
®

https://calcpad.eu

34-36 Peyo Yavorov blvd, Sofia 1164, Bulgaria
+359 2 423 4455

proektsoft.bg@gmail.com

 Calcpad
Version 5.8 Readme!

Table of Contents
About Calcpad.. 3

Fields of application... 5

Installation.. 5

Licensing and terms of use.. 5

How it works.. 6

Theoretical basis.. 6

Writing code.. 7

Numeric Keypad.. 7

Moving inside the text... 8

Selecting text... 8

Deleting text.. 8

Copy... 9

Paste... 9

Undo... 9

Redo... 9

Find... 9

Coding aids... 10

Syntax highlighting... 10

Auto-indentation... 10

Auto-complete... 10

Bracket matching.. 11

Greek letters.. 11

Page 1 / 43

https://calcpad.eu/
mailto:proektsoft.bg@gmail.com

Using Notepad++... 12

Modules (inclusions).. 12

Macros and string variables.. 12

Expressions.. 13

Constants... 14

Real... 14

Complex.. 15

Variables... 15

Operators... 15

Operator shortcuts... 16

Operator precedence and associativity.. 16

Relational and boolean expressions.. 16

Complex arithmetic.. 17

Brackets... 17

Functions.. 18

Library (built-in) functions... 18

Custom (user defined) functions... 20

Plotting.. 21

Numerical methods.. 23

Root finding.. 23

Minimum.. 24

Maximum... 24

Numerical integration... 24

Numerical differentiation... 24

General recommendations.. 25

Iterative procedures... 25

Sum... 25

Product.. 26

Repeat... 26

Units... 27

Reporting... 30

Page 2 / 43

Headings.. 30

Text/comments.. 30

Units in comments.. 30

Formatting with Html and CSS.. 31

Images... 32

Conditional execution... 33

Output control... 34

Iteration blocks.. 34

Input Forms... 35

Results... 37

Substitution... 37

Rounding.. 38

Formatting... 38

Scaling... 39

Saving the output... 39

Printing.. 40

Coping... 41

Export to Word... 41

Export to PDF.. 42

Working with files... 42

New.. 42

Open.. 42

Save.. 43

Save As.. 43

About Calcpad
Calcpad is free software for mathematical and engineering calculations. It represents a flexible

and modern programmable calculator with Html report generator. It is simple and easy to use, but
it also includes many advanced features:

• real and complex numbers;

• units of measurement (SI, Imperial and USCS);

• custom variables;

Page 3 / 43

• built-in library with common math functions;

• custom functions of multiple parameters f(x; y; z; ...);

• powerful numerical methods for root and extremum finding, integration and differentiation;

• finite sum, product and iteration procedures;

• modules, macros and string variables;

• program flow control with conditions and loops;

• "titles" and 'text' comments in quotes;

• support for Html, CSS and JS in comments for rich formatting;

• function plotting, images, tables, parametric SVG drawings, etc.;

• automatic generation of Html forms for data input;

• professional looking Html reports for viewing and printing;

• export to Word documents (*.docx) and PDF;

• variable substitution and smart rounding of numbers;

• output visibility control and content folding;

• support for plain text (*.txt, *.cpd) and binary (*.cpdz) file formats.

This software is developed using the C# programming language and latest computer
technologies. It automatically parses the input, substitutes the variables, calculates the expressions
and displays the output. All results are sent to a professional looking Html report for viewing and
printing. Acknowledgments: The new and beautiful icons are created using icons8.com. The pdf
export was made possible thanks to the wkhtmltopdf.org project.

Page 4 / 43

https://wkhtmltopdf.org/
https://icons8.com/

Fields of application
The software is suitable for engineers and other professionals that need to perform repetitive

calculations and present them in official documentation such as calculation notes. They can
automate this task efficiently by creating powerful and reliable Calcpad worksheets. It can also help
teachers to prepare calculation examples, papers, manuals, books etc. Students can use it to solve
various problems, prepare homeworks, phd theses etc.

Installation
The installation is performed by the automated setup program calcpad-setup-en-x64.exe.

Follow the instruction of the setup wizard. The software requires a 64 bit computer with Windows
10 and Microsoft .NET 6.0.

Licensing and terms of use
This software is free for both commercial and non-commercial use. It is distributed under the

MIT license:

Copyright © 2021 PROEKTSOFT EOOD®

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The source code is available on GitHub:

https://github.com/Proektsoftbg/Calcpad

or in our SourceForge repository:

https://sourceforge.net/p/calyx/code/ci/master/tree/

Any scripts, developed with Calcpad are property of the respective authors. They can be used
without additional limitations except those appointed by the authors themselves.

Page 5 / 43

https://sourceforge.net/p/calyx/code/ci/master/tree/
https://github.com/Proektsoftbg/Calcpad
https://download.visualstudio.microsoft.com/download/pr/fe8415d4-8a35-4af9-80a5-51306a96282d/05f9b2a1b4884238e69468e49b3a5453/windowsdesktop-runtime-6.0.9-win-x64.exe
https://calcpad.eu/download/calcpad-setup-en-x64.zip

How it works
The software is quick and easy to use. Just follow these simple steps:

1. Enter text and formulas into the "Code" box on the left.

2. Click to calculate. Results will appear in the "Output" box on the right as a
professionally formatted Html report.

3. Click to print or to copy the output.

You can also export it to Html , PDF or MS Word document.

The program can be used in two different modes:

• Calculator – the source code is available for editing in the left box. After calculations, the
results are displayed into the right box. This mode is suitable for short ans simple problems
without complex formatting.

• Input Form – the source code is not accessible. Instead, an Html input form is displayed.
It contains input fields for all parameters, required for the calculations. The remaining
content is locked for editing. This mode is more convenient for complex problems with rich
formatting, that are frequently used. It makes clear which are the required input parameters
and protects the source code from accidental damage.

In "Input Form" mode, you need to fill the input data and click the button. You can create
such a from very easy, directly out of the source code. Just put the "?" symbol wherever you need
to enter a value. Then save the problem as "*.cpd" file. You can find additional information about
forms further in this manual.

Theoretical basis
(you can skip this if you find it boring)

How does Calcpad actually work? There is a sophisticated math parser inside, that does most of
the job. First, the source code is scanned and the sequence of bytes is converted into a list of
tokens, using lexical analysis. Each token is represented by data and type (purpose, role).

Then the parser checks if all tokens are in the correct order. We need to know if the expression
is mathematically correct and can be computed. Otherwise, a comprehensible error message
should be generated. For example, "3 + a / 5" is a correct expression and "3 a + / 5" is not. For that
purpose, the standard mathematical notation is represented by a formal language with context-
free grammar and syntax analysis is used.

Arithmetic expressions are usually written in infix notation. It means that each operator is
located between the respective operands (e.g. "5*3 + 2"). The problem is that, unlike humans,
computers are difficult to understand such expressions. The main problems are the operator
precedence and the use of brackets. For example, the above expression makes "17", while "5*(3 +

Page 6 / 43

2)" makes "25". That is why, the expression is converted into different type of notation, called
"postfix" or Reverse Polish Notation (RPN). It is very easy for a computer to read this one. For
example, the expression "5*(3 + 2)" is written in RPN as "5 3 2 + *". The main advantage is that the
order of operations can be clearly specified without the need of brackets.

There is a simple and powerful algorithm for evaluation of expressions, written in reverse polish
notation (RPN). It is used by almost all calculators. However, Calcpad includes additional complex
programming functionality for managing parameters, functions, conditional execution, etc.

This was a brief and simple explanation. If you are more curious about these topic, you can find
additional information in specialized books, papers or websites. Wikipedia is a good place to start
with:

https://en.wikipedia.org/wiki/Parsing

https://en.wikipedia.org/wiki/Lexical_analysis

https://en.wikipedia.org/wiki/Context-free_grammar

https://en.wikipedia.org/wiki/Shunting-yard_algorithm

https://en.wikipedia.org/wiki/Reverse_Polish_notation

Writing code
Enter the code into the "Code" input window. Spacing and indent are maintained automatically.

You can use the computer keyboard or the "Numeric Keypad" below. You can copy text from and
to the input window or any external program (e.g. Word). There is a toolbar above the input
window with some useful editing commands: Copy, Paste, Undo, Redo and Insert Image.

The source code is logically divided into lines, which are numbered automatically. Each
expression should be on a separate line. By exception, it is possible to have several expressions on
the same line, but they must be separated by comments. When you finish the line, press "Enter" to
start a new line. Syntax highlighting is performed automatically. Different code elements are
displayed with different colors depending on their type. For example, comments are colored in
green and errors are colored in red. All comments must be enclosed in quotes. They can include
both plain text and Html. You can use Html to add pictures, tables and format the report.

Numeric Keypad

Page 7 / 43

https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Lexical_analysis
https://en.wikipedia.org/wiki/Parsing

The numeric keypad is useful when you work on a tablet or laptop with touch screen. When you
press a button, the respective symbols are inserted at the place of the cursor. The keypad is
separated into four sections: "Numbers", "Operators", "Functions" and "Other". The "=" key does
not calculate the answer as on simple calculators. This is the assignment operator (e.g. "a = 4"). If
you need to check the equality of two numbers, use the "≡" operator (for example, "a ≡ b" means:
"Is a equal to b?"). The "e", "π" and "g" keys insert the respective built-in constants e ≈ 2.7183, π ≈
3.1416 and g ≈ 9.8066.

If you don't need the keypad and want to free some space, you can hide it with the button.
Click again to show the keypad back.

The "C" button deletes the previous symbol and "AC" deletes a whole line. If you double click
this button, you will clear the whole text. If you have done this accidentally, you can use Undo
to restore.

Moving inside the text
Writing and editing text in Calcpad is not much different than any other Windows program. If

you have some experience in that, you can skip this and go straight to "Expressions".

You can type at arbitrary position inside the text. The place where symbols are inserted is called
"text cursor" (the blinking vertical line "|"). You can change the cursor position by clicking with the
mouse or using the arrows "← → ↑ ↓" from the keyboard. Arrows will move the cursor one symbol
left or right and one line up or down. If you hold the "Ctrl" key and press an arrow, the cursor will
move with a whole word. "Home" and "End" keys will send you to the beginning or the end of the
current line, respectively. If you hold "Ctrl" beforehand, you will go to the beginning or the end of
the entire text.

Selecting text
Most editing commands require you to select some text to which the command will be applied.

The selected text is usually displayed with blue background (it may look different depending on
your system settings). You can select text with the mouse as follows: Press the left mouse button at
the start position of the text to be selected. Hold the button and move the mouse to the end
position. Then release the button. Alternatively, you can click at the start, press Shift and then click
at the end. You can also use the computer keyboard. Hold Shift and press arrows or "Home",
"End", "PageUp", "PageDown".

Deleting text
You can delete a single symbol by pressing the "Delete" ("Del") or "Backspace" ("Bkspc") keys.

The difference is that "Delete" removes the symbol after the cursor, and "Backspace" - before the
cursor. If you hold "Ctrl" beforehand, you can delete a whole words instead of separate symbols. If
you need to delete a larger part of the text, you can select it and press either "Delete" or
"Backspace" after that.

Page 8 / 43

Copy
If some part of the text is repeated, you can copy it instead of typing it again. That requires two

steps: "Copy" and "Paste". At the first step (Copy), the selected text is sent to memory called
Clipboard. At the second step (Paste), the text is inserted at the new places. Once copied, you can
paste the text at multiple places.

You can copy the selected text to the Clipboard by pressing "Ctrl+C" or by clicking the

button.

Paste
Before you paste a text from the Clipboard you have to position the cursor at the required place.

Then press "Ctrl+V" or the button. You can copy text from Calcpad and paste it to other

programs and vice-versa. For example, you can take some formulas from Word, calculate them in
Calcpad and return the results back to Word.

Undo
This command undoes the result from the last editing command and restores the previous state.

You can undo up to 10 steps back. Just press "Ctrl+Z" or click the button.

Redo
"Redo" performs in the opposite way to "Undo". It restores a command that has been undone.

Redo must follow immediately the last Undo. If you enter or edit some text meanwhile, you will
lose the ability to redo. Click the button to redo.

Find
You can search for a certain text inside the code and replace it with another, if needed. Select

the "Edit/Find" menu, click the button or press "Ctrl+F". The "Find And Replace" dialog will

appear.

Page 9 / 43

Enter a word or phrase to search for and click "Find Next". The programs starts from the current
position and finds the first occurrence in the selected direction. If the searched phrase is found, it is
highlighted and the search is stopped. To find the next occurrence, click "Find Next" again. You
can also press "F3" to continue searching even after you close the dialog.

If you need to replace the searched text, click the "Replace" tab and fill in the "Replace with"
box. Then click the "Replace" button. The program will replace the current occurrence and will
automatically move to the next one. If you want to replace all occurrence in the code, click the
respective button instead.

There are several options that affect the search results, as follows:

• Direction: "Up", "Down" and "All". Both "All" and "Down" search towards the end of the
document. The difference is that "All" jumps to the beginning and starts over, after it
reaches the end of the document.

• Selection: It works only with the "Replace All" command. You need to make the selection
first and then to display the "Find And Replace" dialog. Then, if you check the "Selection"
options, all the replacements will be made only inside the selected text.

• Match case: If selected, the search will make difference between capital and small letters.
By default, the case is neglected.

• Whole words: If selected, the program will search only for sequences that represent whole
words.

Coding aids
Syntax highlighting
Syntax highlighting applies different colors to different components of the programming

language: functions, variables, operators, etc. It runs automatically in the background, each time
you edit and leave the current line. All errors are highlighted in red. The program makes difference
between defined and undefined variables and functions. The color palette is predefined and cannot
be changed. Currently, Calcpad does not support custom styles and themes.

Auto-indentation
The indentation of the separate lines in the code is maintained automatically by the program. All

lines that are inside conditional and loop blocks are indented accordingly. Additionally, you can
add spaces at the beginning of each line. Although spacing is also handled automatically, the
leading spaces are not affected.

Auto-complete
When you start typing, the program displays a drop-down list with suggestions that match what

you have just typed. It contains keywords, units of measurement, built in function and all custom
variables and functions that are defined above the current line. The list is dynamically filtered ans

Page 10 / 43

sorted while you are typing. The current suggestion in the list is highlighted. If that is what you
need, just press "Tab" to insert it at the current position. Click on the list to insert some of the other
suggestions. Alternatively, you can press "Down Arrow" to browse the available suggestions and
"Enter" to insert the selected one. If the list is above the current line, press "Up Arrow" instead.

Bracket matching
The program can find the matching opening and closing brackets. If you position the cursor

next or before one of them, both brackets are highlighted. If theere is no corresponding bracket,
nothing is highlighted.

Greek letters
You can insert Greek letters by clicking the respective symbol bellow the code editor.

Alternatively, type the Latin equivalent from the table below and press "Ctrl+G". If you press it
again, you will convert the letter back from Greek to Latin. Since "j"/"J" and "V" remain unused, they
are mapped to "ø"/"Ø" and " ", respectively.∡

Name greek latin Greek Latin

alpha α a Α A

beta β b Β B

gamma γ g Γ G

delta δ d Δ D

epsilon ε e Ε E

zeta ζ z Ζ Z

eta η h Η H

theta θ q Θ Q

theta-alt ϑ v ∡ V

iota ι i Ι I

kappa κ k Κ K

lambda λ l Λ L

mu μ m Μ M

nu ν n Ν N

xi ξ x Ξ X

omicron ο o Ο O

pi π p Π P

rho ρ r Ρ R

sigma σ s Σ S

tau τ t Τ T

Page 11 / 43

upsilon υ u Υ U

phi φ f Φ F

chi χ c Χ C

psi ψ y Ψ Y

omega ω w Ω W

phi-diam ø j Ø J

Using Notepad++
Notepad++ is a popular text/code editor. It is free and open source and can be downloaded

from the official website https://notepad-plus-plus.org. It supports many programming or scripting
languages. Its text editing capabilities are much more powerful than Calcpad. It is also very useful
for writing Html code. Calcpad syntax can be also used with Notepad++. It is predefined as an
XML file that can be inserted in Notepad++. You can do this by selecting the "Language" menu,
then click "Define your language" and then, "Import...". Find the Calcpad folder inside your
Program Files directory or wherever Calcpad is installed and select the file named Notepad++.xml.

Modules (inclusions)
Calcpad allows you to include contents from external files in your worksheet. If you have pieces

of code that is repeated in different worksheets, you can organize it in modules and reuse it
multiple times. Also, if you have a longer worksheet, you can split it into modules that will be easier
to maintain. Then, you can include them into the main file by using the following statement:

#include filename

The "filename" must contain the full path to a local file. If the file is the same folder as the
current one, you can specify only the filename.

By default, Calcpad will include the whole contents of the external module. However, you can
prevent including some parts, by making them local. To start a "local" section in a module, add a
new line, containing the #local keyword. To end a "local" section (or start a "global" one), add a
new line with the #global keyword. Calcpad supports multiple levels of inclusions. That means that
the included file can reference other files and so on.

Macros and string variables
Macros and string variables are convinient ways to organize your code inside a single file and

prevent repetitions. They can be inline or multiline. Unlike string variables, macros can have
parameters. You can define them, by using the following statements:

Inline string variable:

#def variable_name$ = content

Page 12 / 43

https://www.proektsoft.bg/calcpad/Notepad++.zip
https://notepad-plus-plus.org/

Multiline string variable:

#def variable_name$
content line 1
content line 2
...

#end def

Inline string macro:

#def macro_name$(param1$; param2$;…) = content

Multiline string macro:

#def macro_name$(param1$; param2$;...)
content line 1
content line 2
...

#end def

Names of macros, string variables and macro parameters can contain small and capital latin
letters, underscore "_" and must finish with "$". The contents can be virtually any string. It is not
necessary to be a valid Calcpad expression and it is not processed by the parser. However, other
macro/string variable definitions are not allowed inside, but you can use any of them that are
previously defined outside. Also, input fields "?" are not supported in macros yet. You can use
#include inside macros, but only if the included file does not contain other macros.

After a string variable is defined, you can use it anywhere in the code, by writing its name (with
the ending "$"). The same is for macros, but you also need to specify values for parameters. Macros
and string variables are preprocessed and rewritten before the actual parsing is performed. As a
result, intermediate (unwrapped) code is generated. You can review this code by checking the
"Unwrapped code" checkbox bellow the "Output" window.

If any errors occur during macro preprocessing, the unwrapped code is displayed, together with
the errors. Line numbers in error descriptions refer to your initial code. If preprocessing is
completed successfully, the unwrapped code is parsed and calculated as normal. If errors are
detected at this stage, they are displayed in the output. Line numbers in error descriptions refer to
the unwrapped code. You can go to the respective line, by clicking on the link.

Expressions
The main purpose of Calcpad is to perform calculations. That is why, everything inside the input

window is assumed to be mathematical expressions, unless it is enclosed in quotes. Then it is
treated as comments. By default, each expression has to be in a separate line, e.g.:

2 + 3

5*(3+1)

15/2

Page 13 / 43

You must not add "=" at the end of each expression. This is the assignment operator. It is used
to assign values to variables, e.g. "a = 2". Press the button, to see the results in the output
window:

2 + 3 = 5

5∙(3 + 1) = 20

15/2 = 7.5

Alternatively, you can have several expressions in a single line, but they must be separated by
comments, e.g.:

'Length -'a = 3m', Width -'b = 2*a', Height -'c = 5m

Each expression can include constants (numbers), variables, operators, functions and brackets.
They must be arranged properly in order to represent a valid expression. The commonly accepted
mathematical notation and operator precedence is used as it is taught in school. Detailed
description of the expression components is provided bellow.

You can calculate separate unrelated expressions as with simple calculator or write a complete
program that solves a specific problem. You can define variables and assign values to them.
Further, you can use them to define other variables and so on until you reach the final result. You
can also add text, Html and images to create detailed and professional-looking calculation report.
You can save it to a file and use it multiple times to solve similar problems. Bellow, you can see a
sample program for solving a quadratic equation:

Constants

Real

Real constants can be positive and negative integer and decimal numbers. They can include
digits "0" - "9" and decimal point ".". You can also enter numbers as fractions like "3/4". However,
the program will treat them as expressions (division of two numbers). You cannot define numbers
in floating point format: "3.4e+6". You have to use an expression like "3.4*10^6" instead.

Page 14 / 43

All constants and variables are internally stored as "double-precision floating point" numbers.
Their values are ranged from -1.7976931348623157E+308 to 1.7976931348623157E+308. If a
result is out of the above interval, the program returns "-∞" or "+∞, respectively". Division by zero
gives the same result, but "0/0" = "Undefined". The smallest positive number is
4.94065645841247E-324. Smaller values are rounded exactly to 0.

Complex

If you select "Complex" mode, you can use complex numbers in calculations. Otherwise, only
real arithmetic is applied. Each complex number is represented by the ordered couple (a; b), where
"a" is real number, and "b = |b|i" is called "imaginary". It can be written in so called algebraic form:
±a ± bi (e.g. "2 + 3i"). You can also use other forms, such as polar or exponential from, by entering
the respective expressions. In Calcpad, the imaginary unit can be entered either as " i" or "1i" in
case you have a variable named "i". The imaginary unit is a special number that satisfies the

expression i 2 = -1.

Variables
A variable is defined by its name and value using expressions like "a = 4". The "=" symbol is the

assignment operator. On the left side, only a single variable name is allowed. On the right side, you
can have any valid mathematical expression, e.g. "b = a + 4". A variable "lives" from the place of its
definition to the end of the program. That is why you cannot use a variable before it is defined. This
will raise an error. If you redefine an existing variable with a new value, it will replace the old one
and the new value will be used further on.

Variable names can include small or capital Latin letters "a" - "z", "A" - "Z", Greek letters "α" -
"ω", "Α" - "Ω" and digits. Names are case sensitive. For example "a" and "A" are different variables.
A name must start with a letter. You can also use "," (comma), "_" (underscore)and other symbols:
" ′ ", " ″ ", " ‴ ", " ⁗ ", " ø ", "Ø", " ° ", "∡". The first occurrence of an underscore in a name starts a
subscript. For example, "a_1_1" will be formatted as "a1_1". Variables can store either real or
complex values (in "Complex" mode).

Operators
The following operators are supported by the Calcpad language:

• Arithmetic:

"!" - factorial;

"^" - exponentiation;

"/" - floating point division;

"\" - integer division;

"÷" - division bar;

"%" - division remainder;

"*" - multiplication;

Page 15 / 43

"-" - subtraction;

"+" - addition;

• Relational (comparison):

"≡" - equal to;

"≠" - unequal to;

"<" - less then;

">" - greater than;

"≤" - less or equal;

"≥" - greater or equal;

• "=" - assignment.

Operator shortcuts

Instead of "≡", "≠", "≤"- and "≥", you can use the respective C-style equivalent operators, as
follows: "==", "!=", "<=" and ">=". They will be automatically replaced by the corresponding
Calcpad operators.

Operator precedence and associativity

The above operators are listed in the order of their precedence. This is the order they will be
evaluated in an expression. When you have different types of operators in a single expression,
exponentiation will be evaluated first, then division and multiplication, subtraction and addition
and comparison will be the last. All relational operators are of equal precedence. If you need to
change the order of evaluation, you can use brackets. For example, "5 + 2∙3" makes "11". If the
addition have to be first, write "(5 + 2)∙3". You will get "7∙3 = 21". Operators with equal precedence
are evaluated from left to right. This is called operator associativity. For example, "3 - 2 + 1" makes
"(3 - 2) + 1 = 2" and not "3 - (2 + 1) = 0". Another good example is "2∙3 / 2∙3", which makes "9" and
not "1".

All operators in Calcpad are left-associative (calculations are performed from left to right). The
only exception is exponentiation, which is right-associative. It is performed from right to left, which

means that x^a^b will be evaluated as xab. However, many hand calculators and spreadsheet
software like Excel use left associativity for exponentiation. In this case x^a^b will be evaluated as

xa·b. If you need to have xab, you will have to add brackets: x^(a^b).

Relational and boolean expressions

Relational operators can return only two values: "1" for "true" and "0" for "false". You can use
them in expressions along with arithmetic operators. For example, you can get the greater of two
numbers a and b by the expression: "a*(a ≥ b) + b*(a < b)". But you need to be careful. If you use
"≤" instead of "<", for the case of a equal to b, you will get a + b, which may be not exactly what
you want. For that special purpose, it is better to use the built-in function max(a; b) or conditional
execution (look further in this manual). You can also simulate boolean algebra with arithmetic
expressions. In this case, you can use "*" instead of logical "AND" and "+" for logical "OR". For

Page 16 / 43

example, "(2 < 3) + (2 < 1) = 1 + 0 = 1" (true) and (2 < 3)∙(2 < 1) = 1∙0 = 0 (false). Again, you must
be careful. This is not true boolean algebra and some expressions may evaluate to other results
than 0 and 1. It depends on you to properly compose the expression and interpret the results. Also,
make sure to put brackets when and where they are required. Arithmetic operators are of higher
precedence than relational.

Complex arithmetic

All operators support complex numbers except for factorial "!", integer division "\", reminder
"%" and comparison: "<", "≤", ">", "≥". The evaluation of a complex expression is a little bit more
difficult than real. The rules for the basic complex operations are given bellow:

• Addition: (a + bi) + (c + di) = (a + c) + (b + d)i;

• Subtraction: (a + bi) − (c + di) = (a − c) + (b − d)i;

• Multiplication: (a + bi)·(c + di) = (ac − bd) + (bc + ad)i;

• Division: (a + bi)/(c + di) = (ac + bd)/(c2 + d2) + (bc − ad)/(c2 + d2)i;

Brackets
Brackets are used in two cases: to change the order of calculations and to enclose arguments of

functions. Only round brackets are allowed: "(" and ")". The software checks if the following rules
are satisfied for each expression:

• The first bracket in an expression must be a left one;

• The count of left and right brackets must be equal;

• Only operator or function identifier are allowed before a left bracket;

• Right bracket is not allowed after operator or function identifier;

• A function identifier always must be followed by a left bracket.

Calcpad uses "smart" bracket insertion while rendering the output. It means that brackets, which
are duplicate or do not affect the order of calculations, are omitted from the output. On the other
hand, there are places where brackets are added for clarity, although not required in the input. It
happens mostly when negative or complex variables are substituted. For example:

• If a = -2, then a2 = (-2)2 = 4, and not a2 = -22. The second case is ambiguous and the
sign can be applied after the exponentiation which will evaluate to -4. Also, brackets are
added to exponentiation of a complex variable;

• If a = -2, then b = -a = -(-2) = 2, and not b = -a = --2 = 2;

• Brackets are also added in the case of multiplication and division to a negative variable:
a·b = -2·(-3) = 6;

• Brackets are required almost every time we have to substitute complex variables:
a·b = (2 + 3i)·(3 - 2i) = 12 + 5i.

Page 17 / 43

Functions

Library (built-in) functions

Calcpad includes a library with common math functions, ready to use:

abs(x) - absolute value (modulus) |x|;

sin(x) - sine;

cos(x) - cosine;

tan(x) - tangent = sin(x)/cos(x), for each x ≠ kπ, k=1, 2, 3...;

csc(x) - cosecant = 1/sin(x), for each x ≠ kπ, k=1, 2, 3...;

sec(x) - secant = 1/cos(x), for each x ≠ π/2 + kπ, k=1, 2, 3...;

cot(x) - cotangent = cos(x)/sin(x), for each x ≠ π/2 + kπ, k=1, 2, 3...;

sinh(x) - hyperbolic sine = (ex - e-x)/2;

cosh(x) - hyperbolic cosine = (ex + e-x)/2;

tanh(x) - hyperbolic tangent = (ex - e-x)/(ex + e-x);

csch(x) - hyperbolic cosecant = 1/sinh(x);

sech(x) - hyperbolic secant = 1/cosh(x);

coth(x) - hyperbolic cotangent = (ex + e-x)/(ex - e-x), for x ≠ 0;

asin(x) - inverted sine, defined for -1 ≤ x ≤ 1;

acos(x) - inverted cosine, defined for -1 ≤ x ≤ 1;

atan(x) - inverted tangent;

atan2(x; y) - the angle whose tangent is the quotient of y and x;

acsc(x) - inverted cosecant = asin(1/x);

asec(x) - inverted secant = acos(1/x);

acot(x) - inverted cotangent;

asinh (x) - inverted hyperbolic sine = ln(x + √x2 + 1), defined for -∞ ≤ x ≤ +∞;

acosh(x) - inverted hyperbolic cosine = ln(x + √x + 1·√x - 1), defined for x ≥ 1;

atanh(x) - inverted hyperbolic tangent = 1/2·ln[(1 + x)/(1 - x)], for -1 < x < 1;

acsch(x) - inverted hyperbolic cosecant = asinh(1/x);

asech(x) - inverted hyperbolic secant = acosh(1/x);

acoth(x) - inverted hyperbolic cotangent = 1/2·ln[(x + 1)/(x - 1)], for |x| > 1;

log(x) - decimal logarithm (with base 10), for each x > 0;

ln(x) - natural logarithm (with base e ≈ 2.7183), for each x > 0;

log2(x) - binary logarithm (with base 2), for each x > 0;

sqr(x) or sqrt(x) - square root (√ x), defined for each x ≥ 0;

Page 18 / 43

cbrt(x) - cubic root (3√ x);

root(x; n) - n-th root (n√ x);

round(x) - rounds to the nearest integer;

floor(x) - rounds to the smaller integer;

ceiling(x) - rounds to the greater integer;

trunc(x) - rounds to the nearest integer towards zero;

random(x) - a random number between 0 and x;

min(x; y; z...) - the smallest of multiple values;

max(x; y; z...) - - the greatest of of multiple values;

sum(x; y; z...) - sum of multiple values = x + y + z… ;

sumsq(x; y; z...) - sum of squares = x² + y² + z²… ;

srss(x; y; z...) - square root of sum of squares = sqrt(x² + y² + z²...);

average(x; y; z...)- average of multiple values = (x + y + z...)/n;

product(x; y; z...)- product of multiple values = x ·y ·z ...;

mean(x; y; z...)- geometric mean = n-th root(x ·y ·z ...);

if(<cond>; <value-if-true>; <value-if-false>) - if the condition cond is satisfied, the
function returns the first value, otherwise it returns the second value. The condition is
satisfied when it evaluates to any non-zero number;

switch(<cond1>; <value1>; <cond2>; <value2>; … ; <default-value>) - returns
the value for which the respective condition is satisfied. Conditions are checked from
left to right. If none is satisfied, it returns the default value in the end;

take(n; a; b; c ...) - returns the n-th element from the list;

line(x; a; b; c...) - performs linear interpolation among the specified values for
parameter x;

spline(x; a; b; c ...) - performs Hermite spline interpolation;

Arguments must be enclosed in round brackets. They can be constants, variables or any valid
expression. Multiple arguments must be separated by semicolons ";". When arguments are out of
range, the function returns "Undefined". Exceptions from this rule are "cot(0)" and "coth(0)", which
return "+∞".

Arguments of trigonometric functions can be in degrees, radians or grades. The units for
angles can be specified in three different ways:

1. By the radio buttons above the output window (🔘D, 🔘R, 🔘G).

2. By compiler switches inside the code. You have to insert a separate line containing: #deg for
degrees, #rad for radians or #gra for grades. This will affect all expressions after the current line
to the end or until an alternative directive is found.

3. By attaching native units to the value itself: deg, °, ′, ″, rad, grad, rev (see the “Units” section,

Page 19 / 43

further in this manual).

Native units are of highest priority, followed by compiler switches in source code. Both override
radio buttons settings, which are of lowest priority.

All functions are also defined in the complex domain, except min(x; y) and max(x; y). Rounding
functions affect both real and imaginary part. There are also several functions for complex numbers
only:

• re (a + bi) - returns the real part only, re (a + bi)= a;

• im (a + bi) - returns the imaginary part as a real number, im (a + bi) = b;

• abs (a + bi) - complex number modulus = sqrt (a2 + b2);

• phase (x) - complex number phase (argument) = atan2 (a; b).

Custom (user defined) functions

You can define your own functions, and use them further in the calculations. Custom functions
can have unlimited number of parameters. They are specified after the function name, enclosed in
brackets "(" ... ")" and separated by semicolons ";". Each function is defined, using the following
format: "f(x; y; z;...) = expression", where "f" is the function name and "x", "y" and "z" are
function parameters. On the right side you can have any valid expression including constants,
operators, variables and even other functions, e.g.:

• f(x) = x^2 + 2*x*sin(x)

• g(x; y) = f(x)/(y - 4)

Once defined, you can use a function in any expression by inserting a function call. Just write the
function name and then specify the arguments in brackets, e. g. b = g(a + 2; 3) + 3. Function names
must conform to the same rules as variable names. Arguments can be any valid expressions. You
have to provide as many arguments as the number of function parameters. The life cycle of a
function is from the place of definition to the end of the code. If you define a new function with the
same name, the old one will be replaced. You cannot redefine a library function. For example, sin(x)
= x^2 will return an error.

It is not necessary to pre-define the variables that are used for parameters. However, if other
variables are used inside the function body, they must be defined before the first call to the
function. Parameters work as local level variables inside the function body. If a variable with the
same name exists outside the function, a call to that function will not rewrite the value of the global
variable. For example:

• If you have a variable "x = 4"

• and a function "f (x) = x2".

• When you call "f (2)", it will evaluate to x2 = 22 = 4, because local x = 2

• If you call "x2" after that, it will return x2 = 42 = 16, because global x remains 4.

User defined functions support both real and complex numbers.

Page 20 / 43

Plotting
Besides functions, Calcpad provides special commands for advanced operations. They accept

functions and expressions as arguments and perform plotting, iterative solutions and numerical
methods. Their names start with "$" to be distinguished from normal functions. Their parameters
must be enclosed in curly brackets: "{" and "}". Such is the plotting command $Plot. It can plot a
function of one variable in the specified interval. It has the following format:

$Plot{y(x) @ x = a : b}

, where:

• y(x) - the function to be plotted. Instead of y(x) you can put any valid expression. It
will be used to calculate the ordinate values;

• x - the name of the variable along the abscissa. You can put here only a single name. It is
not required to define the variable preliminary;

• a and b are the limits of the interval for the x variable. Instead of a and b you can put
numbers, variables or any valid expressions.

For example, if you enter: $Plot{x^2 - 5*x + 3 @ x = -1:6}, you will get the following
result:

The above command plots only one function of one variable at a time. There are also other
formats that you can use:

$Plot{x(t)|y(t) @ t = a:b} - parametric: both coordinates are functions of one parameter;

$Plot{y1(x) & y2(x) & … @ x = a:b} - multiple: plots several functions on a single graph;

$Plot{x1(t)|y1(t) & x2(t)|y2(t) & … @ t = a:b} - multiple parametric;

$Map{f(x; y) @ x = a:b & y = c:d} - draws 2D color map of a 3D surface, defined by f(x; y).

The $Plot{...} function must be the first thing in a line. You can have only spaces and tabs
before, not even comments. Otherwise, the program will return an error. Any text after the closing
bracket "}" will be ignored. Plotting supports only real numbers. You can use it in complex mode,

Page 21 / 43

only if x and y are real and the function returns real result along the plotting interval.

You can specify the size of the plot area by defining two variables: PlotWidth and PlotHeight in
pixels. The default values are PlotWidth = 400 and PlotHeight = 250.

The $Map{...} function can work with different color palettes. Select the preferred one from the
"Palette" combo box on the bottom of the program window. If you select the "Smooth" checkbox,
the scale will be displayed as a smooth gradient. Otherwise, the program will draw color strips. You
can also add 3D effects to the graph by selecting the "Shadows" checkbox. You can also specify
light direction by the respective combo.

Examples of different plotting methods are provided bellow:

Parametric

Equation:
r(θ) = cos(5/2*θ)
$Plot{r(θ)*cos(θ)|r(θ)*sin(θ) @ θ =
0:6*π}

Multiple

Equation:
y1(θ) = cos(θ) - sin(θ)

y2(θ) = cos(θ) + sin(θ)

$Plot{cos(θ) & y1(θ) & y2(θ) @ θ = 0:π}

Result: "rose" curve

Result: leaf by three trigonometric functions

Multiple parametric

Equation:
x(θ) = sqr(θ)*cos(θ)
y(θ) = sqr(θ)*sin(θ)
$Plot{x(θ)|y(θ) & -x(θ)|-y(θ) @ θ =
0:3*π}

Color map

Equation:

f(x; y) = cos(x/3) + sin(y) - sin(x)*cos(y/4)
$Map{f(x; y) @ x = -15:15 & y = -15:15}

Result: double Fermat spiral Result: 2D waves

Page 22 / 43

Numerical methods
Calcpad has a built in "Solver" module, which can solve more difficult problems using numerical

methods. It can work only with real numbers but not complex. It includes the following functions:

Root finding

$Root{f(x) = const @ x = a : b}

$Root{f(x) @ x = a : b}

It finds a single root for an equation of type f(x) = const within the interval [a, b]. If "const" is
zero, you can omit "= const". The program uses hybrid bracketing method, which is a combination
of Bisecton and Anderson-Bjork's method. It subsequently narrows the interval that encloses the
root, until it gets smaller than the specified precision. It is required that the function "f(x) - const"
has opposite signs at the ends of the interval. According to the Boltzano's theorem, if the function
is continuous within the interval, at least one root exist. The bracketing algorithm will find an
approximation after a finite number of iterations.

With this method, you can find only roots where the function crosses the line at "y = const".
When "f(x) - const" is entirely positive or negative and only "touches" the line from one side, you
cannot find the root by any bracketing method.

Page 23 / 43

If no roots exist inside the initial interval, the program returns an error. If there are several roots,
it will find only one of them. In such case, it is better to plot the function first. Then, you can see the
approximate location of roots and divide the interval into several parts - one for each root. Finally,
you can call the function several times to find all the roots. In some cases, it is possible to develop
an automated procedure for interval splitting.

Minimum

$Inf{f(x) @ x = a : b}

It finds the smallest value for a function f(x) within the specified interval [a, b]. The golden
section search method is applied for that purpose. If the function contains a local minimum within
the interval, it will be returned as a result. Otherwise, the function will return the smaller of the
values at the ends of the interval: f(a) or f(b) If there are several local minimums, the program
will return only one of them, but not necessarily the smallest one. In such cases, it is better to split
the interval. The value of x where the minimum is found is stored into a variable xinf. If you use
different name for the argument, instead of x, it will add "_inf" at the end of that name.

Maximum

$Sup{f(x) @ x = a : b}

It works like the minimum finding function, but it finds the greatest value instead. The value of x
where the maximum is located is stored in a variable named xsup.

Numerical integration

$Area{f(x) @ x = a : b}

It calculates the value of the definite integral of a function f(x) within the specified interval [a,
b]. Adaptive Gauss-Lobbato quadrature with Kronrod extension is applied for that purpose (Gander
& Gautschi, 2000).

$Integral{f(x) @ x = a : b}

This command is similar to the above, but it uses the Tanh-Sinh quadrature (Takashi & Mori,
1974) which has been additionally improved by Michashki & Mosig (2016) and Van Engelen (2022).
Further improvements has been made in Calcpad, by precomputing and caching the abscissas and
weights. This algorithm significantly outperforms $Area for continuous and smooth functions.
However, if the function does not satisfy these requirements, you should not use the $Integral
method. Then, you have two options:

1. Divide the interval [a, b] into smaller parts, by using the points of discontinuities, apply the
method for each part separately, and sum the results;

2. If you are not sure where the discontinuities are, use the $Area method.

Additionally, the $Integral method is formatted with the integral symbol "∫" in the output instead.

Page 24 / 43

https://www.genivia.com/files/qthsh.pdf
https://www.ingentaconnect.com/content/tandf/jew/2016/00000030/00000003/art00001;jsessionid=55mdimh9e060a.x-ic-live-03
https://ems.press/content/serial-article-files/2719
https://www.researchgate.net/publication/226706221_Adaptive_Quadrature-Revisited
https://www.researchgate.net/publication/226706221_Adaptive_Quadrature-Revisited

Numerical differentiation

$Slope{f(x) @ x = a}

It finds the value of the first derivative of a function f(x) at x = a. The derivative represents the
slope of the tangent to the function at the respective point. The Richardson extrapolation method
is used on a two point stencil.

General recommendations

For all of the above commands, f(x) must be continuous and smooth, except for root finding.
The latest requires the function to be continuous only and to have opposite signs at the ends of
the interval. According to the Boltzano's theorem, at least one root must exist in this case.

Unlike the plotting command, you can include numerical methods in expressions. They return
values which can be used for further calculations. For example, you can store the result into a
variable:

ymin = $Inf{f(k) @ k = a : b}

Similarly to standard functions, "x" is local for all numerical methods and its global value is not
modified after the method is called.

Iterative procedures
There are some other commands that allows you to calculate the result iteratively. Unlike

numerical methods, they can work with complex numbers.

Sum

$Sum{f(k) @ k = a : b}

It sums the values of f(k) for all integer k between a and b. The values of k can only grow, so it
should be satisfied that a < b. Instead of f(k) you can put any valid expression that includes k.
Otherwise, it will simply sum the same value k times. For example, you can use series to calculate
constants. Such is the Leibniz formula for calculation of π:

4*$Sum{(-1)k+1/(2*k - 1) @ k = 1:1000} = 3.1406

You can also use series to define functions. Of course, they cannot be infinite. The number of
iterations should be sufficient to provide the required precision of the result. The following pattern
can be applied to approximate a function with Fourier series:

f(x) = a0/2 + $Sum{a(k)*cos(k*x*π/l) @ k = 1:n} + $Sum{b(k)*sin(k*x*π/l) @ k = 1:n}

As an example, we can take a straight line within the interval (0; 2*l), withs equation: f(x) =
x/(2* l) . The integration constants are a (k) = 0 and b (k) = -1/(k*π). If we plot the Fourier
approximation for n = 5, we will get the following result:

Page 25 / 43

Product

$Product{f(k) @ k = a : b}

It works like "Sum", but it multiplies the terms instead of adding them. For example, you can
define your own factorial function:

F(n) = $Product{k @ k = 1 : n}

You can use it further to calculate binomial coefficients by the well-known formula: C (n ; k) =
F(n)/(F(k)*F(n - k)) . However, it is much more efficient to define a special procedure that
computes the coefficient directly without using factorials:

$Product{(i + n - k)/i @ i = 1 : k}

Also, the later will not overflow together with the factorials for greater values of n.

Repeat

$Repeat{f(k) @ k = a : b}

This is a general inline iterative procedure that repeatedly calculates f(k). It can be used for sums
and products instead of the respective procedures, but it is not so efficient. However, there are
expressions that can be calculated only by the "Repeat" command. Normally, such expressions will
make sense if you assign the result to a variable to be used in the next iteration. So, the following
pattern is more likely to be applied in practice:

$Repeat{x = f(k) @ k = a : b}

For example, you can use this command to define the Mandelbrot set in a single line:

f(z; c) = $Repeat{ z = z^2 + c @ i = 1:100}

You should not forget to switch to "Complex" mode. Then you can plot the result:

$Map{abs(f(0; x + 1i*y)) @ x = -1.5:0.5 & y = -1:1}

Page 26 / 43

Units
Calcpad provides a comprehensive support for physical units of measurement. The current

version, supports metric (SI and compatible), US and Imperial units. There are seven basic units that
correspond to the seven physical dimensions:

• mass - kilogram (kg)

• length - meter (m)

• time - second (s)

• electric current - ampere (A)

• temperature - degree Celsius (°C)

• amount of substance - mole (mol)

• luminous intensity - candela (cd)

All other units are derivative. They are obtained by the respective laws of physics. For example,

force = mass·acceleration, so Newton is obtained by N = kg·m/s2. Multiples of units are also

Page 27 / 43

supported by adding the respective prefixes to units names. For example, kN = 103N, MN = 106N

and so on.

You can attach units to numbers by typing the unit name after the value, e.g. 15kg. Then, you
can use them in expressions, just like any other values. Unit cancellation and conversion is
performed automatically during calculations. For example, the following expression will be
evaluated as:

1.23m + 35cm + 12mm = 1.59m(and not: 1.23 + 35 + 12 = 48.23)

The result is usually obtained into the first unit in the expression. If you want to use particular
units, write a vertical bar "|" followed by the target units at the end:

1.23m + 35cm + 12mm|cm

The above expression will evaluate to 159.2cm. If you simply want to convert units, just write the
source and the target units, separated by a vertical bar, like: mm|cm or 10m/s|km/h.

Unit consistency is also verified automatically. For example, you cannot add m and s(e.g. 6m +
2s), but you can multiply and divide them 6m/2s = 3m/s.

Arguments for trigonometric, hyperbolic, logarithmic and exponential functions, must be
unitless by definition. However, you can use units an any custom defined functions, if it makes any
sense. You can also attach units to variables. If you specify the target units in a variable definition,
they will be stored permanently inside the variable. Then, the selected units will be used further in
the calculations with the respective value. In the next example, speed is calculated in m/s, but it is
converted and stored as km/h:

Code Output

'Distance -'s_1 = 50m

'Time -'t_1 = 2s

'Speed -'V = s_1/t_1|km/h

'What distance you will travel for't_2 = 5s'?

s_2 = V*t_2|m

Distance - s1 = 50m

Time - t1 = 2s

Speed - V = s1/ t1 = 50m/2s = 90km/h

What distance you will travel for t2 = 5s ?

s2 = V·t2 = 90km/h ·5s = 125m

Calcpad includes a large collection of predefined units as follows:

Dimensionless:

• Angles: deg, °, ′, ″, rad, grad, rev;

Metric units (SI and compatible):

• Mass: g, hg, kg, t, kt, Mt, Gt, dg, cg, mg, μg, ng, pg, Da, u;

• Length: m, km, dm, cm, mm, μm, nm, pm, AU, ly;

• Time: s, ms, μs, ns, ps, min, h, d;

• Frequency: Hz, kHz, MHz, GHz, THz, mHz, μHz, nHz, pHz, rpm;

• Velocity: kmh;

Page 28 / 43

• Electric current: A, kA, MA, GA, TA, mA, μA, nA, pA;

• Temperature: °C, Δ°C, K;

• Amount of substance: mol;

• Luminous intensity: cd;

• Area: a, daa, ha;

• Volume: L, mL, cL, dL, hL;

• Force: dyn N, daN, hN, kN, MN, GN, TN, gf, kgf, tf;

• Moment: Nm, kNm;

• Pressure: Pa, daPa, hPa, kPa, MPa, GPa, TPa, dPa, cPa, mPa, μPa, nPa, pPa,
bar, mbar, μbar, atm, at, Torr, mmHg;

• Energy work: J, kJ, MJ, GJ, TJ, mJ, μJ, nJ, pJ, Wh, kWh, MWh, GWh, TWh,
cal, kcal, erg, eV, keV, MeV, GeV, TeV, PeV, EeV;

• Power: W, kW, MW, GW, TW, mW, μW, nW, pW,
VA, kVA, MVA, GVA, TVA, mVA, μVA, nVA, pVA,
VAR, kVAR, MVAR, GVAR, TVAR, mVAR, μVAR, nVAR, pVAR, hpM, ks;

• Electric charge: C, kC, MC, GC, TC, mC, μC, nC, pC, Ah, mAh;

• Potential: V, kV, MV, GV, TV, mV, μV, nV, pV;

• Capacitance: F, kF, MF, GF, TF, mF, μF, nF, pF;

• Resistance: Ω, kΩ, MΩ, GΩ, TΩ, mΩ, μΩ, nΩ, pΩ;

• Conductance: S, kS, MS, GS, TS, mS, μS, nS, pS, ℧, k℧, M℧, G℧, T℧, m℧, μ℧, n℧, p℧; ;

• Magnetic flux: Wb , kWb, MWb, GWb, TWb, mWb, μWb, nWb, pWb;

• Magnetic flux density: T, kT, MT, GT, TT, mT, μT, nT, pT;

• Inductance: H, kH, MH, GH, TH, mH, μH, nH, pH;

• Luminous flux: lm;

• Illuminance: lx;

• Radioactivity: Bq, kBq, MBq, GBq, TBq, mBq, μBq, nBq, pBq, Ci, Rd;

• Absorbed dose: Gy, kGy, MGy, GGy, TGy, mGy, μGy, nGy, pGy;

• Equivalent dose: Sv, kSv, MSv, GSv, TSv, mSv, μSv, nSv, pSv;

• Catalytic activity: kat;

Non-metric units (Imperial/US):

• Mass: gr, dr, oz, lb, kip, st, qr, cwt, cwtUK, cwtUS, ton, tonUK, tonUS, slug;

• Length: th, in, ft, yd, ch, fur, mi, ftm, cable, nmi, li, rod, pole, perch, lea;

• Speed: mph;

• Temperature: °F, Δ°F, °R;

Page 29 / 43

• Area: rood, ac;

• Volume (fluid): fl_oz, gi, pt, qt, gal, bbl, (dry) bu;
 fl_ozUK, giUK, ptUK, qtUK, galUK, bblUK, (dry) buUK;

fl_ozUS, giUS, ptUS, qtUS, galUS, bblUS, (dry) buUS;

• Force: ozf, lbf, kipf, tonf, pdl;

• Pressure: osi, osf psi, psf, ksi, ksf, tsi, tsf, inHg;

• Energy/work: BTU, therm, thermUK, thermUS, quad;

• Power: hp, hpE, hpS

Reporting
All calculations are automatically collected into professionally formatted calculation report. You

can print it or open it with MS Word for editing. Besides math expressions, you can add headings,
comments, tables and images.

Headings
A heading is a text, enclosed in double quotes ("). It is bold and larger than the main text.

Text/comments
Comments are enclosed in single quotes ('). You can skip the closing quote, if it is the last

symbol in the line. Headings and comments can contain any symbols without restrictions.
Everything outside them is assumed to be math expressions. However, if you put any formulas
inside comments, they will not be calculated or formatted. Since the final output is rendered to an
Html document, you can use Html and CSS in comments to provide your calculation report with
additional formatting .

Units in comments
Alternatively to native units, you can enter all values to be unitless and then put the units in the

comments. In this case, you will have to include all unit conversion factors in the equations. Also,
there is an option to generate a selection box for length units - m, cm and mm. You only need to
insert %u in comments wherever you want the units to appear. When the program generates the
input form (see further) it checks whether %u exists somewhere in the code. If so, it automatically
adds a unit selection combo box, at the top-right corner. When you change the units from the
combo, they will be filled in all occurrences of %u in the code. You can try it bellow:

Page 30 / 43

When you run the calculations, the "Units" combo will disappear from the output. Only the units
will remain as filled. The program will also create a variable Units, which will contain the conversion
factor from the selected units to meters. Its value is 1, 100 and 1000 for m, mm and cm,
respectively. You can use it for units conversion inside the calculations. For example, you can create
a conditional block for displaying the selected units in the report:

#if Units ≡ 1

'The selected units are meters

#else if Units ≡ 100

'The selected units are centimeters

#else if Units ≡ 1000

'The selected units are millimeters

#end if

Formatting with Html and CSS
Calcpad can be used as a development platform for professional engineering programs. If you

are not going to do that, you can skip this chapter.

Html (Hyper Text Markup Language) is a markup language which is created for formatting web
pages. You can change the font type, size and weight, the color of the text and to insert tables,
images, etc. This is performed by adding special elements called "tags". Each tag is enclosed in
angular brackets: "<tag>". Some tags are used in pairs - opening "<tag>" and closing "</tag>".
The contents is going in between. For example, if you want to make some text bold, you can use
the following tags: Bold text. Even if you are not a professional programmer, you can
easily learn some basic Html, to use with Calcpad:

Html code Output

Bold Bold

<i>Italic</i> Italic

<u>Underline</u> Underline

Red Red

Page 31 / 43

Html code Output

x^{superscript} x superscript

x_{subscript} x subscript

<span style="font:16pt Times-New-

Roman;">Times New Roman, 16pt Times New Roman, 16pt

You can put Html tags only in comments, but you can also make them to affect expressions. For
example:

' as simple as ' 2 + 2 ''

will give the following output:

as simple as 2 + 2 = 4

We simply enclosed the expression with two comments. The first comment contains the opening
tag '' and the second - the closing tag ''. Everything between the
two tags is colored in red. Make sure not to forget the quotes. Otherwise, the program will try to
parse the Html code as math expression and will return an error. The following code:
style="color:red" is called "inline CSS" (Cascading Style Sheets). It is used to format the look of
Html documents. You can learn more about Html and CSS from the following links:

http://www.w3schools.com/html/

http://www.w3schools.com/CSS/

You can also use some of the many free WYSIWYG Html editors that you can find on the
Internet.

Images
Before inserting an image into Calcpad document, you need to have it already as a file. You can

create it by some image editing software and save it to a *.png, *.gif or *.jpg file. You can use some
freeware programs like Paint, Gimp, InkScape, DraftSight or others. Then you can insert it using
Html. All you need to do is to put the following text at the required place, inside a comment:

''

Of course, instead of "c:/Users/Me/Pictures/Picture1.png" you must specify the actual path to
your image. The file can be local, network or it can be on the Internet. The text style="float:right;"
aligns the image to the right allowing the text to float at left. Otherwise, the image will become
part of the text flow and will make it split. Sometimes, you may have a larger image, without much
room for the text around it. In such cases, you can skip the style="float:right" text.

You can also insert an image using the button from the toolbar. You will be prompted to
select a file. When you click "Open", the required record will be inserted at the beginning of the
code. When you run the calculations, the picture will appear in the output window.

Page 32 / 43

http://www.w3schools.com/CSS/
http://www.w3schools.com/html/

Conditional execution
Sometimes the solution have to continue in different ways, depending on some intermediate

values. Such feature is included in Calcpad, similarly to other programming languages. It is called
"conditional execution block" and has the following general form:

#If condition1

contents if condition1 is satisfied

#Else If condition2

contents if condition2 is satisfied

#Else If condition3

contents if condition3 is satisfied

. . .

#Else

contents if none of the conditions is satisfied

#end if

Shorter forms are also possible:

#If condition

contents if the condition is satisfied

#Else

contents if the condition is not satisfied

#end if

or:

#If condition

contents if the condition is satisfied

#end if

Condition blocks affect not only the calculation path but also the report content like text and
images. The "#" symbol must be the first one in the line. At the place of "condition" you can put
any valid expression. Normally, a comparison is used like "#If a < 0", but it is not obligatory. If it
evaluates to any nonzero number, the condition is assumed to be satisfied. Otherwise, it is not
satisfied. Any result which absolute value is ≤ 0.00000001 is assumed to be zero.

Let us look again at the quadratic equation example that we used earlier. If we enter "c = 5", the
discriminant will be negative and the result will be NaN. This is not a very intelligent way to finish a
program. What we need to do is to check if "D < 0" and if so, to provide a comprehensible
message. Otherwise, we have to calculate the roots. We can do this, using conditional execution, as
follows:

Page 33 / 43

Output control
You can easily specify which parts of the code should be visible or hidden in the output. Unlike

conditional execution, the hidden code is always calculated. It is just not displayed. The following
keywords can be used for that purpose:

#Hide - hides the contents after the current line;

#Pre - shows the contents in "input" mode only (see ""Input forms" bellow);

#Post - shows the contents in "output" mode and hides it in "input" mode;

#Show - always shows the contents (revoke all other keywords);

Each of the above keywords affects the content after the current line and overrides the previous
one. You can use them to hide long and repetitive calculations that should not be visible. You can
use the #Pre command to add some directions about filling the input data and #Post to hide the
calculation algorithm during data input.

You can also modify the display of the equations as follows:

#Val - shows only the final result as a single value;

#Equ - shows both the equation and the calculated result;

#Noc - shows only the equation, without results (no calculations).

Each of the above keywords overrides the other. You can use #Val to create a table with values,
but without the formulas, like in Excel.

Iteration blocks
You can have simple iterations inside a Calcpad program. For that purpose, you have to define a

"repeat-loop" block:

#Repeat n

Code to be executed repeatedly
#Loop

Page 34 / 43

The symbol n stands for the number of repetitions. Instead of n, you can put a number, variable
or any valid expression. If the result of the expression is not integer, it is rounded to the nearest
one. You can exit the repeat-loop cycle prematurely by putting #Break inside the block. It will make
sense only if you combine it a conditional block. Otherwise, it will always break at the same line,
without performing any loops. A typical "repeat-break-loop" will look like this:

#Repeat

Code to be executed repeatedly

#If condition

#Break

#End if

You can have more code here
#Loop

You can omit the number of repetitions n only if you are sure that the condition will be satisfied
and the loop will brake sooner or later. Anyway, to avoid infinite loop, the number of iterations is
limited to 100 000 if nothing else is specified.

Besides repetitive calculations, you can use loops to generate repetitive report content (like
table rows). If you want to hide the iteration details, you can use output control directives (see the
previous section). For example, you can enclose the "repeat-loop" block with #Hide and #Show
statements.

Input Forms
If you have long and complicated problem or you want to share your solution with others, it is a

good idea to create an input form. It is very easy to do that with Calcpad. Just replace the values
that need to be entered with question marks "?", e.g. "a = ?". Please note that after that, you will

not be able to calculate the results directly by clicking . You must compile it first to an input

form, using the button.

The code will hide and the form will be loaded into the "Input" box at the full width of the main
window. All texts and formulas will be rendered in Html format, protected from modification. Input
boxes will be generated at every occurrence of the "?" symbol except those in comments. The
ready-to-use input form will look as follows:

Page 35 / 43

Now you have to fill the input boxes and click to calculate the results. They are displayed in
the "Output" box.

Page 36 / 43

In order to return to input mode, click again to switch the button off. Input data will remain
unchanged since the last input. If you need to modify the source code, you have to unlock it by
clicking the button. The "Code" box will show again at the left side of the main window. Input
data will be attached to the question marks. If you hover the mouse over one of them, you will see
the respective value. Click on the question mark to change it. When you finish editing the code, you
can compile it back to input form. The input values will be filled in the respective fields. Finally, you
can save the document as a "*.cpd" file. When you open such file, it will be displayed directly into
input form mode. This format is more convenient to use than a simple text file due to the following
advantages:

• The user can see clearly which parameters should be entered. You can also provide
pictures and additional explanations. This is more comprehensible for the user, especially if
the program is developed by someone else;

• The rest of the source code is protected from modification, unless you unlock it on
purpose. This prevents an inexperienced user to accidentally damage the calculation
formulas.

If you save the document as a "*.cpdz" file, you will make the source code completely
inaccessible. It will not be possible to unlock it inside Calcpad anymore. Also, no one could edit the
file in external text editor, because it is encoded. That is how you can protect your source code
from unauthorised coping, viewing and modification.

You can put question marks "?" not only in variable definitions, but at any place in the code e.g.:

2 + ?

Then, you can enter a value and calculate the result. This approach is not recommended for
complicated problems, because the program logic gets unclear and difficult to understand.

Results
When you run the solution with the button, the results are displayed in the "Output" box.

You cannot edit the output content, but you can select, copy and print it. For that purpose, you can
use the toolbar over the "Output" box on the right. You can also use additional commands from
the context menu, that is displayed If you right-click inside the "Output" box, you will see a pop-up
menu with additional commands. Detailed description is provided further in this manual.

Substitution
Calcpad can substitute the values of variables in all formulas in the output, just before the

answer:

x1 =
-b – √D

 =
-3 – √89

 = -1.55
 2·a 2·4

For that purpose, you need to check the "Substitution" checkbox at the bottom of the program

Page 37 / 43

window. That makes the results easy to review and check. This is important when calculations have
to be checked by supervisors, teachers etc. This is also an advantage over the spreadsheet software
where the actual formulas are hidden in the cells.

If you do not need the substitution, you can uncheck this option. Then the answers will follow
directly the calculation formulas:

x1 =
-b – √D

 = -1.55
 2·a

Rounding
Rounding is specified by the number of digits k after the decimal point. It is entered into the

"Rounding" input box at the bottom of the program window. The value of k can be between "0"
and "15". If you enter "0", all results will be rounded to integers. If the value is less than "0" or
greater than "15", the respective limit will be taken.

However, rounding can come across some potential problems. If the result is less than 10 -k and
you round it to k digits after the decimal point, the result will contain only zeros. That is why,
Calcpad incorporates some advanced rules: If the output contains less than k significant digits after
rounding, it is expanded up to k significant digits. Even then, if the number is too small, it will be
difficult to count the zeros after the decimal point. So, in such cases, the output is converted to
floating point format with k digits. When the total number of digits becomes greater than 2k, the
factional part is being truncated. In this way, the output becomes easier to read, still providing at
least 2k significant digits. You can see several examples bellow, obtained for (k = 3).

• 0.000001∙π = 3.14E-06

• 0.001∙π = 0.00314

• 0.1∙π = 0.314

• 1∙π = 3.142

• 1000∙π = 3141.59

• 1000000∙π = 3141593

Rounding affects only the way in which numbers are displayed in the output. Internally, all
numbers are stored with the maximum possible precision. That is why, if you print the output and
try to repeat the calculations with the numbers from the report, you probably will get some little
differences. This is because you use the rounded values instead of the actual ones.

Formatting
Calcpad does not simply calculate formulas. It also builds a professional looking report out of

your source code. It uses Html to format the output. It is widely recognized and allows you to
publish your calculations in the web. You can select between two different styles for equation
formatting: "professional" and "inline". The professional style uses division bar, large and small
brackets, radical, etc. Numerator and denominator are displayed one above the other. The inline

Page 38 / 43

style uses slash for displaying division and all symbols are arranged into a single line. The following
formatting rules are applied:

• Intervals are maintained automatically.

• Variables are formatted as italic.

• Multiplication operator "*" is replaced with "∙".

• Exponentiation operator "^" is formatted as superscript.

• Underscore "_" is formatted as subscript.

• Square root function is replaced with radical "√ ".

Several examples of formatting in different cases are provided in the table bellow:

Text Html
x + 3 x + 3

x-3 x – 3

3*x 3∙x

(x + 1)/3 (x + 1)/3 or
x + 1

3

x+3 * y x + 3∙y

sqr(x+3) √x + 3

x_1^3 x1
3

sin(x) sin(x)

Html formatting makes the report easier to read and check than the respective plain text. You
can also insert additional Html code inside the comments that will affect the final appearance. In
this way, you can use Calcpad code to build professional Web applications. You will also need the
cloud version of Calcpad for that purpose.

Scaling
You can scale up and down the text size in the output window. Hold the "Ctrl" button and

rotate the mouse wheel. The forward rotation will scale up and the backward will scale down.

Saving the output
You can save the output to an Html file . Unlike the input file, it cannot be modified with

Calcpad. On the other side, everyone will be able to view and print your calculations without
Calcpad. Html files can be opened on any computer using web browser or office program like
Word.

You can save the file by clicking the button over the output box. Then select a file name and

click "Save".

Page 39 / 43

Printing
You can print the output by clicking the button. Normally, printing is performed after

calculations. When you click the button, the print preview dialog will be displayed:

It allows you to set the printing layout and margins. Click the button to change the paper
size and type. Finally, press the button. A printer selection dialog will appear. Choose the

preferred printer and click "Print".

Page 40 / 43

Printing in Calcpad uses the built-in functionality of Windows and Edge. The above screenshots
may look differently on your computer, depending on the versions you use. Alternatively, you can
right click in the output window and select "Print preview..." from the context menu. If you select
"Print", you will skip the preview and proceed directly to printing.

Coping
You can copy the entire output at once by clicking the button over the output window.

Then, you can paste it in any other program. If the target program supports Html, like Word, the
formatting will be preserved. Otherwise, the content will be pasted as plain text.

Export to Word
You can open the results directly with MS Word by clicking . It must be installed on the

computer, but it is not necessary to be preliminary opened. This approach is easier than copy-paste
and provides some additional benefits. If the output is obtained with the professional equation
formatting option, Calcpad will use the "*.docx" file format for the export. This is the native format
for the latest versions of MS Word and will open automatically. If you have Open Office or Libre
office, the respective program will be used instead. If you do not have any text editor currently
installed, the file will be saved to the disk, but not opened. You can go to the respective folder later
and open it manually. Formulas are exported as MathType objects and can be modified inside
Word. However, it is possible to loose part of the Html formatting. Images, tables and most
common tags are supported. If you have selected inline equation formatting, Calcpad will use an
Html file for the export. It will preserve most of the formatting, but formulas will be part of the
document text.

Page 41 / 43

Export to PDF
A good alternative to Html is to save the report as pdf file. It is another way to make a hard

copy of your calculations. Click the button and select the name and the location of the file. The
program will save the output to the specified file and open it with the default viewer. The pdf is
always generated in A4 page size.

Alternatively, you can use a pdf printer. There are a lot of free pdf printers over the Internet. Just
download and install one. After that, the process of printing is not much different than any other
printer. Detailed description of printing from Calcpad is provided above.

Working with files
Input data in Calcpad can be saved to disk and reused multiple times. The supported file

formats are "*.txt", "*.cpd" and "*.cpdz". Input forms have to be saved to "*.cpd" and "*.cpdz" files
and text scripts to "*.txt" files. Both "*.cpd" and "*.cpdz" file types are associated with Calcpad and
can be opened with double click. The main difference between the two formats is that "*.cpd" is a
text file and can be edited while "*.cpdz" is binary and can be only executed. The source code
inside is protected from viewing, coping and modification.

New
You can start a new file by clicking the button. This will clear the file name and the source

code. If the current file is not saved, you will be prompted to do that.

If you answer "Yes", the "File Save" dialog will appear. Enter file name and click "Save". Thus,
you will preserve your data before being cleared. If you select "Cancel" you will interrupt the
command and everything will remain unchanged.

Open
You can open an existing file with the button. A file selection dialog will appear. The active

file extension is "*.cpd", by default. If you search for "*.txt" or "*.cpdz" files, select the
corresponding type at the bottom of the dialog. Then find the required file and press "Open" or
double click on the file. It will be loaded into Calcpad and the file name will be displayed in the title
bar.

Page 42 / 43

Save
You can save the current file by clicking the button. If the file has not been saved so far, you

will be prompted to select path and name. Otherwise, it will be rewritten at the current location.

Save As...
If you need to save the current file with a different name, select the "File/Save As..." menu

command. A file selection dialog will be displayed. Select file path and name and click "Save".

Last edited on 27.09.2022 by eng. Nedelcho Ganchovski.

Page 43 / 43

	Table of Contents
	About Calcpad
	Fields of application
	Installation
	Licensing and terms of use
	How it works
	Theoretical basis
	Writing code
	Numeric Keypad
	Moving inside the text
	Selecting text
	Deleting text
	Copy
	Paste
	Undo
	Redo
	Find

	Coding aids
	Syntax highlighting
	Auto-indentation
	Auto-complete
	Bracket matching
	Greek letters
	Using Notepad++

	Modules (inclusions)
	Macros and string variables
	Expressions
	Constants
	Real
	Complex

	Variables
	Operators
	Operator shortcuts
	Operator precedence and associativity
	Relational and boolean expressions
	Complex arithmetic

	Brackets
	Functions
	Library (built-in) functions
	Custom (user defined) functions

	Plotting
	Numerical methods
	Root finding
	Minimum
	Maximum
	Numerical integration
	Numerical differentiation
	General recommendations

	Iterative procedures
	Sum
	Product
	Repeat

	Units

	Reporting
	Headings
	Text/comments
	Units in comments
	Formatting with Html and CSS
	Images
	Conditional execution
	Output control
	Iteration blocks

	Input Forms
	Results
	Substitution
	Rounding
	Formatting
	Scaling
	Saving the output
	Printing
	Coping
	Export to Word
	Export to PDF

	Working with files
	New
	Open
	Save
	Save As...

