
gretl + SVM

Allin Cottrell

April 4, 2024

1 Introduction

This is documentation for a gretl function named svm, which offers an interface to the machine-
learning functionality provided by libsvm (SVM = Support Vector Machine). We assume that the
reader knows at least a little about machine learning and how it relates to econometrics. If this
assumption does not hold please take a look at Mullainathan and Spiess (2017a), or google the
topic if you prefer, and come back when you’re ready.1

Libsvm is an open-source library (see https://www.csie.ntu.edu.tw/~cjlin/libsvm/) and
gretl (as we suppose you know) is an open-source, cross-platform econometrics package (http:
//gretl.sourceforge.net/). Support for libsvm in gretl was added in the 2017d release
(2017-11-07). Since then, however, some improvements have been made and at present you’ll
be better off using gretl 2019a or higher to work with this.

In section 2 we outline the gretl svm function and illustrate its usage via a few example sce-
narios; section 3 goes into more detail on the supported options. Section 4 discusses cross-
validation; section 5 gives a classification example; section 6 discusses probability estimation;
and section 7 provides some details on the implementation of libsvm in gretl.

2 The svm function

The signature of svm is as follows:

series svm(list L, bundle bparms, bundle *bmod[null], bundle *bprob[null])

That is, this function returns a series (predictions) and it has two required arguments, a list (of
series) and a bundle containing zero or more parameter specifications. The third and fourth
arguments take the form of “pointers to bundle”; they are optional, and may be set to null
or omitted altogether; we illustrate their use below but for now we just note that they offer
means of ferrying additional information from svm to the user or vice versa.

The list argument to svm works like the list argument to regression commands in gretl: it
should contain the dependent variable first, followed by the independent variables. Note that
there’s no point in including an intercept (the series const or 0) in L; it will just be dropped
by libsvm.

The bparms bundle may contain quite a number of parameter specifications and other options
but most of these have default values which may be acceptable, in which case you can get by
with a minimal set. A listing is given in Table 1 and usage is discussed in section 3.

The workflow for supervised machine learning goes like this:

1. Gather suitable data and divide them into a training set and a testing or “holdout” set.

1For a good account of the technical background on SVMs, see Smola and Schölkopf (2004).

1

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://gretl.sourceforge.net/
http://gretl.sourceforge.net/

2. Build a model using the training data and assess its fit.

3. Using this model, generate predictions for the testing data and assess the fit.

Then if the out-of-sample performance is deemed satisfactory, the model may be used to
generate “live” predictions for additional data.

Gretl’s svm is set up to perform steps 2 and 3 above with ease (though it can also do other
things). We’ll walk through this sort of basic usage in the first scenario below.

2.1 First scenario

Suppose you have an “integrated” dataset, comprising n training observations followed by m
testing observations, and this dataset is loaded in gretl. You construct a list L as described
above to pass as the first argument to svm. In the simplest case, the only parameter you need
include in the bundle to pass as the second argument is n_train, which sets the number of
observations to use for training (assumed to be at the start of the dataset); for example, if you
have 5000 training observations,

bundle b = defbundle("n_train", 5000)
series yhat = svm(L, b)

Here’s what happens by default.

1. Gretl examines your dependent variable (the first member of L): if this is a binary dummy,
or its “coded” attribute is set, the C-SVC SVM type is selected (classification), otherwise ϵ-
SVR (regression) is selected. In both cases the default kernel is RBF (radial basis function).

2. Gretl finds the maxima and minima of the independent variables in the sample range 1
to n_train and scales them onto [−1,1].

3. The libsvm training function is called, with all parameters at their default values as shown
in Table 1. The resulting model is stored in memory.

4. The libsvm prediction function is called on the training range, and the degree of fit is
shown (for classification, the count and percentage of correct predictions; for regression
the MSE and R2).

5. If all has gone OK, gretl checks if you have enough observations for a testing phase—
that is, somewhat arbitrarily, there are at least 10 observations between n_train and the
end of the current sample range. (One would generally expect there to be a good deal
more testing observations.) If so, the independent variables in the test set are scaled
using the ranges saved from the training data, a second prediction call is made, and the
out-of-sample fit is shown.

We’ll give a real example, replication of the Mullainathan and Spiess study referenced in the
Introduction. It’s not an exact replication since the authors used different machine-learning
software (a collection of R tools), but we can replicate their baseline OLS results and our libsvm
results are comparable to those shown in their article for machine learning.

A hansl script for this purpose is shown in Listing 1. We discuss it below.

In BLOCK 1 of the Mullainathan–Spiess script we open a data file named ahs_jep.gdtb. This
is a native gretl version of the dataset used by the authors, which they created from “raw”
American Housing Survey data with the help of R. Our version is a translation of the R data; it
is available for download as

http://gretl.sourceforge.net/svm/ahs_jep.gdtb

2

http://gretl.sourceforge.net/svm/ahs_jep.gdtb

Listing 1: Mullainathan and Spiess replication script

http://gretl.sourceforge.net/svm/MS_simple.inp

set verbose off

helper function: get R^2 and MSE
function matrix get_stats (const series y, const series yhat)
scalar SSR = sum((y - yhat)^2)
return {1 - SSR/sst(y), SSR / $nobs}

end function

BLOCK 1: open and arrange data
open ahs_jep.gdtb -q
rename LOGVALUE y
dataset sortby holdout
list X = dataset
list drop = y folds8 holdout
X -= drop
X = cdummify(X)
ntrain = 10000
test1 = ntrain + 1

BLOCK 2: OLS baseline
smpl 1 ntrain
X = dropcoll(X)
ols y 0 X --quiet
printf "OLS: training R^2 = %.3f, MSE = %.3f\n", $rsq, $ess/$nobs
smpl test1 $tmax
yhat = lincomb($xlist, $coeff)
m = get_stats(y, yhat)
printf "OLS: holdout R^2 = %.3f, MSE = %.3f\n", m[1], m[2]

BLOCK 3: SVM training and testing
smpl full
bundle parms = defbundle("n_train", ntrain, "quiet", 1)
list L = y X
series svmpred = svm(L, parms)
smpl 1 ntrain
m = get_stats(y, svmpred)
printf "SVM: training R^2 = %.3f, MSE = %.3f\n", m[1], m[2]
smpl test1 $tmax
m = get_stats(y, svmpred)
printf "SVM: holdout R^2 = %.3f, MSE = %.3f\n", m[1], m[2]

3

http://gretl.sourceforge.net/svm/MS_simple.inp

The dataset contains the log-values of 51,808 housing units along with 162 covariates, most of
which are encodings of qualitative characteristics. 10,000 of the observations are designated
for training, leaving 41,808 for testing.

We begin by renaming, for the sake of brevity, the dependent variable LOGVALUE as y. The
dummy variable holdout has value 1 for observations in the testing set, 0 for observations in
the training set. In the original data these are interspersed, but for gretl’s svm we want all the
training observations to come first, hence the line

dataset sortby holdout

Then, since many of the independent variables are encodings (“factors,” in R parlance), we
turn them into sets of 0/1 dummies using the cdummify function: the list X then contains 338
series.

In BLOCK 2 of Listing 1 we first set the sample to the training data only and purge the list
X of perfectly collinear terms, leaving 274 series.2 We then estimate a linear model via OLS.
After switching to the holdout sample, we use the OLS parameter estimates ($coeff) to gen-
erate fitted values using the lincomb function, and calculate the measures of fit employed by
Mullainathan–Spiess (hereinafter M–S).

In BLOCK 3 we come to the SVM part. This is straightforward (though it takes a while to run).
We tell svm how many observations to use for training, and (optionally) tell it to be quiet. The
remainder of this block just uses the original y data and the predictions from svm (which we
name svmpred) to calculate the measures of fit in the training and testing sub-samples.

The output obtained from running this script should closely resemble the following (which
was obtained in 70 seconds on a quad-core desktop with Intel i7 Haswell processors running
Arch Linux):

OLS: training R^2 = 0.473, MSE = 0.589
OLS: holdout R^2 = 0.417, MSE = 0.674
SVM: training R^2 = 0.494, MSE = 0.565
SVM: holdout R^2 = 0.448, MSE = 0.639

The OLS R2 values agree with those shown in Table 1 of M–S, which inspires confidence that
we’re really working with the same data. M–S show results from four machine-learning algo-
rithms: (1) Regression tree tuned by depth, (2) LASSO, (3) Random forest (a linear combination
of trees) and (4) Ensemble (a weighted combination of the first three methods). Our “out of
the box” libsvm results are in the middle in terms of out-of-sample (or “holdout”) fit: better
than (1) and (2) but not quite as good as (3) or (4), which have R2 values of 0.455 and 0.459
respectively as against our 0.448.

In section 4.7 below we follow up on this in light of cross validation.

2.2 Second scenario

Say you have separate data files for training and testing and you don’t wish to combine them.
You’d like to do training on the first dataset and testing on the second.

In the first variant of this scenario we assume you’re nonetheless willing to do the two opera-
tions in the context of a single hansl script. In that case your solution (or a bare-bones version
of it) is shown in Listing 2. Note that in this script (and others to follow) we construct the list
to pass to svm as simply

list L = dataset

2These terms would have been dropped automatically by the ols command, but we also want to remove them
from the list passed to svm.

4

This works if (a) your dependent variable occupies position 1 in the dataset and (b) you wish to
use all the other series in the dataset as supports. Otherwise you need to compose L yourself.

Listing 2: Scenario 2: using two data files in one script

open train.gdt
list L = dataset
bundle b = defbundle("ranges_outfile", "train.ranges")
bundle savemod = defbundle()
svm(L, b, &savemod)

open test.gdt --preserve
list L = dataset
bundle b = defbundle("ranges_infile", "train.ranges", "loadmod", 1)
svm(L, b, &savemod)

In Listing 2 we save the ranges (for scaling) to file in the training run, and also use the third
argument to svm to save the model as a bundle (namely savemod). After opening the test data
file (with the --preserve option to avoid destroying savemod) we then load the ranges from
file, and also load the saved model bundle via svm’s third argument.3

OK, but what if you want two separate scripts, to be run on distinct occasions? Then try
Listing 3. In this case we save both the ranges and the model to file in the first script, then
reload them in the second.

Listing 3: Scenario 2: using two separate scripts

script 1
open train.gdt
list L = dataset
bundle b = defbundle("ranges_outfile", "my.ranges", "model_outfile", "my.model")
svm(L, b)

script 2
open test.gdt
list L = dataset
bundle b = defbundle("ranges_infile", "my.ranges", "model_infile", "my.model")
svm(L, b)

3 Options

Table 1 shows the options that can be set via the parameter bundle passed to svm—other than
those pertaining to cross-validation, for which see section 4.

As mentioned above, gretl selects a default SVM type based on the character of the dependent
variable. However, this can be overridden by including an appropriate integer code under the
key svm_type—see panel (a) of the table—as in

3See section 3 for explanation of usage of this argument as well as other options illustrated in these examples.

5

(a) Values for svm_type (default automatic):

code string SVM comment

0 C-SVC C-SVC multi-class classification

1 nu-SVC ν-SVC multi-class classification

2 one-class one-class SVM

3 eps-SVR ϵ-SVR regression

4 nu-SVR ν-SVR regression

(b) Values for kernel_type (default 2, RBF):

code string kernel comment

0 linear linear u′v
1 polynomial polynomial (γ u′v + c0)d

2 RBF Radial Basis Function exp(−γ ∥u− v∥2)
3 sigmoid sigmoid tanh(γ u′v + c0)
4 TBA TBA

(c) Additional libsvm parameters:

key parameter controlled

degree degree of polynomial (d) in kernel function (default 3)

gamma γ in kernel function (default 1/# of covariates)

coef0 c0 in kernel function (default 0)

C the cost parameter C of C-SVC, ϵ-SVR, and ν-SVR (default 1)

nu the parameter ν of ν-SVC, one-class SVM, and ν-SVR (default 0.5)

toler tolerance of termination criterion (default 0.001)

epsilon the ϵ in loss function of ϵ-SVR (default 0.1)

cachesize cache memory size in MB (default 1024)

shrinking use shrinking heuristics, 0 or 1 (default 1)

probability produce probability estimates, 0 or 1 (default 0)

(d) Additional gretl-specific parameters:

key comment

n_train integer: the number of training observations

scaling 0 = none, 1 = [−1,1], 2 = [0,1]

loadmod 0/1: load model from bundle-pointer

predict 0, 1 or 2: do prediction if relevant (see text)

quiet 0/1: suppress printed output from svm

model_outfile filename for writing model

model_infile filename for reading model

ranges_outfile filename for writing data ranges

ranges_infile filename for reading data ranges

data_outfile filename for writing data values

range_format string: libsvm or gretl

Table 1: Parameters and options that may be set using the second (bundle) argument to the svm function

6

bundle parms = defbundle()
parms.svm_type = 4 # select nu-SVR

We also mentioned that gretl defaults to the RBF kernel; this can be overridden by use of the
kernel_type key:

parms.kernel_type = 3 # sigmoid, unlikely to be superior!

3.1 Libsvm options

Panel (c) of the options Table shows additional options for controlling the behavior of libsvm.
We discuss the epsilon option in section 4.5 and the probability option in section 6. For
further details please see the libsvm documentation, Hsu et al. (2016).

All but one of the default values shown are as per libsvm itself, the exception being cachesize,
the size of the memory cache for use in training, in megabytes. Training can take quite a while
on a big dataset, and a large cache is likely to speed things up. The libsvm default value is
100 MB, but many computers today can support a gigabyte of cache so we raised this to 1024.
If your machine’s memory is limited you may need to reduce this, for example

parms.cachesize = 200

3.2 Other options

That leaves the gretl-specific settings in panel (d) of the options Table, some of which may
require more explanation.

n_train: has already been discussed: it simply tells gretl how many training observations
can be found at the start of the dataset. But in this context “the start” means the first usable
observation. If your dataset is complete (no missing observations) then specifying n_train
= 5000 will result in the use of observations 1 to 5000 for training. But if there are, say, 10
missing observations at the beginning of the data, the training range will then be 11 to 5010.

scaling: is the data-scaling option: 0 means that no scaling should be done (not advisable
unless the input data are already suitably scaled); 1 means to scale to a range from −1 to +1
(the default); and 2 means to use a range of 0 to 1. At present we do not support user-specified
lower and upper limits, and neither do we support scaling of the dependent variable (the above
applying only to the independent variables).

loadmod: this binary variable governs the interpretation of the optional third (pointer-to-
bundle) argument to svm. By default it is assumed that this should be used to save an SVM
model in the form of a bundle (an auxiliary “return” value, if you will). Note that this over-
writes any prior content the bundle may have had. By giving loadmod a non-zero value you are
telling gretl to expect a model bundle on input instead (and not to overwrite it).

predict: this governs how much prediction svm does. The default is 2, meaning that if a
model is built then prediction should be done on both the training data used to build the
model (to get a measure of fit) and also on any testing data present. By setting predict = 1
you are requesting that prediction be done for (at most) only the training. By setting it to 0
you are telling gretl not to make any calls to the libsvm prediction function (or none beyond
those required by cross validation—see section 4).

The several outfile and infile keys can be used to supply filenames for writing or reading,
respectively, certain sorts of data. Only if such names are given does svm write or read any
files; by default everything goes on in memory.

model_infile can be used to get gretl to read a previously trained libsvm model file (which
implies that svm will skip the training step), and model_outfile can be used to produce a
file readable by the svm-predict executable. The ranges keys work in a similar manner, for

7

files containing libsvm data-range information. However, gretl’s own range files contain more
information than standard libsvm ones and cannot be read by the svm- executables, so if you
wish to output a ranges file readable by them you must in addition specify

parms.range_format = "libsvm"

(substituting the name of your parameter bundle). There is at present no facility for the
converse—that is, getting gretl’s svm() to read a ranges file written by svm-scale. Attempting
to do so will generate an error, regardless of the setting of range_format.

Finally, data_outfile can be used to write data in the format required by svm-train and
svm-predict. Note that there is no data_infile key: svm only accepts data passed from a
gretl dataset via its first (list) argument.

4 Cross validation

Libsvm provides a cross-validation function that works as follows. Given a number, v ≥ 2,
of “folds,” the data are divided randomly into v equally sized subsets,4 then for each subset
i a sub-model is trained on the complementary subset of the data (the other v − 1 folds)
and predictions are generated for subset i. Once this process is complete we have “pseudo
out of sample” predictions for all the data supplied (which should be either the full training
dataset or perhaps a subset thereof), and suitable figures of merit can be calculated for these
predictions.

Here’s the context in which this can be particularly useful: when libsvm trains a model it
automatically adjusts a (possibly large) number of coefficients, but it takes certain kernel pa-
rameters as given. For the recommended RBF kernel this includes C and γ; for the SVM type
ϵ-SVR it also includes ϵ; and for ν-SVC, ν-SVR and one-class classification it includes ν . It may
be that prediction can be improved by tuning these parameters. However, simply tuning on
the full training dataset is likely to result in over-fitting, to the detriment of prediction on the
testing data. So the recommended procedure is:

1. Run a line or grid search over ranges of values for one or more of the above-mentioned
parameters, on each iteration calculating a suitable figure of merit via cross validation.

2. Thereby identify the parameter value(s) that produce the best cross-validation results (the
maximum percentage of correct predictions for classification and, by default, minimum
MSE for regression—but see section 4.2 below).

3. Use the optimized parameters to train a model on the full training dataset, and then use
this model to generate predictions for the testing set.

It is still possible that this will result in over-fitting to the training data, but that risk should at
least be lessened.5

The cross-validation options supported by gretl’s svm are shown in Table 2.

We have more to say about specification of the folds in section 4.3 below.

Note that only one of search and grid should be given. And if either of these is given, the
folds option need not be supplied: in its absence the number of folds defaults to 5.

By default grid ranges are specified in terms of the base-2 logs of the parameters.6 The svm
default grid is based on that used by the grid.py tool supplied with the libsvm distribution:

4That is by default, but see also section 4.3 below.
5For further discussion see section 3 of Hsu et al. (2016).
6But see section 4.1 below.

8

key type and effect

folds integer ≥ 2: number of folds (default 5)

or foldvar 0/1: flags inclusion of a folds variable (see text)

search 0/1: parameter search using default grid

or grid matrix: user-specified grid

search_only 0/1: see text

contiguous 0/1: see section 4.3

seed integer: see section 4.4

refold 0/1: see section 4.4

regcrit integer: see section 4.2

Table 2: Cross-validation options in svm parameter bundle

start stop step

C −5 9 2

γ 3 −15 −2

This means that C will range from 2−5 to 29, quadrupling at each step, while γ will range from
23 down to 2−15, shrinking by a factor of 4 at each step. Note that implicitly ϵ or ν (where
applicable) are clamped at their initial values (whether their defaults or user-specified).

A user-defined matrix under the grid key should conform to this general pattern, but with
some flexibility: it should have from 1 to 3 rows and either 3 or 4 columns.7 The first row is
assumed to pertain to C ; the second row, if present, to γ; and the third, if present, to ϵ or ν . If
you just want a line-search for C a one-row matrix will suffice. If you want to search for C and
ϵ, with γ clamped, you need a three-row matrix: a row of zeros (in this example, the second or
γ row) indicates a clamped value.

The search_only option has the effect of stopping svm from doing any training or prediction
following parameter tuning.

To be clear, the number of observations used in tuning—call this T0 —is either the size of
the current sample range, as set by the smpl command prior to calling svm, or n_train if
that is specified in the parameter bundle. Once tuning is completed, by default svm trains a
model on all T0 observations using the optimized parameters, then performs prediction for
any additional data (i.e., from T0 + 1 to the end of the sample range).

You should define search_only if you just want to find and save the “best” parameter values.
As an aid, setting this flag has an additional effect: if a pointer-to-bundle is supplied as the
third argument to svm, a matrix named xvalid_results is written into it. (Any other content
of the bundle is not touched.) This matrix has either three or four columns and as many rows
as there are parameter combinations. Columns 1 and 2 hold, respectively, the values of C and
γ. If the model uses the parameter ϵ or ν this occupies the third column; the last column
holds the associated value of the search criterion. If search_only is the only cross-validation
option given, this implies use of the default grid and 5 folds.

Note that grid search with cross validation can be very expensive on a big dataset. The default
grid has 8 × 10 pairs of (C, γ) values; with 5 folds this means 400 training runs. Whatever
timing you find for a single training run, you can expect a default grid search to take longer by
two orders of magnitude. Moreover, training involves more computation the greater the value
of the cost factor, C , so if your search space includes large values of C the time taken by cross
validation may be three orders of magnitude more than just training on a set of parameters in

7The use of a 4th column is explained in section 4.1.

9

the neighborhood of the default values.

Listing 4 illustrates usage of cross validation in svm.

Listing 4: Grid search with cross validation

script 1: just get optimized parameters using 1000
training observations with custom grid
open data.gdt
list L = dataset
matrix gmat = {-3,7,1; 1,-13,-2}
smpl 1 1000
bundle b = defbundle("grid", gmat, "search_only", 1)
bundle bestparms = defbundle()
svm(L, b, &bestparms)
print bestparms

script 2: integrated search, training, prediction, with
default grid and 5 folds
open data.gdt
list L = dataset
bundle b = defbundle("n_train", 2000, "search", 1)
series yhat = svm(L, b)

4.1 Local search, linear search

After doing a coarse-grained parameter search you may wish to do an additional search in
the neighborhood of some values that look promising. The log2 apparatus may not seem very
convenient for that purpose, but a little thought reveals how it may be used. Listing 5 presents
a function that takes as input a specific parameter value, p0, a specification of the lower limit
of the search range expressed as a fraction (frac) of p0, and a number of steps. The return
value is a suitable row for the grid matrix.

The sample usage shown in Listing 5 produces

r = {-0.32193, 0.32193, 0.16096}

which translates into the following values for the parameter itself: (0.8, 0.8944, 1, 1.1180,
1.25). This vector includes the p0 value of 1.0, around which it is “exponentially symmetrical.”

Alternatively, you may specify that one or more rows of the grid matrix are to be taken as
linear rather than log2-based. In that case you must append a fourth column to the grid, with
1 on linear rows and 0 on log2-based rows. Here’s an example:

params.svm_type = 4 # nu-SVR
params.grid = {0, 3, 1, 0; 0, 0, 0, 0; 0.5, 0.7, 0.05, 1}

This specifies an exponential search for C (from 1 to 8, doubling at each step), a clamped value
for γ and a linear search for ν (0.5, 0.55,. . . ,0.7).

4.2 Cross validation criteria

As mentioned above, cross validation results in the selection of a set of parameter values that
are deemed “best” on some criterion. In the case of classification the optimality criterion is

10

Listing 5: Determining a local search specification

helper function
function matrix make_grid_row (scalar p0, scalar frac, int nsteps)
if p0 <= 0 || frac <= 0 || frac >= 1
funcerr "Invalid input"

endif
if nsteps % 2 == 0
nsteps++

endif
k = nsteps - 1
start = log2(frac * p0)
step = (log2(p0) - start)/(k/2)
stop = start + k * step
return {start, stop, step}

end function

sample usage of the above
matrix r = make_grid_row(1, 0.8, 5)

always the proportion of correctly classified cases but in SVM regression a choice is offered,
via the optional regcrit parameter. This must be an integer from 1 to 4, with 1 being the
default, as follows:

1 Minimum MSE (Mean Squared Error)

2 Minimum MAD (Mean Absolute Deviation)

3 Minimum rounded MAD

4 Minimum rounded misses

By “rounded MAD” we mean the MAD calculated using the absolute difference between the
actual value of the dependent variable and the model’s prediction rounded to the nearest
integer. And by “rounded misses” we mean cases where the rounded prediction does not
equal the actual dependent variable. Options 3 and 4 are applicable only when the dependent
variable is integer-valued; an error is flagged if this condition is not met.

4.3 User-specified folds

In some contexts there may be reason to divide the data into subsets for cross validation
on some chosen criterion rather than via random selection. The svm function supports two
(mutually incompatible) options to this effect.

• If the parameter bundle contains the key foldvar with a non-zero value, svm will take
the last series in the incoming list as a “folding index” rather than a regressor. Such a
series must contain only integer values from 1 to the desired number of folds, which
form a consecutive sequence when sorted. Each observation is then assigned to fold i if
its value for the folding index is i.

• If the parameter bundle contains the key consecutive with a non-zero value this indi-
cates that the folds should simply be blocks of consecutive observations, of equal size
except that any remainder is assigned to the last fold. The number of folds defaults
to 5 but can be adjusted via the folds key. This option may be useful if the order of
observations in the dataset is already randomized.

11

4.4 More on random cross-validation folds

Unmodified libsvm calls the C-library function rand to produce its permutations—and it
doesn’t set a seed, so rand uses its default seed of 1 on each initialization. This means that
each time a given libsvm program is executed (on a given platform) it will generate exactly the
same set of “random” folds. However, it also means that if a given program calls the libsvm
cross-validation function several times, as happens in the course of parameter search, it will
get a different set of folds each time since automatic initialization of rand occurs only once
per program invocation.

This behavior seems debatable on both counts. First, if the folds are advertised as random,
one might expect to get non-identical results when running a given cross-validation program
multiple times (unless one takes steps to ensure they are the same). Second, in the con-
text of parameter search one might wish to suppress variation in outcome stemming from
data-subsetting in order to focus on variation stemming from the differing parameter vectors.
Moreover, the rand function is not guaranteed to produce the same sequence of values for a
given seed on different operating systems.

Gretl’s svm function addresses these points as follows. First, we use the SFMT implementation
of the Mersenne Twister from the gretl library in place of rand; this ensures consistency across
platforms. By default we obtain a seed based on the time at which svm execution starts, and we
(re-)initialize SFMT with this seed immediately prior to each call to the libsvm cross-validation
function. This means that each invocation of a gretl svm cross-validation program is likely
to produce slightly different results, while in the context of a given search each parameter
combination will employ the same set of folds. This default behavior can be modified in two
ways.

• To obtain strictly reproducible results you can override the execution-time based SFMT
seed with an integer seed value specified in the parameter bundle passed to svm.

• To emulate libsvm’s behavior, whereby each call to randomized cross validation gener-
ates a new set of folds, specify a non-zero value under the key refold in the parameter
bundle.

When random folding with the default time-based seed is employed, it may be useful to know
what seed was actually used: you can retrieve this value from the parameter bundle under the
key autoseed. (This item is added to the bundle only if random folding is performed and no
seed value is specified on input.)

One further note: when pseudo-random numbers are required in the context of svm they are
drawn from an independent instance of SFMT, distinct from the one governed by the set seed
command and employed by functions such as normal() and randgen().

4.5 More on SV regression

We noted above that libsvm supports two types of SV regression: ϵ-SVR and ν-SVR. These are
alternative parameterizations of the regression problem. To understand this point one must
know what ϵ and ν represent.

• ϵ ≥ 0 sets a margin within which prediction errors are ignored (costed at zero). To
enforce a tight fit—at the risk of over-fitting—therefore, one would specify a small value
of ϵ.

• 0 < ν ≤ 1 controls the number of support vectors used by the SVM, expressed as a
fraction of the maximum (which equals the number of observations in the training data).
Use of more support vectors will generally give a better fit—again at the risk of over-
fitting.

12

These values cannot be set independently of each other. In ϵ-SVR ϵ is parametric and ν is
adjusted endogenously; the converse holds for ν-SVR.

The literature on this topic suggests that if you want a quick fit at moderate computational
cost you might choose ν-SVR with a relatively low value of ν . On the other hand, if you want
to obtain the best possible prediction and are not too concerned about computational cost it
would be common to use ϵ-SVR.

One point to note here is that ϵ is not scale-free: the implied “tightness” of setting, say, ϵ = 0.05
will depend on the scale of the regressand. Experimentation may be useful.

4.6 Use of MPI in cross validation

As mentioned above, cross validation can be very expensive computationally if you have a big
training dataset. Fortunately, it’s also “embarrassingly parallel” (as the computer scientists
say); that is, trivial to parallelize. The (potentially quite large) set of parameter combinations
can be parceled out to separate processes, since each set of training runs (across the folds, for
a given combination of parameters) is independent of the others. This is an obvious use-case
for MPI.

MPI is “Message Passing Interface,” a standard for running several distinct processes that exe-
cute the same program using different data. Support for MPI in gretl is documented in Cottrell
and Lucchetti (2017). Usually we leave it up to users of gretl to exploit MPI via scripting (which
demands a certain proficiency in coding), but in the case of cross validation under svm we have
implemented MPI support internally. All the user has to do is execute a call to svm that calls for
cross validation, either via the command-line program gretlmpi or within an mpi block in a
script that’s run in the gretl GUI. For details of these options, please see Cottrell and Lucchetti
(2017).

To make a serious dent in the time taken by a big cross validation problem using MPI one would
want to exploit a high-performance cluster if possible. However, to illustrate the potential
of MPI, even just on a single machine, we constructed a task that is big enough to produce
meaningful differences in execution times but not so big as to waste a lot of time. We used one
of the libsvm sample regression datasets,8 cadata, a native gretl version of which is available
as

http://gretl.sourceforge.net/svm/cadata.gdtb

Like the Mullainathan–Spiess dataset this concerns housing values, but it is smaller both in
number of observations (20640) and number of covariates (8). Listing 6 shows a script which
performs cross-validation using 3000 observations, with a grid for C and γ which gives 32
parameter combinations. The times taken to produce the results matrix under different con-
figurations on a Dell desktop with 4 Intel Haswell cores and up to 8 hyperthreads are shown
in Table 3. In this example it turns out that multi-threading via OpenMP is not greatly advan-
tageous, but MPI works quite nicely—for up to six MPI processes.

For reference, the command line for the fastest run represented in Table 3 (MPI 6, OMP 1) was

OMP_NUM_THREADS=1 mpirun -N 6 gretlmpi ca_xvalid.inp

The optimized result (the same on all runs) was a cross-validation MSE of 0.0581 at C = 2 and
γ = 2.

4.7 Mullainathan and Spiess revisited

Having discussed cross validation we return to the replication of Mullainathan and Spiess
(2017a) discussed in section 2.1. How much can we improve on the results of ϵ-SVR “out of
the box” by means of parameter search?

8See https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

13

http://gretl.sourceforge.net/svm/cadata.gdtb
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Listing 6: Parameter search, script ca_xvalid.inp

http://gretl.sourceforge.net/svm/ca_xvalid.inp

set verbose off
open cadata.gdtb -q
list X = dataset - median_value
series lny = log(median_value)
list L = lny X
bundle b = defbundle("n_train", 3000, "shrinking", 0, "search_only", 1)
b.grid = {-1, 5, 2; 3, -12, -2}
b.seed = 1611771
bundle res = defbundle()
svm(L, b, &res)
if $mpirank < 1 # just print once
matrix R = res.xvalid_results
print R

endif

configuration wall time %CPU

single-threaded 1:17 99

OMP 4 1:00 274

OMP 8 1:04 515

MPI 4, OMP 2 0:27 535

MPI 4, OMP 1 0:27 357

MPI 6, OMP 1 0:23 478

Table 3: Execution times (m:s) for ca_xvalid.inp (OMP = number of OpenMP threads, MPI = number
of MPI processes)

14

http://gretl.sourceforge.net/svm/ca_xvalid.inp

We began with some “sighting shots”—small, coarse-grained cross-validation runs, performed
on a standard desktop machine and using the libsvm default of 5 random folds—which gave
us the idea that C values between 2.5 and 3.0 could be helpful (as against the default of 1.0).
It was also apparent that moderate variations in γ and ϵ were worth exploring.

On that basis we set up a finer (linear) grid with 80 parameter combinations and used gretlmpi
on an HPC node with 32 Xeon cores, running 16 MPI processes with two threads each. In addi-
tion, rather than random folds we used the folds8 variable in the M–S dataset, which specifies
8 random subsets of the training sample based on clusters in the data.9 Cross-validation took
almost an hour and yielded minimum MSE at 0.606208 for C = 2.8, γ = 0.00365, ϵ = 0.09. The
selected C was in the range we expected and ϵ was somewhat smaller than its default of 0.1;
the selected γ was equal to the default (the reciprocal of the number of covariates).

We then trained a model on all 10,000 training observations using the selected parameters and
produced predictions for all the data, giving

SVM: training R^2 = 0.532, MSE = 0.522
SVM: holdout R^2 = 0.454, MSE = 0.633

as opposed to the results shown earlier

SVM: training R^2 = 0.494, MSE = 0.565
SVM: holdout R^2 = 0.448, MSE = 0.639

The new “holdout” performance is practically indistinguishable from that obtained by M–S
using the “Random forest” method; it still falls a little short of the “Ensemble” method but
we’re talking about the third digit of R2. Perhaps we could do a little better with a fuller
exploration of the parameter space but these results seem quite satisfactory.

4.8 Parameter tuning plot

It may be helpful to get a visual fix on what’s going on in the tuning of the RBF kernel param-
eters via cross validation. There’s an experimental (and so far, little tested) option for this:
you can include in the parameter bundle under the plot key either “display” or an output
filename, as in

parms.plot = "display"
or
parms.plot = "tuning.pdf"

This has an effect only if a two-dimensional (C,γ) parameter search is performed. If svm
catches on we have in mind to generalize this and make it more convenient.

5 Classification via SVM

The focus of this document has been on regression, but gretl’s svm function also supports
classification. As mentioned above, the svm function automatically switches to classification
mode—by default using C-SVC—if the dependent variable is marked as “coded” using the
setinfo command. However, the svm_type switch in the parameter bundle passed to svm
can be used to force the issue in favor of classfication via C-SVC (svm_type = 0) or via ν-SVC
(svm_type = 1).

9See Mullainathan and Spiess (2017b) for details.

15

5.1 Classification example

Listing 7 shows an example of classification based on the script keane.inp, which is supplied
with the gretl distribution. The data file is keane.gdt (also supplied), a subset of the data used
in Keane and Wolpin (1997). The original script exemplifies multinomial logit regression. The
dependent variable, status, encodes the jointly exhaustive states “in school” (1), “at home”
(2) and “in work” (3); the explanatory variables are years of education (educ), years of work
experience (exper) and its square (expersq), and a black dummy variable.

Listing 7 plays C-SVC against standard Maximum Likelihood estimation. With only 4 covariates
and 3 classes svm runs quite quickly so the script is integrated: parameter search using the
default grid is followed by training and prediction. The dataset comprises several years of
data; we estimate the respective models on the data from 1982 and test using the 1984 data.
The results (obtained in about half a minute on the desktop machine described earlier) are:

MLE: training percent correct = 61.16 (n=1864)
MLE: testing percent correct = 69.76 (n=1802)
SVM: training percent correct = 61.70 (n=1864)
SVM: testing percent correct = 70.20 (n=1802)

So we see a slim predictive advantage for C-SVC over multinomial logit estimation. Given the
paucity of the explanatory data it is perhaps surprising that the SVM even equals the MLE
results.

6 Probability estimation

By default the output of svm is just a series of point-predictions of the dependent variable
conditional on the covariates or “features”. It is possible, however, to obtain a measure of
the uncertainty attaching to these predictions. The character of the probability information
delivered by libsvm differs between SV regression and SV classification, but the mechanism for
obtaining it via gretl is basically the same: you set probability to 1 in the parameter bundle,
and supply a pointer-to-bundle as the fourth argument to the svm function, as in

...
params.probability = 1
bundle bprob = defbundle()
series yhat = svm(L, params, null, &bprob)

(where the null argument indicates that we’re skipping the optional third parameter). On
successful completion bprob will contain probability information.

6.1 Regression error distribution

In the case of SV regression, the extra information takes the form of a scalar value under the
key svr_sigma: this is an estimate of the scale parameter, σ , for the Laplace density of the
prediction errors, ŷi −yi, based on the training data, namely

1
2σ

exp
(
−|ŷi −yi|

σ

)
Using this information one can, for example, calculate confidence intervals for the SVR predic-
tions. The following code snippet shows how one could obtain a 90 percent interval, using the
invcdf (inverse CDF) function with first argument L for the Laplace distribution:

sigma = brob.svr_sigma
maxerr90 = invcdf(L, 0, sigma, 0.95)
series lo = yhat - maxerr90
series hi = yhat + maxerr90
print yhat lo hi --byobs

16

Listing 7: Parameter search and estimation: C-SVC vs multinomial logit

http://gretl.sourceforge.net/svm/multinomial.inp

set verbose off

helper function
function scalar mnlogit_pc_correct (const series y,

const matrix X,
matrix b)

matrix yvals = values(y)
scalar n = rows(X)
b = mshape(b, cols(X), nelem(yvals) - 1)
matrix P = ones(n, 1) ~ exp(X * b)
return (100/n) * sumc({y} .= yvals[imaxr(P)])

end function

open and organize data
open keane.gdt -q
dataset sortby year
setinfo status --coded
ytrain = 82 # train on data from 1982
ytest = 84 # test using data from 1984
list All = status educ exper expersq black

(1) MLE: multinomial logit
restrict to complete observations in training year
smpl year == ytrain && ok(All) --restrict
logit status 0 educ exper expersq black --multinomial --quiet
pcc = 100 * sum(status == $yhat) / $T
printf "MLE: training percent correct = %.2f (n=%d)\n", pcc, $nobs
restrict to complete observations in testing year
smpl year == ytest && ok(All) --restrict --replace
matrix X = {const, educ, exper, expersq, black}
pcc = mnlogit_pc_correct(status, X, $coeff)
printf "MLE: testing percent correct = %.2f (n=%d)\n", pcc, $nobs

(2) SVM: C-SVC
sample: all complete observations in the two selected years
smpl (year==ytrain || year==ytest) && ok(All) --restrict --replace
scalar ntrain = sum(year == ytrain)
start with cross validation search using default grid
bundle parms = defbundle("n_train", ntrain, "search", 1)
parms.seed = 3211765 # for reproducibility
parms.quiet = 1
yhat_svm = svm(All, parms)
assess fit in training year
smpl year == ytrain && ok(All) --restrict --replace
pcc = 100 * sum(status == yhat_svm) / $nobs
printf "SVM: training percent correct = %.2f (n=%d)\n", pcc, $nobs
assess fit in testing year
smpl year == ytest && ok(All) --restrict --replace
pcc = 100 * sum(status == yhat_svm) / $nobs
printf "SVM: testing percent correct = %.2f (n=%d)\n", pcc, $nobs

17

http://gretl.sourceforge.net/svm/multinomial.inp

6.2 Discrete outcome probabilities

In the classification case, the information supplied via the bundle passed as the fourth argu-
ment to svm takes the form of the matrices Ptrain (if prediction over the training range is
requested) and/or Ptest (if prediction over the testing range is called for). Each of these ma-
trices has as many columns as there are outcomes, and as many rows as there are observations
in the relevant range. The column headings identify the outcome values.

In relation to the example in Listing 7 above, the following modifications could be made to
generate and inspect probability estimates. First, after the line “parms.quiet = 1” (9 lines
from the foot of the script) and replacing the line “yhat_svm = svm(All, parms)”, insert:

parms.probability = 1
bundle bprob = defbundle()
yhat_svm = svm(All, parms, null, &bprob)

Then, to inspect the probabilities for the testing data, one could append to the script:

matrix P = bprob.Ptest
print P

We show below the first few lines of output from this variant of the script.

1 2 3
0.17717 0.60506 0.21777
0.063540 0.23416 0.70230
0.098154 0.64375 0.25810
0.094531 0.36033 0.54514

The columns are ordered by ascending value of numerical coding of the dependent variable.
So, for example, we see that the model estimates a probability of 0.605 for an outcome of 2
(“at home”) for the first observation in the training set, and a probability of 0.702 for outcome
3 (“in work”) for the second observation.

7 Implementation

SVM support is implemented via a gretl “plugin” module. This module is supplied in our
packages for MS Windows and macOS; it should be available in the gretl packages prepared by
Linux distributions for gretl 2019a and higher.

For anyone building gretl from the git sources, all the required files are included. (That is, it is
not necessary to have libsvm installed in its own right.) The main files are these:

plugin/svm.c
plugin/libsvm/svmlib.cpp
plugin/libsvm/svmlib.h

svm.c contains “driver” code and implements the gretl-specific options for our svm function.
The other two files are derived from the libsvm package (version 3.23, dated 2018-07-15).

svmlib.cpp is a slightly modified version of the libsvm C++ source file svm.cpp. It has
been edited to support parallelization via OpenMP when the symbol _OPENMP is defined. The
changes are as described in answer to “How can I use OpenMP to parallelize LIBSVM on a
multicore/shared-memory computer?” in the file FAQ.html in the libsvm distribution. In ad-
dition, the pseudo-random numbers used in cross validation are taken from libgretl’s SFMT
(Mersenne Twister) instead of the C library’s rand.

svmlib.h is just a renamed version of the libsvm header file svm.h.

18

References

Cottrell, A. and R. Lucchetti (2017) ‘Gretl + MPI’. URL http://sourceforge.net/projects/
gretl/files/manual/gretl-mpi.pdf.

Hsu, C.-W., C.-C. Chang and C.-J. Lin (2016) ‘A practical guide to support vector classification’.
Department of Computer Science, National Taiwan University. URL http://www.csie.ntu.
edu.tw/~cjlin/papers/guide/guide.pdf.

Keane, M. P. and K. I. Wolpin (1997) ‘The career decisions of young men’, Journal of Political
Economy 105: 473–522.

Mullainathan, S. and J. Spiess (2017a) ‘Machine learning: An applied econometric approach’,
Journal of Economic Perspectives 31(2): 87–106. URL https://doi.org/10.1257/jep.31.
2.87.

(2017b) ‘Machine learning: An applied econometric approach online appendix’. URL
https://www.aeaweb.org/articles?id=10.1257/jep.31.2.87.

Smola, A. J. and B. Schölkopf (2004) ‘A tutorial on support vector regression’, Statistics and
Computing 14: 199–222. URL https://alex.smola.org/papers/2004/SmoSch04.pdf.

19

http://sourceforge.net/projects/gretl/files/manual/gretl-mpi.pdf
http://sourceforge.net/projects/gretl/files/manual/gretl-mpi.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://doi.org/10.1257/jep.31.2.87
https://doi.org/10.1257/jep.31.2.87
https://www.aeaweb.org/articles?id=10.1257/jep.31.2.87
https://alex.smola.org/papers/2004/SmoSch04.pdf

	1 Introduction
	2 The svm function
	2.1 First scenario
	2.2 Second scenario

	3 Options
	3.1 Libsvm options
	3.2 Other options

	4 Cross validation
	4.1 Local search, linear search
	4.2 Cross validation criteria
	4.3 User-specified folds
	4.4 More on random cross-validation folds
	4.5 More on SV regression
	4.6 Use of MPI in cross validation
	4.7 Mullainathan and Spiess revisited
	4.8 Parameter tuning plot

	5 Classification via SVM
	5.1 Classification example

	6 Probability estimation
	6.1 Regression error distribution
	6.2 Discrete outcome probabilities

	7 Implementation

