000000, d = 1.23919e-11

Number of iterations: 8

sqrt(256) = 16

Be aware of the limited precision of floating-point arithmetic. For example, the code snippet below
will iterate forever on most platforms because x will never equal exactly 0.01, even though it might
seem that it should.

Joop for (x=1; x!=0.01; x=x*0.1)
printf "x = .18g\n", x
endloop

However, if you replace the condition x!=0.01 with x>=0.01, the code will run as (probably) in-
tended.

Loop options

Three options can be given to the Toop statement. One is --verbose. This has simply the effect of
printing extra output to trace progress of the loop; it has no other effect and the semantics of the
loop contents remain unchanged.

The --decr option can be applied to an index loop to indicate that the counter should be decre-
mented by 1, not incremented, on each iteration. Note that the default behavior with an index loop
is that the code is skipped altogether if the starting index value exceeds the ending value.

The --progressive option is mostly used as a quick and efficient way to set up simulation studies.
When this option is given, a few commands (notably print and store) are given a special, ad hoc
meaning. Please refer to the Gretl User’s Guide for more information.
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Breaking and continuing

The break command makes it possible to break out of a loop if necessary. Note that if you nest
loops, break in the innermost loop will interrupt that loop only and not the outer ones. Here is
an example in which we use the wh1ile variant of the Toop statement to perform calculation of the
square root in a manner similar to the example above, using break to jump out of the loop when
the job is done.

scalar x = 256
scalar y = 1
loop while 1
d = y*y - x
if abs(d) < 1.0e-7
break
else
y -= d/(2%y)
printf "y = %15.10f, d = %g\n", vy, d
endif
endloop

printf "sqrt(%g) = %g\n", x, y

The continue command can be used to short-circuit an iteration: execution jumps from the line
on which continue occurs to the top of the loop. Iteration will then proceed if the continuation
condition is met. This can promote efficiency if a condition is met at a certain point in an iteration
such that the subsequent code becomes irrelevant.

8.3 The catch modifier

Hansl offers a simple form of exception handling via the catch keyword. This is not a command
in its own right but can be used as a prefix to most regular commands: the effect is to prevent
termination of a script if an error occurs in executing the command. If an error does occur, this
is registered in an internal error code which can be accessed as $error (a zero value indicating
success). The value of $error should always be checked immediately after using catch, and ap-
propriate action taken if the command failed. Here is a simple example:

matrix a floor(2*muniform(2,2))
catch ai = inv(a)
scalar err = $error
if err
printf "The matrix\n%6.0f\nis singular!\n", a
else
print ai
endif

Note that the catch keyword cannot be used before if, e1if or endi f. In addition, it should not be
used on calls to user-defined functions; it is intended for use only with gretl commands and calls to
“built-in” functions or operators. Suppose you're writing a function package which includes some
subsidiary functionality which may fail under certain conditions, and you want to prevent such
failure from aborting execution. In that case you should use catch within the particular function
in question, and if an error condition is detected, signal this to the caller by returning a suitable
“invalid” value—say, NA (for a function that returns a scalar) or an empty matrix. For example:

function scalar may_fail (matrix *m)
catch scalar x = ... # call to built-in procedure
if S$error
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X = NA
endif
return x

end function

function scalar caller (...)

matrix m = ... # whatever
scalar x = may_fail(&m)
if na(x)

print "Couldn’t calculate x"
else

printf "Calculated x = %g\n", X
endif

end function
What you should not do here is apply catch to may_fail()

function scalar caller (...)
matrix m = ... # whatever
catch scalar x = may_fail(&m) # No, don’t do this!

end function

as this is likely to leave gretl in a confused state.

8.4 The quit statement

35

When the quit statement is encountered in a hansl script, execution stops. If the command-line
program dretlcli is running in batch mode, control returns to the operating system; if gretl is

running in interactive mode, gretl will wait for interactive input.

The quit command is rarely used in scripts since execution automatically stops when script input
is exhausted, but it could be used in conjunction with catch. A script author could arrange matters
so that on encountering a certain error condition an appropriate message is printed and the script
is halted. Another use for quit is in program development: if you want to inspect the output of an
initial portion of a complex script, the most convenient solution may to insert a temporary “quit”

at a suitable point.
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User-written functions

Hansl natively provides a reasonably wide array of pre-defined functions for manipulating variables
of all kinds; the previous chapters contain several examples. However, it is also possible to extend
hansl’s native capabilities by defining additional functions.

Here’s what a user-defined function looks like:

function type funcname(parameters)
function body
end function

The opening line of a function definition contains these elements, in strict order:

1. The keyword function.

2. type, which states the type of value returned by the function, if any. This must be one of void
(if the function does not return anything), scalar, series, matrix, 1ist, string, bundle, or
one of the array types, that is bundles, Tists, matrices and strings;

3. funcname, the unique identifier for the function. Function names have a maximum length
of 31 characters; they must start with a letter and can contain only letters, numerals and the
underscore character. They cannot coincide with the names of native commands or functions.

4. The function’s parameters, in the form of a comma-separated list enclosed in parentheses.
Note: parameters are the only way hansl function can receive anything from “the outside”. In
hansl there are no global variables.

Function parameters can be of any of the types shown below.

Type Description
bool scalar variable acting as a Boolean switch
int scalar variable acting as an integer
scalar scalar variable
series data series (see section 11.1)
Tist named list of series (see section 11.2)
matrix matrix or vector
string string variable or string literal
bundle all-purpose container

matrices array of matrices
bundTes array of bundles
strings array of strings
arrays array of arrays

Each element in the listing of parameter must include two terms: a type specifier, and the name by
which the parameter shall be known within the function.

36
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The function body contains (almost) arbitrary hansl code, which should compute the return value,
that is the value the function is supposed to yield. Any variable declared inside the function is
local, so it will cease to exist when the function ends.

The return command is used to stop execution of the code inside the function and deliver its
result to the calling code. This typically happens at the end of the function body, but doesn’t have
to. The function definition must end with the expression end function, on a line of its own.

= Beware: unlike some other languages (e.g. Matlab or GAUSS), you cannot directly return multiple outputs
from a function. However, you can return a multiple-item object, such as an array for homogenous returns
or a bundle for heterogenous items, and stuff it with as many objects as you want.

In order to get a feel for how functions work in practice, here’s a simple example:

function scalar quasi_log (scalar x)
/* popular approximation to the natural logarithm
via Padé polynomials
% /
if x <0
scalar ret
else
scalar ret = 2*(x-1)/(x+1)
endif
return ret
end function

NA

Toop for (x=0.5; x<2; x+=0.1)
printf "x = %4.2f; Tn(x) = %g, approx = %g\n", x, In(x), quasi_Tog(x)
endloop

The code above computes the rational function

x -1
x+1’

flx)=2-

which provides a decent approximation to the natural logarithm in the neighborhood of 1. Some
comments on the code:

1. Since the function is meant to return a scalar, we put the keyword scalar after the intial
function.

2. In this case the parameter list has only one element: it is named x and is specified to be a
scalar.

3. On the next line the function definition begins; the body includes a comment and an 1 f block.
4. The function ends by returning the computed value, ret.

5. The lines below the function definition give a simple example of usage. Note that in the
printf command, the two functions Tn() and quasi_log() behave in exactly the same way
from a purely syntactic viewpoint, although the former is native and the latter is user-defined.

In ambitious uses of hansl you may end up writing several functions, some of which may be quite
long. In order to avoid cluttering your script with function definitions, hansl provides the include
command: you can put your function definitions in a separate file (or set of files) and read them in
as needed. For example, suppose you saved the definition of quasi_log() in a separate file called
quasilog_def.inp: the code above could then be written more compactly as

include quasilog_def.inp
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Toop for (x=0.5; x<2; x+=0.1)
printf "x = %4.2f; Tn(x) = %g, approx = %g\n", x, In(x), quasi_Tog(x)
endloop

Moreover, include commands can be nested.

9.1 Parameter passing and return values

In hansl, parameters are by default passed by value, so what is used inside the function is a copy
of the original argument. You may modify it, but you’ll be just modifying the copy. The following
example should make this point clear:

function void f(scalar x)
X = X*2
print x

end function

scalar x = 3

OO

print x
Running the above code yields

X 6.0000000
x = 3.0000000

The first print statement is executed inside the function, and the displayed value is 6 because the
input x is doubled; however, what really gets doubled is simply a copy of the original x: this is
demonstrated by the second print statement. If you want a function to modify its arguments, you
must use pointers.

Copying the content of the incoming parameter to a local version may have a sizeable impact on
compute speed and memory usage when the object is large (say, a 1000 x 1000 matrix). To avoid
this cost you can prepend the const modifier to the parameter type, thereby promising that the
object in question will not be modified inside the function. In that case gretl will grant read-only
access to the object at caller level instead of copying it (and will flag an error at any attempt to
modify the object). Consult the the Gretl User’s Guide for further details.

Pointers

Each of the type-specifiers, with the exception of 11 st, may be modified by prepending an asterisk
to the associated parameter name, as in

function scalar myfunc (matrix *y)

This indicates that the required argument is not a plain matrix but rather a pointer-to-matrix, or in
other words the memory address at which the variable is stored.

This can seem a bit mysterious to people unfamiliar with the C programming language, so allow
us to explain how pointers work by analogy. Suppose you set up a barber shop. Ideally, your
customers would walk into your shop, sit on a chair and have their hair trimmed or their beard
shaved. However, local regulations forbid you to modify anything coming in through your shop
door. Of course, you wouldn’'t do much business if people must leave your shop with their hair
untouched. Nevertheless, you have a simple way to get around this limitation: your customers can
come to your shop, tell you their home address and walk out. Then, nobody stops you from going
to their place and exercising your fine profession. You're OK with the law, because no modification
of anything took place inside your shop.
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While our imaginary restriction on the barber seems arbitrary, the analogous restriction in a pro-
gramming context is not: it prevents functions from having unpredictable side effects. (You might
be upset if it turned out that your person was modified after visiting the grocery store!)

In hansl (unlike C) you don’t have to take any special care within the function to distinguish the
variable from its address,! you just use the variable’s name. In order to supply the address of a
variable when you invoke the function, you use the ampersand (&) operator.

An example should make things clearer. The following code

*

function void swap(scalar *a, scalar *b)
scalar tmp = a
a=>b
b = tmp

end function

scalar x = 0
scalar y = 1000000
swap (&x, &y)
print x vy

gives the output

X 1000000.0
y = 0.0000000

So x and y have in fact been swapped. How?

First you have the function definition, in which the arguments are pointers to scalars. Inside the
function body, the distinction is moot, as a is taken to mean “the scalar that you’ll find at the
address given by the first argument” (and likewise for b). The rest of the function simply swaps a
and b by means of a local temporary variable.

Outside the function, we first initialize the two scalars x to 0 and y to a big number. When the
function is called, it is given as arguments &a and &b, which hansl identifies as “the address of” the
two scalars a and b, respectively.

Besides making it possible to modify function arguments in such a way that they stay modified at
caller level, use of pointer arguments avoids the computational cost of copying arguments. How-
ever, it is not idiomatic in hansl to use the pointer-argument mechanism for cost-saving alone since
the same effect can be achieved via the const modifier described above.

Advanced parameter passing and optional arguments

The parameters to a hansl function can be also specified in more sophisticated ways than outlined
above. There are three additional features worth mentioning:

1. A descriptive string can be attached to each parameter for GUI usage.

2. For some parameter types, there is a special syntax construct for ensuring that its value is
bounded; for example, you can stipulate a scalar argument to be positive, or constrained
within a pre-specified range.

3. Some of the arguments can be made optional.

A thorough discussion is too long to fit in this document, and the interested reader should refer
to the “User-defined functions” chapter of the the Gretl User’s Guide. Here we’ll just show you a
simple, and hopefully self-explanatory, example which combines features 2 and 3. Suppose you
have a function for producing smileys, defined as

IIn C, this would be called dereferencing the pointer. The distinction is not required in hansl because there is no
equivalent to operating on the supplied address itself, as in C.
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function void smileys(int times[0::1], bool frown[0])
if frown
string s oo ("
else
string s
endif

1l
|
—

Toop times
printf "%s ", s
endTloop

printf "\n"
end function

Then, running

smileys()
smileys(2, 1)
smileys(4)

produces

-
-C :-(
=) -) 2) o)

Embedding arguments in bundles

Some complex functions may require a large number of arguments. There is no limit to the number
of arguments a function can have, but an overly complicated function signature is not pleasant to
use. Some programming languages (R, for one) obviate this problem by using named arguments,
so that you may call a function by supplying only the few arguments you actually need, leaving the
other ones to their default values.

In hansl we don’t have named arguments, but a commonly employed technique achieves the same
result in a similar way: the idea is to package arguments into a bundle (see Section 6.1) and use the
bundle syntax to handle its contents.

For example, say you want to write a function to extract a substring from a string and optionally
capitalize it. You could start from something like

function string Sub(string s, scalar 1ini, scalar fin, bool capital)
string ret = s[ini:fin]
return capital ? toupper(ret) : ret

end function

so the call Sub("nowhere", 4, 7, 1) would produce the string HERE. A more sophisticated ver-
sion of the function may have default values, so that you could call the function in a simplified
form. Using the syntax shown in the previous subsection, one could set the defaults as

function string Sub(string s, scalar ini[l], scalar fin[3], bool capital[FALSE])
string ret = s[ini:fin]
return capital ? toupper(ret) : ret

end function

and the call Sub("nowhere") would return the string now. However, if we wanted the string to be
capitalized, we would have to set the fourth parameter to 1: to get NOW the function would have to
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be called as Sub("nowhere", , ,1). With more than 5 or 6 parameters in the function signature,
this becomes quite awkward.

This issue can be resolved by putting arguments 2 to 4 into a bundle, as in
function string Sub(string s, bundle opts)
string ret = s[opts.ini:opts.fin]

return opts.capital ? toupper(ret) : ret
end function

where the returned string is computed using the bundle contents, and you may call the function as

bundle myopts = _(ini=1, fin=3, capital=TRUE)
string out = Sub("nowhere", myopts)

Note that these two lines could be combined as
string out = Sub("nowhere", _(ini=1l, fin=3, capital=TRUE))
but in some cases it may be convenient to have the options bundle as a persistent object, so that
successive calls to the function may take place with incremental changes.
This sort of mechanism lends itself naturally to handling default values in an elegant way. Consider

the code below:

function string Sub(string s, bundle opts_in[null])
bundle opts = _(ini=1, fin=3, capital=0)
if exists(opts_in)
opts = opts_in + opts
endif
string ret = s[opts.ini:opts.fin]
return opts.capital ? toupper(ret) : ret
end function

Let’s analyse the body of the function line by line:

1. the function signature contains only two arguments: the string to process and a bundle, which
has a default value of nu11 and so can be omitted.

2. A bundle opts is defined with default values for the scalars ini and fin and for the boolean
flag capital.

3. If a bundle was passed as the second argument, then the line
opts = opts_in + opts

replaces the keys in opts with those present in opts_in (with the + operator, the left-hand
bundle takes precedence). At this point, the bundle opts will contain a mixture of default and
user-set keys.

4. From here on, everything proceeds as above.

This means that the call Sub("nowhere™) would yield now, but if we want capitalized output we
can call the function as

string out = Sub("nowhere", _(capital=TRUE))

The “incremental variations” idea for the options bundle (mentioned above) can be now exploited
as in the following code:
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bundle myopts = _(capital=TRUE)
string outl = Sub("nowhere", myopts)
myopts.fin = 2

string out2 = Sub("nowhere", myopts)

Execution this code gives strings outl containing NOW and out2 containing NO.

At this point we have something virtually equivalent to named arguments. Note that the keys in
_Q, unlike individual function arguments, can be given in any order.

9.2 Recursion

Hansl functions can be recursive; what follows is the obligatory factorial example:

function scalar factorial(scalar n)
if (n<0) || (n>floor(n))
# filter out everything that isn’t a
# non-negative integer
return NA
elif n==
return 1
else
return n * factorial(n-1)
endif
end function

loop i =0 .. 6
printf "%d! = %d\n", i, factorial(i)
endloop

This is fun, but in practice you’ll be much better off using the pre-cooked gamma function (or better
still, its logarithm).
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Chapter 10

What is a dataset?

A dataset is a memory area designed to hold the data you want to work on, if any. It may be
thought of a big global variable, containing a (possibly huge) matrix of data and a hefty collection
of metadata.

R users may think that a dataset is similar to what you get when you attach a data frame in R. Not
really: in hansl, you cannot have more than one dataset open at the same time. That’s why we talk
about the dataset.

When a dataset is present in memory (that is, “open”), a number of objects become available for
your hansl script in a transparent and convenient way. Of course, the data themselves: the columns
of the dataset matrix are called series, which will be described in section 11.1; sometimes, you
will want to organize one or more series into a list (Section 11.2). Additionally, you have the
possibility of using, as read-only global variables, some scalars or matrices, such as the number of
observations, the number of variables, the nature of your dataset (cross-sectional, time series or
panel), and so on. These are called accessors, and will be discussed in section 10.5.

You can open a dataset by reading data from a disk file, via the open command, or by creating one
from scratch.

10.1 Creating a dataset from scratch

The primary commands in this context are nulldata and setobs. For example:

set verbose off

set seed 443322 # initialize the random number generator
nulldata 240 # stipulate how long your series will be
setobs 12 1995:1 # define as monthly data, starting Jan 1995

For more details see the Gretl User’s Guide, and the Gretl Command Reference for the nulldata
and setobs commands. The only important thing to say at this point, however, is that you can
resize your dataset and/or change some of its characteristics, such as its periodicity, at nearly any
point inside your script if necessary.

Once your dataset is in place, you can start populating it with series, either by reading them from
files or by generating them via appropriate commands and functions.

10.2 Reading a dataset from a file

The primary commands here are open, append and join.

The open command is what you’ll want to use in most cases. It handles transparently a wide variety
of formats (native, CSV, spreadsheet, data files produced by other packages such as Stata, Eviews,
SPSS and SAS) and takes care of setting up the dataset for you automatically.

open mydata.gdt # native format
open yourdata.dta # Stata format
open theirdata.xIsx # Excel format
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The open command can also be used to read data directly from the Internet, by using a URL instead
of a filename, as in

open http://someserver.com/somedata.csv

The Gretl User’s Guide describes the requirements on plain text data files of the “CSV” type for
direct importation by gretl. It also describes gretl’s native data formats (XML-based and binary).

The append and join commands can be used to add further series from file to a previously opened
dataset. The join command is extremely flexible and has a chapter to itself in the Gretl User’s
Guide.

10.3 Saving datasets

The store command is used to write the current dataset (or a subset) out to file. Besides writing
in gretl’s native formats, store can also be used to export data as CSV or in the format of R. Series
can be written out as matrices using the mwri te function. If you have special requirements that are
not met by store or mwrite it is possible to use outfile plus printf (see chapter 5) to gain full
control over the way data are saved.

10.4 The smp1l command

Once you have opened a dataset somehow, the smp1 command allows you to discard observations
selectively, so that your series will contain only the observations you want (automatically changing
the dimension of the dataset in the process). See chapter 4 in the Gretl User’s Guide for further
information.!

There are basically three variants to the smp1 command:

1. Selecting a contiguous subset of observations: this will be mostly useful with time-series
datasets. For example:

smpl 4 122 # select observations for 4 to 122
smpl 1984:1 2008:4 # the so-called "Great Moderation" period
smp1 2008-01-01 ; # observations from January 1st, 2008 onwards

2. Selecting observations on the basis of some criterion: this is typically what you want with
cross-sectional datasets. Example:

smpl male == 1 --restrict # males only
smpl male == 1 & age < 30 --restrict # just the young guys
smpl employed --dummy # via a dummy variable

Note that, in this context, restrictions go “on top of” previous ones, or in other words are
cumulated. In order to start from scratch, you either reset the full sample via smp1 full or
use the --replace option along with --restrict.

3. Restricting the active dataset to some observations so that a certain effect is achieved au-
tomatically: for example, drawing a random subsample, or ensuring that all rows that have
missing observations are automatically excluded. This is achieved via the --no-missing,
--contiguous, and --random options.

In the context of panel datasets, some extra qualifications have to be made; see the Gretl User’s
Guide.
1Users with a Stata background may find the hansl way of doing things a little disconcerting at first. In hansl, you first

restrict your sample through the smp1 command, which applies until further notice, then you do what you have to. There
is no equivalent to Stata’s if clause to commands.
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10.5 Dataset accessors

Several characteristics of the current dataset can be determined by reference to built-in accessor
(“dollar”) variables. The main ones, which all return scalar values, are shown in Table 10.1.

Accessor Value returned

$datatype Coding for the type of dataset: 0 = no data; 1 = cross-sectional (un-
dated); 2 = time-series; 3 = panel

$nobs The number of observations in the current sample range

$nvars The number of series (including the constant)

$pd The data frequency (1 for cross-sectional, 4 for quarterly, and so on)
$t1 1-based index of the first observation in the current sample

$t2 1-based index of the last observation in the current sample

Table 10.1: The principal dataset accessors

In addition there are a few more specialized accessors: $obsdate, $obsmajor, $obsminor, $obsmicro

and $unit. These are specific to time-series and/or panel data, and they all return series. See the
Gretl Command Reference for details.
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Series and lists

Scalars, matrices and strings can be used in a hansl script at any point; series and lists, on the other
hand, are inherently tied to a dataset and therefore can be used only when a dataset is currently
open.

11.1 The series type

Series are just what any applied economist would call “variables”, that is, repeated observations of
a given quantity; a dataset is an ordered array of series, complemented by additional information,
such as the nature of the data (time-series, cross-section or panel), descriptive labels for the series
and/or the observations, source information and so on. Series are the basic data type on which
gretl’s built-in estimation commands depend.

The series belonging to a dataset are named via standard hansl identifiers (strings of maximum
length 31 characters as described above). In the context of commands that take series as arguments,
series may be referenced either by name or by ID number, that is, the index of the series within
the dataset. Position O in a dataset is always taken by the automatic “variable” known as const,
which is just a column of 1s. The IDs of the actual data series can be displayed via the varlist
command. (But note that in function calls, as opposed to commands, series must be referred to by
name.) A detailed description of how a dataset works can be found in chapter 4 of the Gretl User’s
Guide.

Some basic rules regarding series follow:

¢ If Tngdp belongs to a time series or panel dataset, then the syntax Tngdp(-1) yields its first
lag, and Tngdp (+1) its first lead.

e To access individual elements of a series, you use square brackets enclosing

- the progressive (1-based) number of the observation you want, as in Tngdp[15], or

- the corresponding date code in the case of time-series data, as in Tngdp[2008:4] (for
the 4th quarter of 2008), or

- the corresponding observation marker string, if the dataset contains any, as in GDP["USA"].

The rules for assigning values to series are just the same as for other objects, so the following
examples should be self-explanatory:

series k = 3 # implicit conversion from scalar; a constant series
series x = normal() # pseudo-rv via a built-in function
series s = a/b # element-by-element operation on existing series

series movavg = 0.5%*(x + x(-1)) # using Tlags
series y[2012:4] = x[2011:2] # using individual data points
series x2000 = 100*x/x[2000:1] # constructing an index

= |n hansl, you don’t have separate commands for creating series and modifying them. Other popular
packages make this distinction, but we still struggle to understand why this is supposed to be useful.
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Converting series to or from matrices

The reason why hansl provides a specific series type, distinct from the matrix type, is historical.
However, is also a very convenient feature. Operations that are typically performed on series in
applied work can be awkward to implement using “raw” matrices —for example, the computation
of leads and lags, or regular and seasonal differences; the treatment of missing values; the addition
of descriptive labels, and so on.

Anyway, it is straightforward to convert data in either direction between the series and matrix
types.
e To turn series into matrices, you use the curly braces syntax, as in

matrix MACRO = {outputgap, unemp, infl}

where you can also use lists; the number of rows of the resulting matrix will depend on your
currently selected sample.

e To turn matrices into series, you can just use matrix columns, as in
series y = my_matrix[,4]

but only if the number of rows in my_matrix matches the length of the dataset, or the cur-
rently selected sample range.

Also note that the Tincomb and filter functions are quite useful for creating and manipulating
series in complex ways without having to convert the data to matrix form (which could be compu-
tationally costly with large datasets).

The ternary operator with series

Consider this assignment:
worker_income = employed ? income : O

Here we assume that employed is a dummy series coding for employee status. Its value will be
tested for each observation in the current sample range and the value assigned to worker_income
at that observation will be determined accordingly. It is therefore equivalent to the following much
more verbose formulation (where $t1 and $t2 are accessors for the start and end of the sample
range):

series worker_income
Toop i=$tl..$t2
if employed[i]

worker_income[i] = income[i]
else
worker_income[i] = O
endif
endloop

11.2 The 1list type

In hansl parlance, a list is an array of integers, representing the ID numbers of a set (in a loose
sense of the word) of series. For this reason, the most common operations you perform on lists are
set operations such as addition or deletion of members, union, intersection and so on. Unlike sets,
however, hansl lists are ordered, so individual list members can be accessed via the [] syntax, as
in X[3] to access the third series in list X.

There are several ways to assign values to a list. The most basic sort of expression that works in
this context is a space-separated list of series, given either by name or by ID number. For example,
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Tist xlist =12 3 4
Tist reglist = income price

An empty list is obtained by using the function def11ist without any arguments, as in
Tist W = deflist()

or simply by bare declaration. Some more special forms (for example, using wildcards) are de-
scribed in the Gretl User’s Guide.

The main idea is to use lists to group, under one identifier, one or more series that logically belong
together somehow (for example, as explanatory variables in a model). So, for example,

Tist x1list = x1 x2 x3 x4
ols y 0 xlist

is an idiomatic way of specifying the OLS regression that could also be written as
ols y 0 x1 x2 x3 x4

Note that we used here the convention, mentioned in section 11.1, by which a series can be identi-
fied by its ID number when used as an argument to a command, typing 0 instead of const.

Lists can be concatenated, as in as in Tist L3 = L1 L2 (where L1 and L2 are names of existing
lists). This will not necessarily do what you want, however, since the resulting list may contain
duplicates. It’s more common to use the following set operations:

Operator Meaning
|| Union
&& Intersection
- Set difference

So for example, if L1 and L2 are existing lists, after running the following code snippet

Tist UL = L1 || L2
Tist IL = L1 && L2
Tist DL = L1 - L2

the list UL will contain all the members of L1, plus any members of L2 that are not already in L1; IL
will contain all the elements that are present in both L1 and L2 and DL will contain all the elements
of L1 that are not present in L2.

To append or prepend variables to an existing list, we can make use of the fact that a named list
stands in for a “longhand” list. For example, assuming that a list x1i st is already defined (possibly
as null), we can do

Tist x1list = xlist 5 6 7
x1ist = 9 10 xTist 11 12

Another option for appending terms to, or dropping terms from, an existing list is to use += or -=,
respectively, as in

x1list += cpi
zlist -= cpi

A nice example of the above is provided by a common idiom: you may see in hansl scripts some-
thing like
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Tist C -= const
Tist C = const C

which ensures that the series const is included (exactly once) in the list C, and comes first.

Converting lists to or from matrices

The idea of converting from a list, as defined above, to a matrix may be taken in either of two
ways. You may want to turn a list into a matrix (vector) by filling the latter with the ID numbers
contained in the former, or rather to create a matrix whose columns contain the series to which the
ID numbers refer. Both interpretations are legitimate (and potentially useful in different contexts)
so hansl lets you go either way.

If you assign a list to a matrix, as in

Tist L = moo foo boo zoo

o
matrix A = L

the matrix A will contain the ID numbers of the four series as a row vector. This operation goes
both ways, so the statement

Tist C = seq(7,10)

is perfectly valid (provided, of course, that you have at least 10 series in the currently open dataset).

If instead you want to create a data matrix from the series which belong to a given list, you have to
enclose the list name in curly brackets, as in

matrix X = {L}

The foreach loop variant with lists

Lists can be used as the “catalogue” in the foreach variant of the Toop construct (see section 8.2).
This is especially handy when you have to perform some operation on multiple series. For example,
the following syntax can be used to calculate and print the mean of each of several series:

Tist X = age income experience
loop foreach i X

printf "mean($i) = %g\n", mean($i)
endTloop
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Estimation methods

You can, of course, estimate econometric models via hansl without having a dataset (in the sense
in which we're using that term here) in place—just as you might in Matlab, for instance. You’'ll
need data, but these can be loaded in matrix form (see the mread function in the Gretl Command
Reference), or generated artificially via functions such as mnormal or muniform. You can roll your
own estimator using hansl’s linear algebra primitives, and you also have access to more specialized
functions such as moTls (see section 4.2) and mr1s (restricted least squares) if you need them.

However, unless you need to use an estimation method which is not currently supported by gretl,
or have a strong desire to reinvent the wheel, you will probably want to make use of the built-
in estimation commands available in hansl. These commands are series-oriented and therefore
require a dataset. They fall into two main categories: “canned” procedures, and generic tools that
can be used to estimate a wide variety of models based on common principles.

12.1 Canned estimation procedures

“Canned” maybe doesn’t sound very appetizing but it’s the term that’s commonly used. Basically it
means two things, neither of them in fact unappetizing.

e The user is presented with a fairly simple interface. A few inputs must be specified, and
perhaps a few options selected, then the heavy lifting is done within the gretl library. Full
results are printed (parameter estimates plus numerous auxiliary statistics).

e The algorithm is written in C, by experienced coders. It is therefore faster (possibly much
faster) than an implementation in an interpreted language such as hansl.

Most such procedures share the syntax
commandname parameters options

where parameters usually takes the form of a listing of series: the dependent variable followed by
the regressors.

The line-up of procedures can be crudely categorized as follows:

Linear, single equation: ols, tsls, arl, mpols

Linear, multi-equation: system, var, vecm

Nonlinear, single equation: logit, probit, poisson, negbin, tobit, intreg,
Togistic, duration

Panel: panel, dpanel

Miscellaneous: arima, garch, heckit, quantreg, lad, biprobit

Don’t let names deceive you: for example, the probit command can estimate ordered models,
random-effects panel probit models, ... The hansl “house style” is to keep to a relatively small
number of command words and to distinguish variants within a class of estimators such as Probit
by means of options, or the character of the data supplied.
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Simultaneous systems (SUR, FIML and so on) constitute the main exception to the syntax summary
above; these require a system block—see the chapter on Multivariate models in the Gretl User’s
Guide.

12.2 Generic estimation tools

Hansl offers three main toolkits for defining estimators beyond the canned selection. Here’s a quick
overview:

command estimator User’s Guide
nls nonlinear least squares chapter 25
mle maximum likelihood estimation  chapter 26
gmm generalized method of moments chapter 27
Each of these commands takes the form of a block of statements (e.g. n1s ... end nls). The user

must supply a function to compute the fitted dependent variable (n1s), the log-likelihood (m1e), or
the GMM residuals (gmm). With n1s and m1le, analytical derivatives of the function in question with
respect to the parameters may (optionally) be supplied.

The most widely used of these tools is probably mle. Hansl offers several canned ML estimators,
but if you come across a model that you want to estimate via maximum likelihood and it is not
supported natively, all you have to do is write down the log-likelihood in hansl’s notation and run
it through the mle apparatus.

12.3 Post-estimation accessors

All of the methods mentioned above are commands, not functions; they therefore do not return
any values. However, after estimating a model —either using a canned procedure or one of the
toolkits —you can grab most of the quantities you might wish to have available for further analysis
via accessors.

Some such accessors are generic, and are available after using just about any estimator. Examples
include $coeff and $stderr (to get the vectors of coefficients and standard errors, respectively),
$uhat and $yhat (residuals and fitted values), and $vcv (the covariance matrix of the coefficients).
Some, on the other hand, are specific to certain estimators. Examples here include $jbeta (the
cointegration matrix, following estimation of a VECM), $h (the estimated conditional variance series
following GARCH estimation), and $allprobs (the matrix of per-outcome probabilities following
ordered logit and probit, and multinomial logit estimation).

A full listing and description of accessors can be found in the Gretl Command Reference.

12.4 Formatting the results of estimation

The commands mentioned in this chapter produce by default quite verbose (and, hopefully, nicely
formatted) output. However, in some cases you may want to use built-in commands as auxiliary
steps in implementing an estimator that is not itself built in. In that context the standard printed
output may be inappropriate and you may want to take charge of presenting the results yourself.

This can be accomplished quite easily. First, you can suppress the usual output by using the
-—quiet option with built-in estimation commands.! Second, you can use the modprint command
to generate the desired output. As usual, see the Gretl Command Reference for details.

IFor some commands, --quiet reduces but does not eliminate gretl’s usual output. In these cases you can give the
--silent option. Consult the Gretl Command Reference to determine which commands accept this option.
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12.5 Named models

We said above that estimation commands in hansl don’t return anything. This should be qualified
in one respect: it is possible to use a special syntax to push a model onto a stack of named models.
Rather than the usual assignment symbol, the form “<-" is used for this purpose. This is mostly
intended for use in the gretl GUI but it can also be used in hansl scripting.

Once a model is saved in this way, the accessors mentioned above can be used in a special way,
joined by a dot to the name of the target model. A little example follows. (Note that $ess accesses
the error sum of squares, or sum of squared residuals, for models estimated via least squares.)

diff y x

ADL <- ols y const y(-1) x(0 to -1)

ECM <- ols d_y const d_x y(-1) x(-1)

# the following two values should be equal
ssr_a = ADL.$ess

ssr_e = ECM. $ess
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Chapter 13

Rules regarding white space

Programming languages differ in their rules regarding the use of white space in a program. Here
we set out the rules in hansl. The rules differ somewhat between commands on the one hand and
function calls plus assignment on the other.

13.1 White space in commands

Hansl commands are structured as follows: first comes a command word (e.g. ols, summary); then
come zero or more arguments (often the names of series); then come zero or more options (some
of which may take parameters). The relevant rules are:

1. The individual elements just mentioned must always be separated by at least one space, and
where one space is required you are free to insert as many as you like.

2. Whenever a parameter is supplied with an option flag, the parameter must be attached to the
flag with an equals sign, with no intervening space:

ols y 0 x --cluster=clustvar # correct
ols y 0 x --cluster =clustvar # broken!

13.2 Spaces in function calls and assignment

For the most part, white space in function calls and assignment is not significant; it can be inserted
or not at will. For example, in the following sets of statements each member is equally acceptable
syntactically (though some are ugly!):

# set 1

y = sqrt(x)
y=sqrt(x)

# set 2

c = cov(yl, y2)
c=cov(yl,y2)

c =cov(yl, y2)

But when an assignment starts with a type keyword such as series or matrix, this must be sepa-
rated from what follows by at least one space, as in

series y = normal() # or: series y=normal()
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Operators

14.1 Precedence

Table 14.1 lists the operators available in gretl in order of decreasing precedence. That is, the
operators on the first row have the highest precedence, those on the second row have the second
highest, and so on, while operators on any given row have equal precedence. Where successive op-
erators have the same precedence the order of evaluation is in general left to right. The exceptions
are exponentiation and matrix transpose-multiply. The expression aAbAc is equivalent to aA(bAc),
not (aAb)Ac, and similarly A’B’C’ is equivalent to A’ (B’ (C’)).

Table 14.1: Operator precedence

o o . {4
! ++ -- A ’
+ -~

&&
I

In addition to the basic forms shown in the Table, several operators also have a “dot form” (as in
“.+” which is read as “dot plus”). These are element-wise versions of the basic operators, for use
with matrices exclusively; they have the same precedence as their basic counterparts. The available

dot operators are as follows.
AF )+ - > < > <= =

Each basic operator is shown once again in the following list along with a brief account of its
meaning. Apart from the first three sets of grouping symbols, all operators are binary except
where noted.

() Function call

[1 Subscripting

. Bundle membership (see below)
{} Matrix definition

! Unary logical NOT

++ Increment (unary)

-- Decrement (unary)

A Exponentiation
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Matrix transpose (unary) or transpose-multiply (binary)
Multiplication
/ Division, matrix “right division”
%  Modulus
\ Matrix “left division”
Kronecker product
+  Addition
- Subtraction
~  Matrix horizontal concatenation
| Matrix vertical concatenation
>  Boolean greater than
< Boolean less than
>= Greater than or equal
<= Less than or equal
Range from-to (in constructing lists)
== Boolean equality test
I=  Boolean inequality test
&& Logical AND
|| Logical OR
?: Conditional expression

The interpretation of “.” as the bundle membership operator is confined to the case where it is
immediately preceded by the identifier for a bundle, and immediately followed by a valid identifier
(key).

Details on the use of the matrix-related operators (including the dot operators) can be found in the
chapter on matrices in the Gretl User’s Guide.

14.2 Assignment

The operators mentioned above are all intended for use on the right-hand side of an expression
which assigns a value to a variable (or which just computes and displays a value—see the eval
command). In addition we have the assignment operator itself, “=”. In effect this has the lowest
precedence of all: the entire right-hand side is evaluated before assignment takes place.

Besides plain “=" several “inflected” versions of assignment are available. These may be used only
when the left-hand side variable is already defined. The inflected assignment yields a value that is
a function of the prior value on the left and the computed value on the right. Such operators are
formed by prepending a regular operator symbol to the equals sign. For example,

y += X

The new value assigned to y by the statement above is the prior value of y plus x. The other
available inflected operators, which work in an exactly analogous fashion, are as follows.

- = /= %: A= ~= | =

In addition, a special form of inflected assignment is provided for matrices. Say matrix Mis 2 x 2. If
you execute M = 5 this has the effect of replacing M with a 1 x 1 matrix with single element 5. But
if you doM .= 5 this assigns the value 5 to all elements of M without changing its dimensions.
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14.3 Increment and decrement

The unary operators ++ and -- follow their operand,! which must be a variable of scalar type. Their
simplest use is in stand-alone expressions, such as

j++ # shorthand for j =
k-- # shorthand for k = k - 1

|
.

+

=

However, they can also be embedded in more complex expressions, in which case they first yield the
original value of the variable in question, then have the side-effect of incrementing or decrementing
the variable’s value. For example:

scalar i = 3

k = i++

matrix M = zeros(10, 1)
Mi++] =1

After the second line, k has the value 3 and i has value 4. The last line assigns the value 1 to
element 4 of matrix M and sets i = 5.

Warning: as in the C programming language, the unary increment or decrement operator should be
not be applied to a variable in conjunction with regular reference to the same variable in a single
statement. This is because the order of evaluation is not guaranteed, giving rise to ambiguity.
Consider the following:

M[i++] = i # don’t do this!

This is supposed to assign the value of i to M[1i], but is it the original or the incremented value?
This is not actually defined.

IThe C programming language also supports prefix versions of ++ and - -, which increment or decrement their operand
before yielding its value. Only the postfix form is supported by gretl.



Chapter 15

Greek-letter identifiers

As mentioned in chapter 3, the sole exception to the requirement that hansl identifiers must be
plain ASCII is that they may take the form of a single Greek letter. Here are the details.

o This exception applies only to names of variables other than series; the names of series must
always be ASCIL.

e The supported Greek characters are the 24 (unaccented) letters in the basic Greek alphabet,
minus omicron, which is indistinguishable from the Latin ‘0’.

e These letters may be used in lower or upper case (constituting distinct identifiers, as usual in
hansl), except for the several upper-case letters which are indistinguishable in the Latin and
Greek alphabets (‘A’, ‘B’, ‘E’, ‘K’, ‘M’, ‘N’, ...).

e The Greek letters must be encoded in UTF-8.
In gretl’s graphical interface (script editor and GUI “console”), the acceptable Greek letters can be

entered by typing a Latin letter while the A1t key is depressed. The mappings from Latin to Greek
are shown below: lower case first, then upper case.

Latin Greek Latin Greek
a 1o alpha n % nu
b B beta P g pi
C X chi a 0 theta
d o delta r P rho
e € epsilon S o sigma
f ¢ phi t T tau
g )% gamma u v upsilon
h n eta \% % nu
i L iota w w omega
J 1] psi X 3 xi
k K kappa y v upsilon
1 A lambda zZ C zeta
m u mu
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Latin Greek

D A Delta

F ) Phi

G r Gamma
J ¥ Psi

L A Lambda
P I1 Pi

Q C) Theta

S > Sigma
U Y Upsilon
w Q Omega
X g Xi

Y Y Upsilon

A word of advice: it’s probably not a good idea to employ Greek-letter identifiers in hansl scripts
that you intend to share via the internet, since one cannot assume that text encodings are preserved
unchanged. This warning applies in particular if you, or any of the intended recipients of your
scripts, work on MS Windows, since Windows does not natively support UTF-8, the mandatory
encoding of such identifiers for use with gretl.
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