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Preface

Martin Gardner gives an interesting story in his popular book aha! Insight. In a country
fair, there was a game called “Fifteen” on the carnival midway. Mr. Carny, the carnival
operator explained to people the rules: “We just take turns putting down coins on a line
of numbers from 1 to 9. It doesn’t matter who goes first. You put on nickles, I put on
silver dollars. Whoever is the first to cover three different numbers that add to 15 gets
all money on the table.”

1 2 3 4 5 6 7 8 9

A lady joined this game. She went first by putting a nickle on 7. Because 7 was
covered, it couldn’t covered again by either player. And it’s the same for other numbers.
Mr. Carny then put a dollar on 8.

1 2 3 4 5 6 7 8 9
nickle dollar

The lady next put a nickle on 2, so that one more nickle on 6 would make 15 and win
the game for her. But the man blocked her with a dollar on 6. Now he could win by
covering 1 on his next turn.

1 2 3 4 5 6 7 8 9
nickle dollar nickle dollar

Seeing this threat, the lady put a nickle on 1 to block his win.

1 2 3 4 5 6 7 8 9
nickle nickle dollar nickle dollar

The carnival man then put a dollar on 4. He would win by covering 5 next. The lady
had to block him again. She put a nickle on 5.

1 2 3 4 5 6 7 8 9
nickle nickle dollar nickle dollar nickle dollar

But the carnival man placed a dollar on 3. He won because 3 + 4 + 8 = 15. The poor
lady lost all nickles.

1 2 3 4 5 6 7 8 9
nickle nickle dollar dollar nickle dollar nickle dollar
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ii Preface

Many people joined to play the game. The town’s Mayor was fascinated by the game,
too. After watching it for a long time, he decided that the carnival man had a secret that
made him never to lose the game except he wanted to. The Mayor was awake all night
trying to figure out the answer.

The key to the secret can be traced back to 650BC. There was a legend about Lo Shu
in ancient China around the time of huge flood. A turtle emerged from the river with a
curious pattern on its shell: a 3 × 3 grid in which circular dots of numbers were arranged.

(a) Lo Shu Square

4 9 2
3 5 7
8 1 6

(b) Magic square of order 3

This is known as Lo Shu Square, a magic square of order 3. The sum of the numbers
in each row, column and diagonal is the same: 15. For example, the sum of the first row
4 + 9 + 2 = 15; and the sum of the third column 2 + 7 + 6 = 15; the sum of the diagonal
from left up to right bottom 4 + 5 + 6 = 15. The insight to the carnival fifteen game
is exactly the magic square. All three numbers sum to 15, form the rows, columns, and
diagonals in that square. If the carnival man hold a secret Lo Shu map, he is essentially
playing the tick-tack-toe game with other people.

4 9 2
3 5 7
8 1 6

(a) magic square

× ©
× ×
© × ©

(b) tick-tack-toe game

The game between the lady and Mr. Carny is equivalent to such a tick-tack-toe game.
The man trapped the lady in step three. He could line up both a column and a diagonal.
If the lady puts on 3, then the man could win the game by playing on 5. If you know a
bit about game theory or programming, one will never lose the tick-tack-toe game if plays
carefully. The carnival man with the secret Lo Shu square map does have the advantage
over other people. As the fifteen game proceeds, the carnival operator mentally plays a
corresponding tick-tack-toe game on his secret map. This makes it easy for the operator
to set up traps of winning position.

This interesting story reflects an important mathematical idea, isomorphism. A diffi-
cult problem can be transformed to an isomorphic one, which is mathematical equivalent
and easy to solve. A line of 9 numbers is isomorphic to a 3 x 3 grids; the sum target
of fifteen is isomorphic to the rows, columns, and diagonals; Lo Shu pattern is isomor-
phic to magic square of order 3. This is what this book intents to tell: programming is
isomorphic to mathematics. Just like in art and music, there are interesting stories and
mathematicians behind the great minds.

There is another further idea in this story: under the surface of the problem hides
the theoretical essence, which is abstract and and which we need to understand. With
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4 9 2
3 5 7
8 1 6

(a) magic square

×
©

(b) Step 1, the lady puts on 7, the man puts
on 8.

×
×

© ©

(c) Step 2, the lady puts on 2, the man puts
on 6.

© ×
×

© × ©

(d) Step 3, the lady puts on 1, the man puts
on 4.

©©© ×
©©© × ×
©©© × ©

(e) Step 4, the lady puts on 5, the man wins
on 3.

the rapid development of artificial intelligence and machine learning, can we keep moving
forward with a little cleverness and engineering practice? Are we going to open the
mysterious black box to find the map to the future?

Liu Xinyu
May 2019, Beijing

Exercise 1
1. Implementing a tick-tack-toe game is a classic programming exercise. It’s trivial

to test if the sum of three numbers is 15. Please use this point to implement a
simplified tick-tack-toe program that never loses a game1.

The PDF book can be downloaded from https://github.com/liuxinyu95/unplugged.
Please contact me through liuxinyu95@gmail.com if you want a hard copy.

1The answer to all the exercises in this book can be found in the appendix.

https://github.com/liuxinyu95/unplugged
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Chapter 1

Numbers

Numbers are the highest degree of
knowledge. It is knowledge itself.

–Plato

1.1 The history of number

Figure 1.1: The envelop of
tokens in Uruk period from
Susa. Louvre Museum

The number emerged with human evolution. Some people
believe that language was inspired by numbers. Our ances-
tors learned the numbers from the gathering and hunting
activities. People needed to count the gathered fruits. As
trading developed, people needed numeral tools to handle
bigger numbers than previously encountered.

We found in the regions of Iran, people made clay tokens
for record keeping around 4000 BC. they created two round
tokens with ‘+’ sign baked to represent ”two sheep”. Each
token represented a sheep. Representing a hundred sheep
with many tokens would be impractical, so they invented
different clay tokens to represent ten sheep, twenty sheep
and so on. In order to avoid the record being altered, peo-
ple invented a clay envelope in which tokens were placed,
sealed, and baked. If anybody disputed the number, they
could break open the envelope and do a recount. They also
pressed the signs outside the envelop before it was baked,
these signs on the outside became the first written language
for numbers[2]. Figure 1.1 shows the ancient clay tokens and
envelopes found in Uruk period.

As the number increasing, the clay tokens and envelops were gradually replaced by
more powerful numerals. About 3500 BC, the Sumerians in Mesopotamia used round
stylus in flat clay tablets to carve pictographs representing various tokens. Each sign
represented both commodity being counted and the quantity of that commodity.

The next big step happened around 3100 BC. The abstract numbers dissociated from
the thing being counted. We found from the clay tablets, the things being counted were
indicated by pictographs carved with a sharp stylus next to round-stylus numerals. These
abstracted numerals later evolved to Babylonian cuneiform characters.

1



2 CHAPTER 1. NUMBERS

(a) Babylonian numerals[3] (b) The abstract three

The abstract number emerged from intelligent mind. People realized the abstract
three could represent three eggs, three trees, and three jars. It’s a powerful tool. People
can manipulate the pure numbers and apply the result to the concrete things. When
increase the abstract three by one to get four, we know gathering another egg after three
egges gives four eggs; we also know baking another jar after three jars gives four jars. We
resolve a whole kind of problems instead of one by one.

Starting from the numbers, people developed add, subtraction, then the more powerful
methods of multiplication and division. When measure the length, angles, areas, and
volumes, we connected the number to the geometry quantity. People from different places
found the inner relationships and laws for the numbers and shapes. Ancient Egyptian,
Greece, and Chinese people found the Pythagoras theorem independently, and applied
it to the amazing works like to build the great pyramid. Trace back from the modern
civilization, we find the natural number is the source of math and science. German
mathematician Kronecker said ‘God made the integers; all else is the work of man.’1

1.2 Peano Axioms
Euclid’s Element is the first work introduced the axiomatic methods. From five axioms
and postulates, Euclid developed the laws one by one elaborately. Every result is only
based on the axioms and the theorems proved before. With this approach, he built the
great building of geometry. However, there was no axiomatic formal system for natural
numbers for long time. People considered natural numbers were straightforward and
the related facts were obvious. The axioms of natural number was setup by Italian
mathematician Peano till 1889. known as Peano Axioms nowadays. It’s interesting that
there are also five axioms.

1. 0 is a natural number. Expressed as ∃0 ∈ N ;

2. For every natural number, there is a successor natural number. Expressed as ∀n ∈
N, ∃n′ = succ(n) ∈ N ;

It seems that we can define the infinite natural numbers only with these two axioms.
From 0, the next is 1, then the next is 2, then 3, ..., then n, and then n+ 1, ... However,
there is a counter example. Consider a set with only two numbers {0, 1}. Where the
successor of 1 is defined as 0, while the successor of 0 is defined as 1. It satisfies the above
two axioms well although they are not as we expected. In order to avoid this situation,
we need the third Peano axiom.

1Natural number is different from integer. We’ll come back to the story of Kronecker in the chapter
of infinity.
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3. 0 isn’t the successor of any natural number. Expressed as ∀n ∈ N : n′ 6= 0;

Are these three axioms enough? We can still find another counter example. Consider
the set of {0, 1, 2}. Define the successor of 0 is 1, the successor of 1 is 2, and the successor
of 2 is 2 again. It satisfies all the three axioms so far. We therefore need the fourth Peano
axiom.

4. Different natural numbers have different successors. In other words, if two natural
numbers have the same successor, then they are same. It can be formally expressed
as ∀n,m ∈ N : n′ = m′ ⇒ n = m;

However, it is still not enough. We can still find another example. For set {0, 0.5, 1, 1.5, 2, 2.5, ...}.
Define 1 is the successor of 0, 2 is the successor of 1, ...; 1.5 is the successor of 0.5, 2.5 is
the successor of 1.5, ...; But 0.5 is not the successor of any other numbers. In order to
exclude such ‘unreachable’ elements, we need the last Peano axiom.

5. If some subset of natural numbers contains 0, and every element in it has a successor,
then this subset is same as the whole natural numbers. It can be expressed as
∀S ⊂ N : (0 ∈ S ∧ ∀n ∈ S ⇒ n′ ∈ S)⇒ S = N .

Why does the fifth axiom exclude the above counter example? For {0, 0.5, 1, 1.5,
2, 2.5, ...}, consider the subset of {0, 1, 2, ...}. 0 belongs to it, and every element has a
successor. But it is not identical to the original set. As 1.5, 2.5, ... are not in this subset,
it does not satisfy the fifth Peano axiom. This last axiom as also known as ‘Axiom of
induction’. It can be equally stated as the following.

5. For any proposition of natural numbers, if it holds for 0, and when assume it holds
for some number n, we can prove it also holds for n′, then the proposition holds for
all natural numbers. (This axiom ensure the correctness of mathematical induction.)

This the complete statement of the five Peano axioms. They can build the first-order
arithmetic, also known as Peano arithmetic2.

Figure 1.3: Giuseppe Peano (1858-1932)

Giuseppe Peano was an Italian mathematician, logician, and linguist. Peano was born
and raised on a farm at Spinetta, a hamlet now belonging to Cuneo, Italy. He enrolled
at the University of Turin in 1876, graduating in 1880 with high honors, after which

2Some people use 1, but not 0 as the first natural number. The order is different from the original
works published by Peano, where the fifth axiom of induction was list as the third one.
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the University employed him to teach calculus course. In 1887, Peano married Carola
Crosio. In 1886, he began teaching concurrently at the Royal Military Academy. From
1880s, Peano started to study mathematical logic. He published the Peano axioms, a
formal foundation for the natural numbers. Peano started the Formulario Project. It was
to be an “Encyclopedia of Mathematics”, containing all known formulae and theorems
of mathematical science. In 1900, the Second International Congress of Mathematicians
was held in Paris. At the conference Peano met Bertrand Russell and gave him a copy of
Formulario. Russell was so struck by Peano’s innovative logical symbols that he left the
conference and returned home to study Peano’s text[4].

When Russell and Whitehead wrote Principia Mathematica, they were deeply influ-
enced by Peano. Peano played a key role in the axiomatization of mathematics and was a
leading pioneer in the development of mathematical logic and set theory. As part of this
effort, he made key contributions to the modern rigorous and systematic treatment of the
method of mathematical induction. He spent most of his career teaching mathematics at
the University of Turin. He also wrote an international auxiliary language, Latino sine
flexione (”Latin without inflections”, later called Interlingua), which is a simplified version
of Classical Latin. Most of his books and papers are in Latino sine flexione. Although
Peano put a lot of effort to rewrite his works in the new language, few people read it.
On the other hand, his early works in French influnced many mathematicians, especially
to the Bourbaki group, which came out many top mathematicians like André Weil, Jean
Dieudonné, Henri Cartan, Schwartz, Serre, Grothendieck and so on.

Giuseppe Peano died on April, 20th, 1932 when he suffered a fatal heart attack.

1.3 Natural numbers and programming
People make amazing achievement with the modern computer systems. We didn’t es-
tablish the axioms of computer programming before developing these results. After the
great success of computer application, then the foundation of computer science is gradu-
ally developed to be strict, formal, and mathematized. The similar thing happens several
times in our history. Calculus was developed by Newton and Leibniz independently in the
17th century, then applied to a wide range of areas, including fluid dynamics, astronomy
and so on. However, it was not formalized until Weierstrass and Cauchy developed the
foundation in the 19th century[4].

We’ll emulate it. From the Peano axioms, define the natural numbers with computer
programs. In a computer system without familiar numbers like 0, 1, 2, ..., we can define
the natural numbers as below3:
data Nat = zero | succ Nat

A natural number is either zero, or the successor of another natural number. Symbol
‘|’ is mutual exclusive, it implicates the axiom that zero is not the successor of any natural
number. We can further define the addition for natural numbers.
a + zero = a
a + (succ b) = succ (a + b)

There are two rules for addition. First, any natural number adds zero gives that
number itself; second, a natural number adds to a successor of some natural number
equals to the successor of the sum of the two. In mathematic expression:

a+ 0 = a
a+ b′ = (a+ b)′

(1.1)

3We use a virtual, ideal programming language in this book. Some real programs are given at the end
of each chapter for reference.
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Let’s use 2+3 as the example. natural number 2 is succ(succ zero), and 3 is succ(succ(succ
zero)). According to the definition of addition:

succ(succ zero) + succ(succ(succ zero))
= succ(succ(succ zero) + succ(succ zero))
= succ(succ(succ(succ zero) + succ zero))
= succ(succ(succ(succ(succ zero) + zero)))
= succ(succ(succ(succ(succ zero))))

The result is the 5th successor of zero. It’s not practical to apply succeed function
again and again for big numbers like 100. Let’s introduce a simplified notation for natural
number n.

n = foldn(zero, succ, n) (1.2)

It applies succ function to zero n times. Function foldn can be realized as the follow-
ing.

foldn(z, f, 0) = z
foldn(z, f, n′) = f(foldn(z, f, n))

(1.3)

Function foldn defines some operation on natural number. When z is zero, and f is
the succ function, then it can apply the succeed operation multiple times to get a specific
natural number. We can verify it with the first several numbers.
foldn(zero, succ, 0) = zero
foldn(zero, succ, 1) = succ(foldn(zero, succ, 0)) = succ zero
foldn(zero, succ, 2) = succ(foldn(zero, succ, 1)) = succ(succ zero)
...

Multiplication for natural number can be defined on top of addition.
a . zero = zero
a . (succ b) = a . b + a

The multiplication can be expressed in mathematic symbols as below.

a · 0 = 0
a · b′ = a · b+ a

(1.4)

Figure 1.4: Association of addition in geometry. The areas of the above and bottom are
same.

It turns out that the associative and commutative laws for addition and multiplication
are neither axioms nor postulations. They all can be proved by Peano axioms and the
definitions. Let’s prove the associative law for addition as an example. This law states
(a+ b) + c = a+ (b+ c). We firstly prove it holds when c = 0. According to the first rule
in the add definition:

(a+ b) + 0 = a+ b
= a+ (b+ 0)
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Then for induction, assume (a+b)+c = a+(b+c) hold, we want to prove (a+b)+c′ =
a+ (b+ c′).

(a+ b) + c′ = (a+ b+ c)′ 2nd equation defining +, (backward)
= (a+ (b+ c))′ induction assumption
= a+ (b+ c)′ 2nd equation defining +
= a+ (b+ c′) 2nd equation defining +, (backward)

Hence proves the associative law for addition. However, it is a bit complex to prove
the commutative law. We give it in the Appendix of the book.

Figure 1.5: Commutative law of addition in geometry. Turn upside down or mirror the
upper figure.

Exercise 1.2

1. Define 1 as the successor of 0, prove a · 1 = a holds for all natural numbers;

2. Prove the distributive law for multiplication;

3. Prove the associative and commutative laws for multiplication.

4. How to verify 3 + 147 = 150 with Peano axioms?

5. Give the geometric explanation for distributive, associative, and commutative laws
of multiplication.

1.4 Structure of natural numbers
We can define more complex operations on top of addition and multiplication. One
example is summation: 0 + 1 + 2 + ...

sum(0) = 0
sum(n+ 1) = (n+ 1) + sum(n)

(1.5)

Another example is the factorial n!

fact(0) = 1
fact(n+ 1) = (n+ 1) · fact(n) (1.6)

They are similar to each other. Although artificial intelligence achieves incredible
result today, the machine can’t jump out of the system, as intelligent mind, to abstract in
a higher level. This is one of the most complex, powerful, and mysterious part in human
brain[5].

Corresponding to zero in natural number, both summation and factorial have a start
value. Summation starts from zero, factorial starts from one. For recursion, they both
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apply some operation to a number and its successor. For summation, it’s n′ + sum(n),
for factorial, it’s n′ · fact(n). If we abstract the start value as c, the recursive operation
as h, then we can use the same form for both.

f(0) = c
f(n+ 1) = h(f(n))

(1.7)

This scheme is called as structural recursion over the natural numbers. Below examples
show how it behaves over the first several numbers.

n f(n)
0 c
1 f(1) = h(f(0)) = h(c)
2 f(2) = h(f(1)) = h(h(c))
3 f(3) = h(f(2)) = h(h(h(c)))
... ...
n f(n) = hn(c)

Where hn(c) means applying operation h over c for n times. It’s an instance of the
more general primitive recursion([6], p5). Further, we can find it is related to the foldn
defined in (1.3).

f = foldn(c, h) (1.8)

There are three variables in the original foldn definition, why are there only two
appeared? We can actually write it as f(n) = foldn(c, h, n). When we bind the first two
variables to foldn, it turns to be a new function accepts one argument. We can consider
it as foldn(c, h)(n).

We call foldn the fold operation on natural numbers. When c is zero and h is succ,
we get a sequence of natural numbers:

zero, succ(zero), succ(succ(zero)), ...succn(zero), ...

When c and h are other things than zero or succ, then foldn(c, h) describes some
isomorphism4 to natural numbers. Here are some examples.

(+m) = foldn(m, succ)

This is the operation to increase a number by m. When applying to the natural
numbers, it generates an isomorphic sequence of m,m+ 1,m+ 2, ..., n+m, ...

(·m) = foldn(0, (+m))

This is the operation to multiply a number by m. When applying to the natural
numbers, it generates an isomorphic sequence of 0,m, 2m, 3m, ..., nm, ...

m() = foldn(1, (·m))

This is the operation to take the power for a number m. When applying to natural
numbers, it generates an isomorphic sequence of 1,m,m2,m3, ...,mn, ...

Can we use the abstract tool foldn to define the summation and factorial? Observe
the below table.

4The formal definition of isomorphism will be given in later chapter. Different from the mathematic
definition, here it means the similarity of the form.
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n 0 1 2 3 ... n′

sum(n) 0 1 + 0 = 1 2 + 1 = 3 3 + 3 = 6 ... n′ + sum(n)
n! 1 1 × 1 = 1 2 × 1 = 2 3 × 2 = 6 ... n′ · (n!)

We know that h need to be a binary operation as it manipulates n′ and f(n). To solve
it, we define c as a pair (a, b)5. Then define some kind of ‘succ’ operation on the pair.
We also need functions to extract a and b from the pair.

1st(a, b) = a
2nd(a, b) = b

(1.9)

With these setup, we can define summation:

c = (0, 0) Starting pair
h(m,n) = (m′,m′ + n) Succeed the 1st; Add the successor and the 2nd
sum = 2nd · foldn(c, h)

Starting from (0, 0), below table gives the steps for summation.

(a, b) (a′, b′) = h(a, b) b′

(0, 0) (0 + 1 = 1, 1 + 0 = 1) = (1, 1) 1
(1, 1) (1 + 1 = 2, 2 + 1 = 3) = (2, 3) 3
(2, 3) (2 + 1 = 3, 3 + 3 = 6) = (3, 6) 6

... ... ...
(m, sum(m)) (m+ 1,m+ 1 + sum(m)) sum(m+ 1)

Similarly, we can define factorial with foldn.

c = (0, 1) Starting pair for factorial
h(m,n) = (m′,m′n) Iteration for factorial
fact = 2nd · foldn(c, h)

Here we use the symbol ‘·’ to ‘connect’ the 2nd function and the foldn(c, h) function.
We call it function composition. f · g means firstly apply g to the variable, then apply f
on top of the result. That is (f · g)(x) = f(g(x)).

Let’s see another example powered by this abstract tool, Fibonacci sequence. It’s
named after the medieval mathematician Leonardo Pisano. Fibonacci originates from
‘filius Bonacci’ in Latin. It means the son of (the) Bonacci. Fibonacci’s father was a
wealthy Italian merchant often did trading around North Africa and the Mediterranean
coast. Fibonacci traveled with him as a young boy. It was in Bugia (now Béjaïa, Alge-
ria) that he learned about the Hindu–Arabic numeral system. Fibonacci realized many
advantage of this numeral system. He introduced it to Europe through his book, the
Liber Abaci (Book of Abacus or Book of Calculation, 1202). European people were using
Roman numeral system before that. We can still see Roman numbers in clock plat today.
The Roman number for year 2018 is MMXVIII. Where M stands for 1000, so two M
letters mean 2000; X represents 10, V stands for 5, the three I mean 3. Sum them up, we
get 2018. The Hindu-Arabic numeral system introduced by Fibonacci is a positional dec-
imal numeral system. We are using it almost everywhere today. It uses the zero invented
by Indian mathematicians. Numbers at different position mean different value. This
advanced numeral system were widely used in business, for example converting different
currencies, calculating profit and interest, which were important to the growing banking
industry. It influenced the mathematics in Europe greatly.

5Also known as tuple in computer programs
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Fibonacci numbers is well known as a problem described in the Liber Abaci, although
it can be traced back to 200 BC in India. Assuming a newly born pair of rabbits, one
male, one female, are put in a field; rabbits are able to mate at the age of one month so
that at the end of its second month a female can produce another pair of rabbits; rabbits
never die and a mating pair always produces one new pair (one male, one female) every
month from the second month on. Then how many pairs will there be in one year?

When start, there is a pair in the first month. In the second month, there is a new
born pair. In total there are two pairs. In the third month, the matured pair produces
another pair, while the new born in the previous month are still young. In total, there are
2 + 1 = 3 pairs. In the fourth month, the two pairs of matured rabbits produce another
two pairs of baby. Plus the three pairs in the third month, there are total 3 + 2 = 5
pairs. Repeating it gives a sequence of numbers.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

(a) The length of the squares give a Fi-
bonacci sequence

(b) Leonardo Pisano, Fibonacci (1175-
1250)

It’s easy to find the pattern of this sequence. From the third number, every number
is the sum of the previous two. We can understand the reason behind it like this. Let
there be m pairs of rabbits in the previous month, and n pairs in this month. As the new
additional n−m pairs are all new born, the rest m pairs are mature. In the next month,
the n−m pairs grow mature; while the m pairs of big rabbits produce another m pairs of
baby rabbits. The total pairs in the next month is the sum of big and baby rabbits, which
is (n −m) +m +m = n +m. With this deduction, we can give the recursive definition
of Fibonacci numbers.

F0 = 0
F1 = 1
Fn+2 = Fn + Fn+1

(1.10)

The starting numbers are defined as 0 and 1 by convention6. As Fibonacci numbers
start from a pair of natural numbers, and the recursive relation also uses a pair of elements,
we can use our abstract tool foldn to define Fibonacci sequence7.

F = 1st · foldn((0, 1), h)
h(m,n) = (n,m+ n)

(1.11)

Can this definition be realized in the computer programs in real world? Is it too
6If start from 1 and 3, it produces the Lucas sequence 1, 3, 4, 7, 11, 18, ...
7We’ll give another different definition of Fibonacci numbers in the chapter about infinity.
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idealistic? Below is a real piece of Haskell program implements Fibonacci numbers8. Run
command fib 10 outputs the 10th Fibonacci number, 559.
foldn z _ 0 = z
foldn z f (n + 1) = f (foldn z f n)

fib = fst . foldn (0, 1) h where
h (m, n) = (n, m + n)

Exercise 1.3

1. Define square for natural number ()2 with foldn;

2. Define ()m with foldn, which gives the m-power of a natural number;

3. Define sum of odd numbers with foldn, what sequence does it produce?

4. There is a line of holes (infinite many) in the forest. A fox hides in a hole. It moves
to the next hole every day. If we can only check one hole a day, is there a way to
catch the fox? Prove this method works. What if the fox moves more than one hole
a day[7]?

Figure 1.7: Cover of PWW (Proof Without Words), part

1.5 Isomorphism of natural numbers
We’ve seen the examples that natural numbers can be isomorphic to its subsets, like
odd and even numbers, squares, and Fibonacci numbers. Natural numbers can also be
isomorphic to other things. One interesting example is the list in the computer programs.
Here is the definition of list.
data List A = nil | cons(A, List A)

As a data structure, a list of type A is either empty, represented as nil; or contains
two parts: one node with data of type A, and the rest sub-list. Function cons links an
element of type A to another list10. Figure1.8 shows a list of 6 nodes.

8After 2010, the n+k pattern matching is not supported any more in Haskell. We can modify it as:
foldn z f n = f (foldn z f (n-1))

9One line code to produce the first 100 Fibonacci numbers:
take 100 $ map fst $ iterate (λ(m, n)->(n, m + n)) (0, 1)

10The name cons comes from the Lisp naming convention.
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nil

Figure 1.8: Linked-list

Because every node links to the next one or nil, list is also called as ‘linked-list’. In
the tradition of computer programs, linked-list is often defined through the record data
structure11, for example:

Node of A:
key: A
next: Node of A

We can also understand the list as isomorphism of natural numbers. According to
the first Peano axiom, nil is corresponding to zero; Based on the second Peano axiom,
for any list, we can apply cons, to link a new element of type A to the left. We can
treat cons corresponding to succ to the natural numbers. There are two different things.
First, list is augmented with elements of type A. List cons(1, cons(2, cons(3, nil)))
and cons(2, cons(1, cons(3, nil))); List cons(1, cons(4, cons(9, nil))) and
cons('a', cons('b', cons('c', nil))) are all different lists. Second, new element
is not added to the right at tail, but is added to the left on head. Different from the
intuition, the list grows to the left but not to the right.

It’s not convenient to represent long list with nested cons. We simplify cons(1,
cons(2, cons(3, nil))) to [1, 2, 3], and use symbol ‘:’ for cons. This list can also be
written as 1:[2, 3] or 1:(2:(3:nil)). When type A is character, we use string in quote to
represent this special type of list. For example, “hello” is the simplified form for [’h’, ’e’,
’l’, ’l’, ’o’].

Similar to add defined for natural numbers, we can define the concatenation for lists
as the following.

nil ++ y = y
cons(a, x) ++ y = cons(a, x++ y)

(1.12)

There are two rules for list concatenation. First, empty list concatenates any list
produces the same list; second, when concatenate the ‘successor’ of a list to another one,
it equals to firstly concatenate the two lists, then take the successor. Compare to the add
for natural numbers, the definition of list concatenation is mirrored symmetric.

nil ++ y = y a+ 0 = a
cons(a, x) ++ y = cons(a, x++ y) a+ succ(b) = succ(a+ b)

Figure 1.9: The list concatenation and natural number adding are mirrored symmetric.

With the hint of symmetry, we can prove the associative law for list concatenation
through the induction axiom. To prove (x++ y)++ z = x++(y++ z), we first prove it holds
for x = nil.

(nil ++ y) ++ z = y ++ z 1st equation of ++
= nil ++ (y ++ z) 1st equation of ++ (backward)

For the induction case, assume (x ++ y) ++ z = x ++ (y ++ z) holds. We want to prove
that ((a : x) ++ y) ++ z = (a : x) ++ (y ++ z).

11In most cases, the data stored in list have the same type. However, there is also heterogeneous list,
like the list in Lisp for example.
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((a : x) ++ y) ++ z = (a : (x++ y)) ++ z 2nd equation of ++
= a : ((x++ y) ++ z) 2nd equation of ++
= a : (x++ (y ++ z)) induction assumption
= (a : x) ++ (y ++ z) 2nd equation of ++ (backward)

With this, we proved the list concatenation is associative. Different from the natural
numbers however, list concatenation is not commutative12. For example [2, 3, 5]++[7, 11] =
[2, 3, 5, 7, 11], but when change the order, the result is [7, 11] ++ [2, 3, 5] = [7, 11, 2, 3, 5].

Consider the similarity to the natural numbers, we can also define the abstract folding
operation for lists. Corresponding to the abstract start value c and the abstract binary
operation h, we define the recursive scheme as below.

f(nil) = c
f(cons(a, x)) = h(a, f(x))

(1.13)

As the next step, let f = foldr(c, h), then we can abstract the list folding. We name
it as foldr to call out the folding starts from right to left.

foldr(c, h, nil) = c
foldr(c, h, cons(a, x)) = h(a, foldr(c, h, x))

(1.14)

We can define varies of list manipulations with foldr. The followings are to sum and
multiply all the elements in list.

sum = foldr(0,+)
product = foldr(1,×) (1.15)

We can understand how sum behaves with examples. First is about empty list,
sum([]) = foldr(0,+, nil) = 0. Then the list with some elements:

sum([1, 3, 5, 7]) = foldr(0,+, 1 : [3, 5, 7])
= 1 + foldr(0,+, 3 : [5, 7])
= 1 + (3 + foldr(0,+, 5 : [7]))
= 1 + (3 + (5 + foldr(0,+, cons(7, nil))))
= 1 + (3 + (5 + (7 + foldr(0,+, nil))))
= 1 + (3 + (5 + (7 + 0)))
= 16

We can measure the length of the list with sum. It essentially maps a list to a natural
number.

one(a) = 1
length = sum · foldr(0, one) (1.16)

Where function one is called as constant function. It always returns 1 for whatever
variables. We can use |x| = length(x) to represent the length of a given list. The next
example shows we can use foldr to define list concatenation.

(++y) = foldr(y, cons) (1.17)

It is corresponding to the (+m) operation for natural number. Further, similar to the
multiplication of natural numbers, we can define the ‘multiplication’ for lists, concatenate
all sub-lists in a list.

concat = foldr(nil,++) (1.18)
12This is the reason why we avoid using symbol + for concatenation. But many programming languages

use the + sign. It causes potential issues in practice.
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When apply concat([[1, 1], [2, 3, 5], [8]]), the result is [1, 1, 2, 3, 5, 8]. At the end of this
section, we’ll define two important list operations with foldr, filtering and mapping13.
Filter is to compose a new list from the elements that satisfy a given predication. In
order to realize filtering, we need introduce the conditional expression14. It’s written as
(p 7→ f, g). When give variable x, if the predication p(x) holds, then the result is f(x),
else it’s g(x). We also use if p(x) then f(x) else g(x) for conditional expression.

filter(p) = foldr(nil, (p · 1st 7→ cons, 2nd)) (1.19)

Let’s use an example to understand how this definition works. We want to select all
even numbers from a list filter(even, [1, 4, 9, 16, 25]). Like expansion process in sum, the
filtering expands to h(1, h(4, h(9, ...))) till the right end cons(25, nil). According to the
definition of foldr, the result is c when the list is nil. So the next step is to compute
h(25, nil), where h is the conditional expression. When apply even · 1st to the pair
(25, nil), function 1st picks 25, as it’s odd, the predication even does not hold. Based on
the conditional expression, 2nd is evaluated and gives the result nil. Then we enter the
upper level to compute h(16, nil). Function 1st extracts the number 16, as 16 is even, the
predicate even holds, so the conditional expression sends to cons(16, nil), which produces
the list [16]. Then we enter one more upper level to compute h(9, [16]), the conditional
expression sends to 2nd, which again produces [16]. The computation enters to h(4, [16])
next. The conditional expression sends to cons(4, [16]), which produces the list [4, 16].
The computation finally reach to the top level h(1, [4, 16]). The conditional expression
sends to 2nd, which produces the final result [4, 16].

The concept of mapping is to transform every element in one list to another value
through a function f , and form a new list. That ismap(f, {x1, x2, ..., xn} = {f(x1), f(x2), ..., f(xn)}.
It can be defined with foldr as below.

map(f) = foldr(nil, h)
h(x, c) = cons(f(x), c)

(1.20)

We call the operation that applies a function to the first value in a pair as ‘first’, that
is first(f, (x, y)) = (f(x), y). We’ll come back to it in the chapter of category theory.
With first, map can be defined as map(f) = foldr(nil, cons · first(f)).

Exercise 1.4

1. What does the expression foldr(nil, cons) define?

2. Read in a sequence of digits (string of digit numbers), convert it to decimal with
foldr. How to handle hexadecimal digit and number? How to handle the decimal
point?

3. Jon Bentley gives the maximum sum of sub-vector puzzle in Programming Pearls.
For integer list {x1, x2, ..., xn}, find the range i, j, that maximizes the sum of xi +
xi+1 + ...+ xj . Solve it with foldr.

4. The longest sub-string without repeated characters. Given a string, find the longest
sub-string without any repeated characters in it. For example, the answer for string
“abcabcbb” is “abc”. Solve it with foldr.

13Different from one to one mapping, the map defined here is one direction only. For example, the map
from a string to its length is one direction. The reverse map does not exist.

14Also known as McCarthy conditional form, or McCarthy formalism. It was introduced by the com-
puter scientist, the inventor of Lisp, John McCarthy in 1960.
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1.6 Form and structure

Figure 1.10: Raphael, School of Athens (part)

We illustrated several conclusions with geometry figures in this chapter, like the as-
sociative law, the commutative law, and the Fibonacci spiral. We want to express the
beauty of isomorphism. Aristotle said “The chief forms of beauty are order and symme-
try and definiteness, which the mathematical sciences demonstrate in a special degree.”
(Metaphysic) Like geometry, with Peano’s work, natural numbers can also be built on
top of the axioms. We use the similarity of natural numbers and lists to demonstrate
the beauty of symmetry. When the Italian Renaissance artist Raphael created the world
famous fresco School of Athens, he used the same approach of isomorphism by inventing
a system of iconography. Many ancient Greece philosophers were illustrated with the
figures in Raphael’s time of Renaissance. The center figures are Plato and his student
Aristotle. Of which Plato is depicted in the image of Leonardo da Vinci; Aristotle is
in the image of Giuliano da Sangallo. They were all great artists in Renaissance. The
elder Plato is walking alongside Aristotle with his right hand figure point up, while Aris-
totle is stretching his hand forward. It is popularly thought that their gestures indicate
central aspects of their philosophies, for Plato, his Theory of Forms, and for Aristotle,
his empiricist views, with an emphasis on concrete particulars. Plato argues a sense of
timelessness while Aristotle looks into the physicality of life and the present realm. Below
the steps in the middle, the great philosopher Heraclitus leans the box and meditates.
He is famous for the thoughts about simple dialectics and materialism. The image of
Heraclitus is another great artist Michelangelo in Renaissance. The front left is centered
on the great mathematician Pythagoras. He is writing something. On the right side of
Pythagoras is a blond young man in a white cloak, considered to be Francisco Maria
della Rovere. He was Ulbino’s future Grand Duke. The center of the bottom right is the
great mathematician Euclid with a compass in hand (or Archimedes in other opinion), he
is surrounded by Ptolemy, the great astronomer with the celestial sphere in hand. The
opposite is the painter Raphael’s fellow villager, the architect Bramante. The one who
wore a white hat on the right is the painter Sodom, the young man next to him with half
head and a hat on his head, is the painter, Raphael himself. This reminds us the great
musician Bach, who wrote his name B-A-C-H in his work ‘The Art of Fugue’ (Die Kunst
der Fuge in German). School of Athens reflects the ancient Greece art and philosophy
with the figures in the time of Renaissance. It is the multiple levels of isomorphism of
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form and content, structure and thoughts. It is seen as “Raphael’s masterpiece and the
perfect embodiment of the classical spirit of the Renaissance”.

Exercise 1.5
1. In the fold definition of Fibonacci numbers, the successor is computed as (m′, n′) =

(n,m+ n). It is essentially matrix multiplication:(
m′

n′

)
=

(
0 1
1 1

)(
m
n

)
Where it starts from (0, 1)T . Then the Fibonacci numbers is isomorphic to natural
numbers under the matrix multiplication:(

Fn

Fn+1

)
=

(
0 1
1 1

)n (
0
1

)
Write a program to compute the power of 2-order square matrix, and use it to give
the n-th Fibonacci number.
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Chapter 2

Recursion

GNU means GNU’s Not Unix

–Richard Stallman

Pythagoras (about 570BC
- 490BC)

People learn our world with numbers. In previous chap-
ter, we introduced Peano axioms, and things that are iso-
morphic to natural numbers, like the list data structure in
programming. Natural number is a fundamental tool, how-
ever, our building still need some corner stones. We accept
the recursive definition without proof of its correctness, like
the factorial for example.

fact(0) = 1
fact(n+ 1) = (n+ 1)fact(n)

Why does recursion work? What is the theory of recur-
sion? Could we formally express recursion? We’ll explore
these questions in this chapter.

2.1 Everything is number
Pythagoras was the first mathematician and philosopher
who studied the universe with numbers. He is famous all
over the world in the theory named after him. He was born in the island of Samos, off
the coast of modern Turkey. Pythagoras might have learnt from Thales of Miletus. With
Thales suggestion, he went to oriental to learn about mathematics. He spent 13 years (22
years in other sayings) in Egypt. After the Persian Empire conquered Egypt, Pythagoras
went eastward to Babylon with the army. He learned mathematics and astronomy from
the Babylonians. Pythagoras might also arrive in India. Wherever he went, Pythagoras
learned from the local scholars to enrich his knowledge. He did not only study hard, but
also thought deeply. After long time of study, Pythagoras formed his own thoughts[8].

Pythagoras returned his hometown after long journey abroad and began to give lec-
tures. Around 520BC, he left Samos, possibly because he disagreed with the local tyranny.
He arrived in the Greek colony of Croton (southern Italy today). At Croton, he won
trust and admiration of people, and founded the philosophical school of Pythagoreanism.
Many prominent members of his school were women. The school was devoted to study
astronomy, geometry, number theory, and music. They are called quadrivium, affected
more than 2000 years of European education[10]. Quadrivium reflects the Pythagoreans’

17
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philosophy, that everything is number. The planetary motion corresponds to geometry,
while geometry is built on top of numbers. Numbers are also connected with music. The
so-called Pythagoreans, who were the first to take up mathematics, not only advanced
this subject, but saturated with it, they fancied that the principles of mathematics were
the principles of all things. said Aristotle in Metaphysics. Pythagoras is the first one
discovered the pattern of octave in mathematics. Pythagoras was revered as the founder
of mathematics and music1.

The Pythagoreans believed all things were made of numbers. They studied the num-
bers and the their connection to nature. They developed the early number theory, one of
the most important area in mathematics. The pythagreans classified the natural numbers,
defined many important concepts including even and odd numbers, prime and composite
numbers and so on. They found some numbers equal to the sum of their proper postive
divisors2, and named them as perfect numbers. For example 6 = 1 + 2 + 3, while 1, 2,
3 are the all three divisors of 6. Pythagoreans found the first two perfect numbers3. The
smallest one is 6, the next is 28 (28 = 1 + 2 + 4 + 7 + 14). The Pythagorean also found
a class of figurate numbers4, when they formed geometry figure with stones.

1 3 6 10

Figure 2.2: Triangular number

2 6 12 20

Figure 2.3: Oblong number (number of rectangle)

Figure 2.2 and 2.3 demonstrate the triangular numbers and oblong numbers (rectangle
numbers). It’s easy to figure out that the oblong number is two times of the corresponding
triangle number. While the triangle number is the sum of the first n postive integers. By
this way, the Pythagoreans found the formula to calculate the sum of postive integers.

1 + 2 + 3 + ...+ n =
1

2
n(n+ 1)

1There are different sayings about Pythagoras’ death. His teachings of dedication and asceticism are
credited with aiding in Croton’s victory over the neighboring colony. After the victory, a democratic
constitution was proposed, but the Pythagoreans rejected it. The supporters of democracy roused the
populace against them. An attack was made upon them in some meeting-place. The building was set
on fire, and many of the members perished; Different sources disagree regarding whether Pythagoras was
killed, or if he managed to flee to Metapontum, where he lived out the rest of his life.

2The proer postive divisors are those positive divisors less than the number
3Also known as complete numbers or ideal numbers. Euclid proved a formation rule (Euclid’s Element,

Book IX, proposition 35) whereby q(q+1)/2 is an even perfect number whenever q is a prime of the form
2p − 1 for prime p—what is now called a Mersenne prime. Much later, Euler proved that all even perfect
numbers are of this form. This is known as the Euclid–Euler theorem.

4The Pythagorean studied mathematics by making figures with small stones. The English word cal-
culus comes from the Greek word stone[8].
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The Pythagoreans also found the odd number could be represented in gnomon5 shape
as shown in figure 2.4. And the first n gnomon shapes form a square, as in figure 2.5. By
this way, they found the formula to calculate the sum of n-odd numbers.

1 + 3 + 5 + ...+ (2n− 1) = n2

1 3 5 7

Figure 2.4: Gnomon number

1 4 9 16

Figure 2.5: Square number and gnomon numbers

This is the answer to the exercise problem in chapter 1. With these facts, the
Pythagoreans found there were many things could be explained in numbers. Given two
strings under the same tension, it’s said Pythagras found the tune was harmonic if the
ratio of their lengths is an integer. He developed the earlist music theory based on this. It
seemed that music and mathematics were totally different things, while finally Pythagoras
concluded that music was mathematics. Such unexpected relationship impacted Pythago-
ras greatly. He guessed that all things could be explained with integers or the ratio of
integers. The Pythagoreans started to find more and more things connected to nunbers,
they believed the meaning of the whole universe was the harmonic of numbers, and de-
veloped the phylosophy based on number. This led to the attempt to build the geometry
also on top of the numbers, so the overall mathematics is based on integers.

The Pythagoreans’ most famous achievement is the Pythagoras theorem. However,
we’ll see later, this theorem is a double-edged sward. It led to a recursive circle, and
revealed the loophole of the idea that everything is number. In order to understand this,
we need introduce the concept of commensurable and the Euclidean algorithm. To build
the geometry on top of the numbers, The Pythagoreans defined how to measure a line
segment with another, if segment A can be represented by duplicating segment V finite
times, we say V measures A. It means the length of one segment is the integer times of
the other. There can be varies of measurements for a given line. When one can use the
same segment to measure different lines, it has to be the common measure. That is to say
if and only if segment V can measure both A and B, it is the common measure of them.
The Pythagoreans believed for any two segments, there must be a common measure. If
this was true, then the whole geometry can be built on top of numbers.

5The word “gnomon” originally in Babylonia it probably meant and upright stick whose shadow was
used to tell time. In Pythagoras’ time it meant a carpenter’s square. It also meant what was left over
from a square when a smaller square was cut out of one corner. Later Euclid extended from square to
parallelogram([9], p31).
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Figure 2.6: One of the methods to prove the Pythagoras theorem. The areas in white are
same.

2.2 The Euclidean algorithm
As there can be mutliple common measures, we define the biggest one as the greatest
common measure. Formally speaking, if segment V is the common measure of A and B,
and V is greater than any other common measures, we say V is the greatest common
measure of A and B. Given two segments, how to find the greatest common measure?
There is a famous acient recursive method, called the Euclidean algorithm can solve
this problem. It is named after the great ancient Greek methematician Euclid6. This
algorithm is defined as proposition 3, in book X7 of Euclid’s Elements[11].

2.2.1 The Euclid’s Elements

Euclid, About 300BC

Euclid of Alexandria is the most prominent ancient
Greek mathematician, often referred as “father of geom-
etry”. His Elements is one of the most influential works
in the history. However, little is known of Euclid’s life
except that he taught at Alexandria in Egypt. The year
and place of his birth and death are unknown. Pro-
clus, the last major Greek philosopher who lived around
450AD introduced Euclid briefly in his Commentary on
the Elements. He mentioned an interesting story about
Euclid. When Ptolemy I of Alexandria (king of Egypt
323BC - 283BC) grew frustrated at the degree of effort
required to master geometry via Eculid’s Elements, he
asked if there was a shorter path, Euclid replied there
is no royal road to geometry. This becomes the learn-
ing maxim of eternal. Another story told by Stobaeus
said someone who had begun to learn geometry with
Euclid, when he had learnt the first theorem, asked Eu-
clid “What shall I get by learning these things?” Euclid said “Give him three pence since
he must make gain out of what he learns”. Euclid disagreed with the narrow practical

6The Euclidean algorithm was also developed independently in ancient India and China. The Indian
mathematician Aryabhata used this method to solve the Diophantine equation around the end of the
5th centry. The Euclidean algorithm was treated as a special case of the Chinese remainder theorem in
Sunzi Suanjing. Qin Jiushao gave the detailed algorithm in his Mathematical Treatise in Nine Sections
(数书九章) in 1247.

7The same algorithm for integers is also defined as propostion 1, book VII. However, the algorithm
for segements covers the integer case.
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view of learning[11].
From ancient time to the late 19th century, people considered the Elements as a perfect

example of correct reasoning. Although many of the results in Elements originated with
earlier mathematicians, one of Euclid’s accomplishments was to present them in a single,
logically coherent framework, making it easy to use and easy to reference, including a
system of rigorous mathematical proofs that remains the basis of mathematics 23 centuries
later. More than a thousand editions have been published, making it one of the most
popular books after the Bible. Even today, Elements is still widely taught in school8 as
one of the basic way to train logic reasoning[8].

2.2.2 Euclidean algorithm
Proposition 2.2.1 (Euclid’s Elements, Book X, Proposition 3). To find the greatest
common measure of two given commensurable magnitudes.

The solution Euclid gave only uses recursion and subtraction. It means the greatest
common measure can be solved only with ruler and compass essentially. This algorithm
can be formalized as the following9.

gcm(a, b) =

 a = b : a
b < a : gcm(a− b, b)
a < b : gcm(a, b− a)

(2.1)

Suppose segement a and b are comensurable. If they are equal, then either one is the
greatest common measure, we can return a as the result. If a is longer than b, we can
use compass to intercept b from a repeatedly (through recursion), then find the greatest
common measure for the intercepted segment a′ and b; otherwise if b is longer than a,
we intercept a from b repeatedly, and find the greatest common measure for the segment
a and b′. Figure 2.8 illustrated the steps when processing two segments. We can also
use this algorithm to process two integers 42 and 30. The detailed steps are list in the
following table.

gcm(a, b) a b

gcm(42, 30) 42 30
gcm(12, 30) 12 30
gcm(12, 18) 12 18
gcm(12, 6) 12 6
gcm(6, 6) 6 6

Repeatedly subtracting b from a to get a′, it’s exactly the definition of division with
remainder: a′ = a − ba/bcb, or denoted as a′ = a mod b. We can use the division with
remainder to replace the repeated subtraction in the origin Euclidean algorithm. Besides
that, when one magnitude is an integer multiple of the other, for example b ≤ a and
a can be divided by b, we know the greatest common measure is b. As the remainder
a mod b = 0, we define gcm(0, b) = gcm(b, 0) = b. We can compare a and b first, then
exchange them if a < b. As we know a mod b must be less than b, when recursively
compute the next time, we can directly exchange them as gcm(b, a mod b). This gives the
improved Euclidean algorithm.

gcm(a, b) =

{
b = 0 : a

otherwise : gcm(b, a mod b) (2.2)

8The most popular version is edited by the French mathematician Lagrange (1736 - 1813).
9Term ‘gcm’ is the abbreviation for the greatest common measure. When a and b are integers, we

often use ‘gcd’ as the abbreviation for the greatest common divisor.
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a

b

a′ = a− b

b

a′

b′ = b− 2a′

a′′ = a′ − b′

b′

Figure 2.8: Euclidean algorithm example steps.

Why does this algorithm give the greatest common measure? We prove it with two
steps. At step one, we prove this algorithm gives the common measure. Suppose b ≤ a,
let the integer q0 be the quotient, r0 be the remainder. We have a = bq0 + r0. As we get
the common measure if r0 is zero, let’s focus on the case that r0 is not zero. We can next
express b as b = r0q1 + r1, and list the similar equations unless the remainder is not zero.

a = bq0 + r0
b = r0q1 + r1
r0 = r1q2 + r2
r1 = r2q3 + r3

...

This list grows as long as a and b are commensurable. But it is not infinite. This is
because every time, we use compass to intercept integer times. The quotients are integers.
And all the remainders are less than the relative divisors. We have b > r0 > r1 > r2 >
... > 0. As the remainder can not be less than zero, and the initial magnitude is finite,
we must reach to rn−2 = rn−1qn within finite steps.

Next is to prove rn−1 can measure both a and b. Obviously rn−1 measures rn−2

by definition. Consider the last second equation rn−3 = rn−2qn−1 + rn−1, since rn−1

measures rn−2, rn−1 also measures rn−2qn−1. So it measures rn−2qn−1 + rn−1, which
equals to rn−3. Similiarily, we can prove rn−1 measures the left hand of every equations
step by step upwards to b and a. Thus proves the answer found by Euclidean algorithm,
rn−1 is the common measure of a and b. Suppose the greatest common measure is g, we
have rn−1 ≤ g.

The next step is to prove, for any common measure c for a and b, it measures rn−1.
As c is the common measure, both a and b can be expressed with it, let a = mc, b = nc,
where m and n are some integers. Then the first equation a = bq0 + r0 can be denoted
as mc = ncq0 + r0, as we know r0 = (m − nq0)c, it means c measures r0. Similarily, we
can prove c measures r1, r2, ..., rn−1 one by one. Thus we proved any common measure
also measures rn−1, so the greatest one g also measures rn−1. It means g ≤ rn−1.
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Combine the results from step one and two, that rn−1 ≤ g and g ≤ rn−1, we deduce the
greatest common measure g = rn−1. It does not only prove the correctness of Euclidean
algorithm, but also tells us g is the greatest common measure for every pair of magnitudes:

g = gcm(a, b) = gcm(b, r0) = ... = gcm(rn−2, rn−1) = rn−1 (2.3)

(a) Recursively cut off squares

(b) Tile the small squares

A geometric description of Euclidean algorithm

2.2.3 Extended Euclidean algorithm
The extended Euclidean algorithm is an extension to the Euclidean algorithm. For given
magnitude a and b, in addition to compute their greatest common measure g, it can also
find two integers x and y, that satisfy Bézout’s identity ax+ by = g. Why does Bézout’s
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identity10 always hold? Here is a proof. We can construct a set, consists of all the positive
linear combinations of a and b.

S = {ax+ by|x, y ∈ Z and ax+ by > 0}

(a) Étienne Bézout, 1730 - 1783 (b) Claude Gaspard Bachet de Méziriac,
1581–1638, who first discovered and proved
Bézout’s idendity for integers.

For line segments, S must not be empty, as it contains at least a (where x = 1, y = 0)
and b (where x = 0, y = 1). Since all the elements in S are positive, there must exist the
smallest one. We denote the smallest element as g = as + bt. We’ll next show that g is
the greatest common measure of a and b. Let’s express a as the quotient and remainder
of g.

a = qg + r (2.4)

Where the remainder 0 ≤ r < g. It is either zero or belongs to set S, this is because:

r = a− qg From (2.4)
= a− q(as+ bt) Definition of g
= a(1− qs)− bqt Change to combination of a and b

It means r can be expressed as the linear combination of a and b, therefore, if it’s not
zero, it must belong to set S. However, this is not possible because we previously defined
g as the least postive element in S, while r is less than g. To avoid this contradition, we
know that r has to be zero. From equation (2.4), g measures a. With the same method,
we can prove g also measures b. Therefore g is the common measure of them. We’ll next
prove that g is the greatest one. Consider an arbitrary common measure c for a and b,
according to the definition, there exists integers m and n, that a = mc and b = nc. Then
g can be expressed as:

g = as+ bt The definition
= mcs+ nct c is common measure of a and b
= c(ms+ nt) g is multiple of c

10Bézout’s identity, or Bézout’s theorem was first found and proven by French mathematician Méziriac
(Claude Gaspard Bachet de Méziriac�1581–1638) for integers. Bézout proved it hold for polynomials.
Bézout identity can be extended to any Euclidean domain and Principle Idean Domain (PID).
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It means c measure g, so c ≤ g. It gives that g is the greatest common measure.
Summarize the above, we complete the proof of Bézout’s identity. There exists integers,
that ax + by = g holds. Besides that, we know the greatest common measure is the
minimum postive values among all the linear combinations.

We can deduce the extended Euclid algorithm with Bézout’s idendity.

ax+ by = gcm(a, b) Bézout’s idendity
= gcm(b, r0) Euclid algorithm (2.3)
= bx′ + r0y

′ Use Bézout’s idendity for b and r0
= bx′ + (a− bq0)y′ By a = bq0 + r0
= ay′ + b(x′ − y′q0) As linear combination of a and b
= ay′ + b(x′ − y′ba/bc) q0 as the quotient of a and b

This gives the recursive case: {
x = y′

y = x′ − y′ba/bc

The edge case happens when b = 0, we have gcm(a, 0) = 1a + 0b. Combine it with
the recursive case, we obtain the extended Euclidean algorithm.

gcmex(a, b) =


b = 0 : (a, 1, 0)

otherwise :
(g, y′, x′ − y′ba/bc)
��(g, x′, y′) = gcmex(b, a mod b)

(2.5)

Here is a puzzle can be solved with the extended Euclidean algorithm([14], p50). Given
two jars with capacity of 9 and 4 gallons, how to get 4 gallons of water from the river?

There are some variances of this puzzle. The capacities can be other nunmbers. It’s
said the French mathematician Simèon Denis Poisson solved this puzzle when he was a
child.

There are total six operations between two jars. Denote the big one as A with capacity
of a; denote the small one as B with capacity of b:

• Fill the big jar A;

• Fill the small jar B;

• Empty the big jar A;

• Empty the small jar B;

• Pour the water from jar A to jar B;

• Pour the warer from jar B to jar A.

The last two operations stop when either jar is empty or full. Below example shows a
list of operations (suppose b < a < 2b hold).

No matter what sequence of operations, the water in the jars can always be expressed
as ax+by where x and y are integers. It means the water we get is the linear combination
of a and b. From the proof of Bézout’s identity, we know the smallest positive number
of this linear combination is exactly the greatest common measure g. We can tell if it is
possible to get c gallons of water if and only if c can be measured by g11. We assume c
is not greater than the capacity of the bigger jar.

11If and only if c can be devided by the greatest common divisor g for integer capacities.
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A B Operation
0 0 start
0 b fill B
b 0 pour from B to A
b b fill B
a 2b - a pour from B to A
0 2b - a empty A
2b - a 0 pour from B to A
2b - a b fill B
a 3b - 2a pour from B to A
... ... ...

Table 2.1: The water in the jars and the operations.

For example, we can’t get 5 gallons of water with two jars of 4 gallons and 6 gallons.
This is because the greatest common divisor of 4 and 6 is 2. Which can’t divide 5. (In
other words, we can’t get odd galons of water with two jars of even gallons capacities.)
If a and b are coprime, i.e. gcd(a, b) = 1, then we are sure to be able to get any natural
number c gallons of water.

Although we can tell that the puzzle is solvable when g measures c, we still don’t
know the detailed steps to pour water. Actually, the steps can be decuded as far as we
can find two integers x and y, satisfying ax + by = c. If x > 0, y < 0, it means we need
fill jar A x times, and empty jar B y times; Else if x < 0, y > 0, we need empty jar A x
times, and fill jar B y times.

For instance, let the capacity of the big jar a = 5 gallons, the small jar b = 3 gallons.
We want to get c = 4 gallons of water. As 4 = 3 × 3 − 5, so x = −1, y = 3. We can
arrange the steps as below table.

A B operation
0 0 start
0 3 fill B
3 0 pour from B to A
3 3 fill B
5 1 pour from B to A
0 1 empty A
1 0 pour from B to A
1 3 fill B
4 0 pour from B to A

Table 2.2: Steps to get 4 gallons of water.

We can see from these steps, jar B is filled 3 times, jar A is emptied 1 time. The
next question is how to find x and y that satisfies ax+ by = c. With the extended Euclid
algorithm, we can find a solution to Bézout’s identity ax0 + by0 = g. Since c is m times
of the greatest common measure g, we can make a solution by multiplying x0 and y0 m
times. 

x1 = x0
c

g

y1 = y0
c

g

From this solution, we can generate all the integer solutions to the Diophantine equa-
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tion 12. 
x = x1 − k

b

g

y = y1 + k
a

g

(2.6)

Where k is an integer. Thus we get all the integer solutions to the water jar puzzle.
Further, we can find a special k, that minimizes |x|+ |y|, it gives the fast pouring steps13.
Below is the example Haskell program solves this puzzle.

import Data.List
import Data.Function (on)

−− Extended Euclidean Algorithm
gcmex a 0 = (a, 1, 0)
gcmex a b = (g, y', x' - y' ∗ (a `div` b)) where

(g, x', y') = gcmex b (a `mod` b)

−− Solve the linear Diophantine equation ax + by = c
solve a b c | c `mod` g ̸= 0 = (0, 0, 0, 0) −− no solution

| otherwise = (x1, u, y1, v)
where

(g, x0, y0) = gcmex a b
(x1, y1) = (x0 ∗ c `div` g, y0 ∗ c `div` g)
(u, v) = (b `div` g, a `div` g)

−− Optimal by minimize |x| + |y|
jars a b c = (x, y) where

(x1, u, y1, v) = solve a b c
x = x1 - k ∗ u
y = y1 + k ∗ v
k = minimumBy (compare `on` (λi → abs (x1 - i ∗ u) +

abs (y1 + i ∗ v))) [-m..m]
m = max (abs x1 `div` u) (abs y1 `div` v)

After figure out x and y, we can populate the steps as in Appendix of this chapter.

2.2.4 Influence of Euclidean algorithm
Euclidean algorithm was developed to find the the greatest common divisor for two inte-
gers in spirit of all things are made of numbers. However, Euclid applied it to the abstract
geometric magnitudes. We see the separation of geometry from numbers14. Geometry
was not built on top of numbers, but developed independently to solve the generic prob-
lems not limit to numbers. The ancient Greek formed such a tradition, that even for any
conclusion about number, one need to give proof in terms of geometry. It kept influencing
people till the 16th Century. For example, the Italian mathematician Gerolamo Cardano

12Naming after the acient Greek mathematician, Diophantus of Alexandira (about 200 - 284AD). In
his book Arithmetica, he made important advances in mathematical notation, becoming the first person
known to use algebraic notation and symbolism. Diophantus is often called “the father of algebra” because
he contributed greatly to number theory, mathematical notation, and because Arithmetica contains the
earliest known use of syncopated notation[12].

13One way to get this special k is to represent the solution as two lines in Cartesian plain. When taking
absoluted value, it flips the lower part to the x-axis. Then we can find the k minimizes |x|+ |y| from the
figure.

14This is the reason why we name Euclide algorithm gcm, but not gcd.
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still used geometric cubic filling method in his book Ars Magna when solving the cubic
and four-order equations in 1545[12].

The Euclidean algorithm is the most famous recursive algorithm. German mathe-
matician, Dirichlet, the founder of analytic number theory, commented in his Lectures
on Number Theory15, The structure of the whole number theory is based on the same
foundation, which is the greatest common divisor algorithm. The modern RSA cryptosys-
tem16 utilizes the extended Euclidean algorithm directly. We demonstrated how to figure
out the integer solutions for binary linear Diophantine equation ax + by = c. Find the
greatest common measure g. There’s no integer solution if g does not divide c. Otherwise,
for the x0, y0 satisfying Bézout identity, duplicate them c/g times to get a special solution
x1, y1, then define the common solution of x = x1 − kb/g, and y = y1 + ka/g.

Hippasus of Metapontum,
about 5th Centry, BC.

The Euclid algorithm is a double-edges sword. The
powerful recursive method can be applied to attack the
corner stone of the concept that all things are made of num-
bers. The Pythagoreans believed any two numbers must
have common measurement, because all things and phe-
nomenon are essentially ratio of integer to integer. About
470AC, Hippasus, a student in Pythagorean school at-
tempted to find the common measure for the side and diag-
onal of a square. However, no matter how small magnitude
being used, he could not measure them. It surprised the
people, and led to a crisis for the foundation of Pythagore-
ans. There is also saying that, Hippasus was inspired by
the mysterious pentagram logo of Pythagorean school. The
Pythagoreans use pentagram as the school’s badge and li-
aison symbol. There was a story about a school member
met difficulty in a foreign land, poor and sick. The land-
lord helped to take care of him. He drew a pentagram on the door before dead. A few
years later, someone in Pythagorean school saw the sign. He asked about the past, paid
the landlord a lot of money then left[8]. In the Walt Disney’s film Donald in Mathmagic
Land in 1959, Duck Donald met Pythagoras and his friends, they discovered the principles
of music scale together. After shaking hands with Pythagoras, who then vanishes, Donald
found on his hand a pentagram, the symbol of the secret Pythagorean society. As shown
in figure 2.12, there is another story said that Hippasus also found segment AC and AG
couldn’t be commensurable.

Figure 2.12: The recursive pentagram

15Lejeune Dirichlet, J.P.G.; Richard Dedekind (1863). Vorlesungen über Zahlentheorie. F. Vieweg und
sohn.

16RSA is the world first public-key asymmetric crypto algorithm developed by Ron Rivest, Adi Schamir,
and Leonard Adelman in MIT, 1977. The acronym RSA is made of the initial letters of their surnames.
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The Scottish mathematician George Chrystal reconstructed Hippasus’s proof in the
19th Century. Using reduction to absurdity, suppose there exists a segment c that mea-
sures both the side and diagonal of the square. From the definition of the common
measurement, let the side be mc, and the diagonal be nc, where both m,n are inte-
gers. As shown in figure 2.13, taking the side as radius, we draw an arc with A as the
center, which intersects the diagonal AC at point E. Then draw a line from E that is
perpendicular to the diagonal, and intersects side BC at point F .

Figure 2.13: The side and the diagonal of the square.

As it is an arc, the length of AE equals to the square side. Thus the length of segment
AE is (m − n)c. Because EF is perpendicular to AC, while angle ∠ECF spans 45°,
therefore the triangle ECF is the isosceles right triangle. Since the isosceles triangle has
two sides of equal length, we have |EC| = |EF | holds. Observe two right triangles4AEF
and 4ABF . Side AE equals AB, and AF is the shared side, they congruent. Then we
have |EF | = |FB|. As the result, the three segments |EC| = |EF | = |FB|. Therefore
the length of FB is also (m − n)c, while segment CF can be get by deducing FB from
CB, which is nc− (m− n)c = (2n−m)c. We list all the results as below.{

|AC| = mc

|AB| = nc

{
|CF | = (2n−m)c

|CE| = (m− n)c

The big square The small square
As both m,n are integers, it’s obvious that c measures both the diagonal CF and side

CE of the small square. Using the same method as above, we can draw another even
smaller square. Repeating it leads to smaller and smaller infinite squares. But c measures
both diagonal and side for every square. Since m,n are finite integers, we can’t endlessly
duplicate this process, which leads to absurdity. Therefore, our assumption is not true,
there is no common measure for the diagonal and side of a square.

It is a loophole in Pythagorean theory about all things are made of numbers, there
exists segments that can’t be represented by ratio of integers. It was said Hippasus was
murdered due to this finding. The Pythagoreans didn’t want that secret be disclosed,
they drowned Hippasus at sea. The discovery of irrational number greatly boost math-
ematics. The ancient Greek philosophers and mathematicians considered this problem
seriously. After the work of Odoxos, Aristotle, and Euclid, they finally strictly defined
the incommensurable magnitudes, and incorporate it into the ancient Greek mathematics
through geometry.
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Proposition 2.2.2 (Euclid’s Elements, Book X, Proposition 2). If, when the less of two
unequal magnitudes is continually subtracted in turn from the greater that which is left
never measures the one before it, then the two magnitudes are incommensurable.

It’s interesting that the incommensurable is defined by checking whether the Euclidean
algorithm terminates or not. Because Euclidean algorithm is recursive, it means the
condition is essentially whether recursion terminates or not. It brings our attention to
the nature of recursion, what’s recursion? How to represent recursion in a formal way?

Exercise 2.1

1. The Euclidean algorithm described in this section is in recursive manner. Try to
eliminate recursion, implement it and the extended Euclidean algorithm only with
loop.

2. Most programming environments require integers for modular operation. However,
the length of segment isn’t necessarily integer. Implement a modular operation that
manipulates segments. What’s about its efficiency?

3. In the proof of Euclidean algorithm, we mentioned “Remainders are always less
than the divisor. We have b > r0 > r1 > r2 > ... > 0. As the remainder can not
less than zero, and the initial magnitude is finite, the algorithm must terminate.”
Can rn infinitely approximate zero, but not be zero? Does the algorithm always
terminate? What does the precondition that a and b are commensurable ensure?

4. For the binary linear Diophantine equation ax + by = c, let x1, y1 and x2, y2 be
two pairs of solution. Proof that the minimum of |x1− x2| is b/ gcm(a, b), and the
minimum of |y1 − y2| is a/ gcm(a, b)

5. For the regular pentagon with side of 1, how long is the diagonal? Proof that in the
pentagram shown in figure 2.12, the segment AC and AG are incommensurable.
What’s their ratio in real number?

2.3 The λ calculus
Recursion would not be a problem if performed by human. As the intelligent beings, we
are able to enter the next level of computation when meet recursion, and return back
to the upper level after that. However, it matters when instruct machine to compute.
Several computation models were developed in 1930s independently. The most famous
ones are Turing machine (1935 by Turing), λ-calculus (1932 - 1941 by Church, and 1935
by Stephen Kleene. The Greek letter λ is pronounced as lambda), and recursive function
(1934 by Jacques Herbrand and Kurt Gödel).

Turing was an English mathematician, computer scientist, and logician. Turing was
highly influential in the development of theoretical computer science, providing a formal-
ization of the concepts of algorithm and computation with the Turing machine, which
can be considered a model of a general-purpose computer. Turing is widely considered to
be the father of theoretical computer science and artificial intelligence[15].

During the Second World War, Turing worked for the Government at Bletchley Park,
Britain’s codebreaking center that produced Ultra intelligence. He devised a number of
techniques for speeding the breaking of German ciphers, including improvements to the
pre-war Polish bombe method, an electromechanical machine that could find settings for
the Enigma cipher machine. Turing played a pivotal role in cracking intercepted coded
messages that enabled the Allies to defeat the Nazis in many crucial engagements. It has
been estimated that this work shortened the war in Europe by more than two years and
saved millions lives.
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(a) Alan Mathison Turing, 1912 - 1954 (b) Alonzo Church, 1903 - 1995

After the war, Turing worked on the Automatic Computing Engine (ACE), which
was one of the first designs for a stored-program computer. the Pilot ACE executed its
first program on 1950, and a number of later computers around the world owe much
to it. The full version of ACE was built in 1958 after his death. From 1950, Turing
worked in “Computing Machinery and Intelligence”. He addressed the problem of artificial
intelligence, and proposed an experiment that became known as the Turing test, an
attempt to define a standard for a machine to be called “intelligent”. The idea was that a
computer could be said to “think” if a human interrogator could not tell it apart, through
conversation, from a human being. Turing was elected a Fellow of the Royal Society (FRS)
in 1951 at the age of 39. Since 1966, the Turing Award has been given annually by the
Association for Computing Machinery (ACM) for technical or theoretical contributions
to the computing community. It is widely considered to be the computing world’s highest
honour, equivalent to the Nobel Prize.

The formalization of computation itself is called Metamathematics. This attempt led
to a great work, the λ-calculus. There’s a interesting story about the name. When
considering the computation itself, people realized we should distinguish function and its
evaluation result. For example, if we say ‘if x is odd, then x×x is also odd’, we mean the
evaluated value of the function; while if we say ‘x× x is monotonic increasing’, we mean
the function itself. To differentiate these two concepts, we write function as x 7→ x × x,
but not only x× x.

The ‘ 7→’ symbol was introduced by Nicolas Bourbaki17 around 1930. Russel and
Whitehead used the notation x̂(x × x) in their famous book Principia Mathematica in
1910s. Church wanted to use a similar notation in 1930s, however, the publisher he worked
with didn’t know how to print the ‘hat’ symbol on top of x. Alternatively, they printed
the uppercase Greek letter Λ before x, and later changed to lowercase letter λ. That is
the reason why we see it’s in the form of λx.x × x today[16]. Although the x 7→ x × x
presentation is widely accepted, people tend to use Church’s notation particularly in logic
and computer science, and named it as the ‘λ-calculus’.

17Nicolas Bourbaki is the collective pseudonym of a group of (mainly French) mathematicians. Their
aim is to reformulate mathematics on an extremely abstract and formal but self-contained basis with
the goal of grounding all of mathematics on set theory. Many famous mathematician participants the
Bourbaki group, like Henri Cartan, Claude Chevalley, Jean Dieudonné, André Weil, Laurent Schwartz,
Jean-Pierre Serre, Alexander Grothendieck, and Serge Lang.
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2.3.1 Expression reduction
We start from some simple example of λ-calculus to demonstrate how to formalize the
computation and algorithm. For basic arithmetic operations of plus, minus, times, and
subtraction, we treat them also as functions. For instance 1 + 2 can be considered as
applying function ‘+’ to two arguments 1 and 2. Following the traditions to write function
name first, this expression can be written as (+ 1 2). The process of expression evaluation
can be viewed as a series of reduction steps. For example:

(+ (× 2 3) (× 4 5))
→ (+ 6 (× 4 5))
→ (+ 6 20)
→ 26

The arrow symbol → read as ‘reduce to’. Note that when apply f to variable x, we
don’t write it as f(x), but as f x. For multi-variable functions, like f(x, y), we don’t write
as (f (x, y)), but use the uniformed way as ((f x) y). Therefore, three plus four should
be written as ((+ 3) 4). Expression (+ 3) actually represents a function, it adds 3 to any
argument passed in. As a whole, this expression means ‘apply function + to a variable
that equals to 3, it gives a function as result. Then apply this function to another variable
that equals to 4’. By this means, we treat every function only takes one argument. This
method was first introduced by Schönfinkel (1889 - 1942) in 1924, then widely used by
Haskell Curry from 1958. It is known as Currying[17].

There will be too many parentheses if written strictly in Curried form. To make
it concise, we’ll omit some parentheses without causing ambiguity. For example we’ll
simplify ((f ((+ 3) 4)) (g x)) to (f (+ 3 4) (g x)).

We need define the meanings for basic components when perform expression reduction.
For arithmetic operation, we’ve defined plus and multiplication in chapter 1 on top of
Peano axioms. We can use the similar approach to define their reversed operation for
minus and divide. For the numbers as operands, we can define them with zero and the
successor. With these being clarified in theory, we realize the arithmetic operators and
numbers built-in for performance consideration. The logic and, or, not, Boolean constant
value true and false are also typically built-in realized. The conditional expression can
be realized in McCarthy form like (p 7→ f, g) introduced in chapter 1, or defined as the
below if form:

if true then et else ef 7→ et
if false then et else ef 7→ ef

Where both et, ef are expressions. For the compound data structure defined by cons
in chapter 1, we also need define functions to extract every part:

head (cons a b) 7→ a
tail (cons a b) 7→ b

2.3.2 λ abstraction
We told the story about how λ symbol was introduced. λ abstraction is a method to
construct function. Let’s use an example to understand every component in λ abstraction.

(λx.+ x 1)

A λ abstraction contains four parts. First is the λ symbol, it means we start to define
a function. The next part is the variable. It’s x in this example. The variable is called
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formal parameter. Following the formal parameter, there is a dot. The rest part is the
function body that extends to the right most. It’s + x 1 in our example. We can add
parentheses to avoid ambiguity about the right boundary of the body. For our example,
it will be (+ x 1). To make it easy for memory, we write the four parts in λ abstraction
corresponding to natural language as below.

(λ x . + x 1)
↑ ↑ ↑ ↑

That function of x which add x to 1

We’ll also use the equivalent x 7→ x+1 form for convenience. Note that λ abstraction
is not equivalent to λ expression, λ abstraction is only one type of λ expressions. λ
expression also has two other types:

<exp> = <constant> built-in constants, numbers, Boolean etc.
| <variable> variable names
| <exp> <exp> applications
| λ <variable> . <exp> λ abstraction

2.3.3 λ conversion rules
When evaluate the below λ expression, we need to know the value for the global variable
y. On the other hand, we needn’t know the value of variable x, because it appears as the
formal parameter.

(λx.+ x y) 2

Different from y, we say x is bound to λx. When apply this λ abstraction to argument
2, we replace x by 2. On the contrary, y is not bound by λ, we say y is free. Overall, the
expression value is determined by the unbound free variable values. A variable is either
bound or free. Here is another example:

λx.+ ((λy.+ y z) 3) x

We can make it clear with the arrow notation:

x 7→ ((y 7→ y + z) 3) + x

We see that both x and y are bound, while z is free. In the more complex expression,
the same variable name may be bound, and at the same time appear as free. For example:

+ x ((λx.+ x 1) 2)

Written in the arrow form:

x+ ((x 7→ x+ 1) 2)

We see that, x is free in its first occurrence, but is bound in the second occurrence. The
same name represents for different variable can cause confusion in a complex expression.
To solve the name conflict, we introduce the first λ conversion rule, α-conversion. Where
α is the Greek letter alpha. This rule allows us to rename a variable in λ expression to
another one. For example:

λx.+ x 1
α←→ λy.+ y 1

or written in the arrow form:
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x 7→ x+ 1
α←→ y 7→ y + 1

We mentioned that λ abstraction is a method to construct function. How to apply
the constructed function to specific parameter? In order to do that, we need the second λ
conversion rule, the β-conversion. When using this rule, we replace all the free occurrence
of formal parameter in function body to its value. For example:

(x 7→ x+ 1) 2

According to the conversion rule, applying the λ abstraction x 7→ x + 1 to the free
variable 2 gives 2 + 1. 2 + 1 is the result when replace the formal parameter x in function
body x+ 1 with 2. It can be written in arrow form as below:

(x 7→ x+ 1) 2
β−→ 2 + 1

We call the conversion along the direction of this arrow as β-reduction. When using it
reversely, we call it β-abstraction. Let’s get familiar with β-reduction with more examples.
First is about multiple occurrences of the formal parameter.

(x 7→ x× x) 2 β−→ 2× 2
−→ 4

Here’s another example that the formal parameter does not occur.

(x 7→ 1) 2
β−→ 1

This is a typical example of constant projection. The next is a multiple steps reduction.

(x 7→ (y 7→ y − x)) 2 4
β−→ (y 7→ y − 2) 4 Currying
β−→ 4− 2 Inner reduction
−→ 2 Built-in arithmetic

We see that the reduction from inner to outer is a repeated Currying process. We
write the multiple steps reduction in a simplified way sometimes:

(λx.(λy.E)) ⇒ (λx.λy.E)

Where E represents the function body. Written in the arrow form:

(x 7→ (y 7→ E)) ⇒ (x 7→ y 7→ E)

When applying a function with β-reduction, the parameter can be another function.
For example:

(f 7→ f 5) (x 7→ x+ 1)
β−→ (x 7→ x+ 1) 5
β−→ 5 + 1
−→ 6

The last conversion rule we’ll introduce is the η-conversion. It’s defined as the follow-
ing:

(λx.F x)
η←→ F

or written in the arrow form:
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x 7→ F x
η←→ F

Where F is a function, and x is not the free variable in F . Here is an example:

(λx.+ 1 x)
η←→ (+ 1)

In this example, the λ-expressions in both sides of η-conversion behave same. When
apply to a parameter, the effect is add 1 to it. The reason why x must not be the free
variable in F in η-conversion is to avoid wrongly converting expression like (λx. + x x)
to (+ x). We can see that x is the free variable in (+ x). It’s also necessary to limit F
to function, otherwise it could convert 1 to (λx.1 x), which does not make sense. We call
the transform from left to right as η-reduction.

So far, we introduced the three conversion rules for λ expression. Summarized as
below:

1. α-conversion to change the name for formal parameters;

2. β-reduction to realize function application;

3. η-reduction to eliminate redundant λ abstraction.

Besides these three rules, we call the built-in functions, like arithmetic operations,
logic and, or, not as δ-conversion. Some materials about λ-calculus uses another simplified
notation. When perform β-reduction for expression (λx.E) M , we use M to replace x in
E, written the result as E[M/x]. Then the three conversion rules can be simplified as
below:

conversion λ form arrow form
α (λx.E)

α←→ λy.E[y/x] x 7→ E
α←→ y 7→ E[y/x]

β (λx.E) M
β←→ E[M/x] (x 7→ E) M

β←→ E[M/x]

η (λx.E x)
η←→ E x 7→ E x

η←→ E

All these conversions can be applied in both directions, left to right or reversed. It
raises two questions by nature. First, will the reduction terminate? Second, do the
different reduction steps lead to the same result? For the first question, the answer is not
deterministic. The reduction process is not ensure to terminate18. Here is an example
of endless loop: (D D), where D is defined as λx.x x. Or written in the arrow form:
x 7→ x x. If we attempt to simplify it, we’ll get the following result:

(D D) → (x 7→ x x) (x 7→ x x) Substitute with definition of D
α−→ (x 7→ x x) (y 7→ y y) α-conversion for the second λ abstraction
β−→ (y 7→ y y) (y 7→ y y) replace x with the second expression
α−→ (x 7→ x x) (x 7→ x x) replace y with x
→ (x 7→ x x) (x 7→ x x) repeat the above steps
...

18Note the answer is not ’no’, but none deterministic. It’s essentially as same as the Turing halting
problem. There is no determined process can tell if a given reduction process terminates. We’ll introduce
the details in the last chapter.
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Figure 2.15: Church-
Rosser confluence

A more interesting example is (λx.1) (D D), if firstly
reduce the (λx.1) part, it terminates with the result of 1.
But if firstly reduce (D D) part, it loops endlessly as shown
above. Church and his student Rosser19 proved a pair of
theorems that completely answered the second question.

Theorem 2.3.1 (Church-Rosser theorem 1). If E1 ↔ E2,
then there exists E that E1 → E and E2 → E.

It means, if the reduction process terminates, then the
results confluence. Varies reduction steps give the same re-
sult, as shown in figure 2.15. Church and Rosser proved the
second theorem on top of the first one. We need the concept
of the normal form to understand it. The normal form, also
known as β normal form, is an expression that we can’t do
any further β-reduction. It means all the functions have already been applied. A more
strict normal form is the β − η normal form, which neither β-reduction, nor η-reduction
can be performed. For example, (x 7→ x+1) y is not normal form, because we can apply
β-reduction to change it to y + 1. The following defines the normal form recursively.

normal((λx.y) z) = false can do further β-reduction
normal(λx.(f x)) = false can do further η-reduction

normal(x y) = normal(x) ∧ normal(y) Application: both function and parameter are normal forms
normal(x) = true others

Theorem 2.3.2 (Church-Rosser Theorem 2). If E1 → E2, and E2 is normal form, then
there exists normal order to convert from E1 to E2.

Note this theorem requires the reduction process terminates. The normal order is the
order to reduce from left to right, from outer to inner.

2.4 Definition of recursion
With λ abstraction, we can define some simple functions. How to define recursive func-
tion? The factorial for example can be recursively defined as below:

fact = n 7→ if n = 0 then 1 else n× fact(n− 1)

But this is not a valid λ expression. The λ abstraction can only define anonymous
functions, while we don’t know how to name a function. Observe the recursive factorial
definition, it has the pattern like:

fact = n 7→ (...fact...)

Reversely using the β-reduction (i.e. β-abstraction), we can get:

fact = (f 7→ (n 7→ (...f...))) fact

19John Barkley Rosser Sr. 1907 - 1989. was an American mathematician and logician. Besides Church-
Rosser confluence theory, he also found the Kleene-Rosser paradox with Kleene. In number theory, he
developed what is now called “Rosser sieve” and proved Rosser theorem that the n-th prime number
pn > n lnn. Rosser gave a stronger form for the Gödel’s first incompleteness theorem. He improved the
none deterministic proposition to ‘For any proof to this proposition, there exists a shorter one for the
negated one.’
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It can be further abstract to:

fact = H fact (2.7)

where

H = f 7→ (n 7→ (...f...))

Note that after this conversion, H is not recursive any more. It is a normal λ expres-
sion. Observe the equation (2.7), it represents recursion. It is in equation form, which
reminds us about the differential equation. For example, solving the differential equation
y′ = sin(x) gives y = a− cos(x). If we can solve the equation F = H F , then we are able
to define factorial independently. Further observe this equation, it means when apply H
to F , the result is still F . Such concept is called fixed point in mathematics. We say
that F is the fixed point of H. Here’s another example: the fixed points for λ expression
x 7→ x× x are 0 and 1, this is because we have (x 7→ x× x) 0 = 0 and (x 7→ x× x) 1 = 1.

2.4.1 Y combinator
We want to figure out the fixed point for H, it’s obvious that the fixed point only depends
on H. To do that, we introduce a function Y . It accepts a function, then returns its fixed
point. Y behaves like this:

Y H = H (Y H) (2.8)

Y is called fixpoint combinator. By using Y , we define the solution to equation (2.7).

fact = Y H (2.9)

Such fact is a non-recursive definition. We can verify this solution as the following:

fact = Y H By (2.9)
= H (Y H) By (2.8)
= H fact Reverse of (2.9)

Y is so powerful that it can represent any recursive functions. However, it is still a
black box to us. We need realize it in λ abstraction.

Y = λh.(λx.h (x x)) (λx.h (x x)) (2.10)

Written in the arrow form:

Y = h 7→ (x 7→ h (x x))(x 7→ h (x x))

We are opening a magic box, let’s verify if Y in λ abstraction behaves as we expected:
Y H = H (Y H).

Proof.
Y H = (h 7→ (x 7→ h (x x))(x 7→ h (x x))) H Definition of Y

β←→ (x 7→ H (x x)) (x 7→ H (x x)) β-reduction, substitute h with H
α←→ (y 7→ H (y y)) (x 7→ H (x x)) α-conversion for the first half
β←→ H ((x 7→ H (x x)) (x 7→ H (x x))) β-reduction, substitute y with the second half
β←→ H (h 7→ (x 7→ h (x x)) (x 7→ h (x x)) H) β-abstraction, extract H as parameter
= H (Y H) Definition of Y
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Finally, let us define factorial with Y :

Y (f 7→ (n 7→ if n = 0 then 1 else n× f (n− 1)))

It is more significant in mathematics than in practice to define Y in λ abstraction. Y
is often realized as a built-in function in real environment, which directly converts Y H
to H (Y H).

2.5 The impact of λ calculus
The significant of the λ calculus is that it models the complex computation process
with a set of simple rules. Consider the way of representing the Euclidean algorithm
in λ expressions, then perform β-reduction to evaluate the result, it’s feasible although
looks complex from realization perspective. It does not limit to Euclidean algorithm,
but can represents any computable functions. People later proved that λ calculus and
Turing machine are equivalent. One advantage of λ calculus is that it only uses the
traditional function concept in mathematics. People used it in 1930s to formalize the
metamathematics. However, Kleene and Rosser proved that the original lambda calculus
was inconsistent in 1935. Subsequently, in 1936 Church isolated and published just the
portion relevant to computation, what is now called the untyped lambda calculus. In 1940,
he also introduced a computationally weaker, but logically consistent system, known as
the simply typed lambda calculus.

We showed how to use λ calculus to define arithmetic operations, logic operations, the
simple functions, and recursive functions. There is also an important thing, the composed
data structure, need be covered. Actually, λ calculus can define cons, head, and tail as
well:

cons = (λa.λb.λf.f a b)
head = (λc.c (λa.λb.a))
tail = (λc.c (λa.λb.b))

Written in the arrow form:

cons = a 7→ b 7→ f 7→ f a b
head = c 7→ c (a 7→ b 7→ a)
tail = c 7→ c (a 7→ b 7→ b)

Let’s verify that head (cons p q) = p holds.

head (cons p q) = (c 7→ c (a 7→ b 7→ a)) (cons p q)
β−→ (cons p q) (a 7→ b 7→ a)
= ((a 7→ b 7→ f 7→ f a b) p q) (a 7→ b 7→ a)
β−→ ((b 7→ f 7→ f p b) q) (a 7→ b 7→ a)
β−→ (f 7→ f 7→ f p q) (a 7→ b 7→ a)
β−→ (a 7→ b 7→ a) p q
β−→ (b 7→ p) q
β−→ p

It tells us that the composite data structure needn’t be built-in realized. We can use
λ to define them. The exercise of this chapter demands you to consider how to define
the natural numbers in Peano Axioms, the Boolean values, and the logic operators with
λ calculus.
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Exercise 2.2
1. Use λ conversion rules to verify tail (cons p q) = q�
2. We can define numbers with λ calculus. The following definition is called Church

numbers:
0 : λf.λx.x
1 : λf.λx.f x
2 : λf.λx.f (f x)
3 : λf.λx.f (f (f x))

: ...

Define the addition and multiplication operators for the Church numbers with
what we introduced in chapter 1.

3. The following defines the Church Boolean values, and the relative logic operators:
true : λx.λy.x
false : λx.λy.y
and : λp.λq.p q p

or : λp.λq.p p q
not : λp.p false true

where false is defined as same as the Church number 0. Use the λ conversion rules
to prove that: and true false = false. Please give the definition of if ... then ...
else ... expression with the λ calculus.

2.6 More recursive structures
We’ve completely defined the recursive functions and the basic pair data structures on
top of pure mathematics. We can next define complex data structures like the binary
trees.
data Tree A = nil | node (Tree A, A, Tree A)

This definition says, a binary tree of type A is either empty, or a branch node with
three parts: two sub-trees of type A, together with an element of type A. We often call
the two sub-trees as the left and right sub-trees. A is the type parameter, like natural
numbers for example. node(nil, 0, node(nil, 1, nil)) is a binary tree of natural numbers.
We can define the abstract fold operation foldt for binary trees.

foldt(f, g, c, nil) = c
foldt(f, g, c, node(l, x, r)) = g(foldt(f, g, c, l), f(x), foldt(f, g, c, r))

(2.11)

If function f maps variable of type A to B, we write its type as f : A→ B. The Curried
function foldt(f, g, c) has type of foldt(f, g, c) : Tree A → B, where the type of c is B;
the type of g is g : (B × B × B) → B, written in Curried form is g : B → B → B → B.
We can define the map function mapt for binary trees with the foldt function.

mapt(f) = foldt(f, node, nil) (2.12)

With the folding function, we can count the number of elements in a tree:

sizet = foldt(one, sum, 0) (2.13)

Where, one(x) = 1 is a constant function, it always returns 1 for any parameters.
sum is a ternary summation function defined as sum(a, b, c) = a+ b+ c.

Using the list defined in chapter 1, we can expand the binary trees to multi-trees as
below.
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data MTree A = nil | node (A, List (MTree A))

A multi-tree of type A is either empty, or a composite node, which contains an element
of type A, together with multiple sub-trees. The sub-trees are hold in a list. The abstract
tree folding operation recursively calls the list folding operation.

foldm(f, g, c, nil) = c
foldm(f, g, c, node(x, ts)) = foldr(g(f(x), c), h, ts)
h(t, z) = foldm(f, g, z, t)

(2.14)

Exercise 2.3
1. Define the abstract mapt for binary trees without of using foldt.
2. Define a function depth, which counts for the maximum depth of a binary tree.
3. Someone thought the abstract fold operation for binary tree foldt, should be de-

fined as the following:

foldt(f, g, c, nil) = c
foldt(f, g, c, node(l, x, r)) = foldt(f, g, g(foldt(f, g, c, l), f(x)), r)

That is to say g : (B × B) → B is a binary operation like add. Can we use this
foldt to define mapt?

4. The binary search tree (BST) is a special tree that the type A is comparable.
For any none empty node(l, k, r), all elements in the left sub-tree l are less than
k, and all elements in the right sub-tree r are greater than k. Define function
insert(x, t) : (A× Tree A)→ Tree A that inserts an element into the tree.

5. Can we define the mapping operation for multi-trees with folding? If not, how
should we modify the folding operation?

2.7 The recursive pattern and structure
Recursion exists both in the ancient Euclidean algorithm and in modern computer sys-
tems. The fascinating recursive pattern and structure also appear in various of arts in
human civilizations. For example in Islamic mosaic arts, shown in figure 2.16.

Figure 2.16: Zellige terracotta tiles in Marrakech (a city of the Kingdom of Morocco)

We can see the polygon patterns in the mosaic recursively contain smaller polygons.
It demonstrates the beauty of recursive geometric patterns through the colorful tiles. The
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small patterns form big stripes, which brings the varies of effects. Figure 2.17 is a sketch of
the famous Renaissance artist Leonardo da Vinci. It’s also a recursive pattern. Using the
same radius, he drew six interlaced circles along the centered one. They form a six-lobed
snowflake style figure. And they recursively form the same pattern in a bigger scope.
The right figure shows a pile of Chinese hand-made katydid cages. It demonstrated the
similar recursive pattern. The mesh of the cage is hexagonal. While the overall shape of
the cage is also hexagonal when viewed from the axial direction.

(a) A sketch of Leonardo da
Vinci

(b) Chinese katydid cages

Figure 2.17: The recursive pattern in art and artifact.

Not only in art, recursion also appears in music. For example, the polyphonic music
canon and fugue can have recursive musical texture. Canon is a contrapuntal music that
employs a melody with one or more imitations played after a given duration. The initial
melody is called the leader, while the imitative melody, which is played in a different
voice, is called the follower. The follower must imitate the leader, either as an exact
replication of its rhythms and intervals or some transformation thereof. The weaving of
the leader and followers, results in a continuous effect. Each part imitates the theme but
contains various changes, such as raising or lowering the pitch, retrograde overlapping,
faster (diminution) or slowing (augmentation), melody reflection, and so on.

Figure 2.18: Minuet of Haydn’s String Quartet in D Minor, Op. 76, No. 2

A fugue is like a canon, in that it is usually based on one theme which gets played
in different voices and different keys, and occasionally at different speeds or upside down
or backwards. However, the notion of fugue is much less rigid than that of canon, and
consequently it allows for more emotional and artistic expression. The telltale sign of a
fugue is the way it begins: with a single voice singing its theme. When it is done, then
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Figure 2.19: M.C. Escher, Drawing Hands, 1948

a second voice enters, either five scale-notes up, or four down. Meanwhile the first voice
goes on, singing the “countersubject”: a secondary theme, chosen to provide rhythmic,
harmonic, and melodic contrasts to the subject. Each of the voices enters in turn, singing
the theme, often to the accompaniment of the countersubject in some other voice, with
the remaining voices doing whatever fanciful things entered the composer’s mind. When
all the voices have “arrived”, then there are no rules. There are, to be sure, standard kinds
of things to do-but not so standard that one can merely compose a fugue by formula. The
two fugues in J.S. Bach’s Musical Offering are outstanding examples of fugues that could
never have been ”composed by formula”. There is something much deeper in them than
mere fugality[5].

Not only finite recursion, we can also find the infinite recursion in arts. Figure 2.19,
Drawing Hands is a lithograph by the Dutch artist M. C. Escher first printed in January
1948. Two hands mutual recursively are drawing each other. It an example of infinite
recursion. The upper hand is using a pencil drawing the lower hand, while the lower
hand, at the same time, is drawing the upper hand. The recursion is embedded loop by
loop endlessly.

The perfect combination of mathematical recursion and art is fractal. Kock snowflake
is a famous fractal curve, which can be generated by infinite recursion rules: For every
section, divided it into 3 equal parts, draw a equilateral triangle on top of the middle
section, then erase the bottom side of the triangle. Figure 2.20 shows the Kock snowflake
result after recursively applying this rule three times on a equilateral triangle. Another
famous fractal pattern is called Sierpinski triangle. The generation rule is to connect
all the three middle points of the side in a triangle recursively. Below figure shows the
Sierpinski triangle after recursively applying the rules four times.

(a) Recursive generate rules for Kock
snowflake

(b) Sierpinski triangle

Figure 2.20: Recursive generated fractal patterns.

We show another two fractal patterns as the close of this chapter. One is the fractal
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in human mind, Julia set; the other is a fractal in nature.

(a) Julia set fractal (b) Broccoli fractal

2.8 Further Reading
Mathematics: The Loss of Certainty by Morris Kline contains good introduction about
mathematics in ancient Greek. The Elements by Euclidean is the most famous classic
book. It contains the Euclidean algorithm. From Mathematics to Generic Program-
ming by Alexander Stepanov and Daniel E Ross gives varies of implementation of the
Euclidean algorithm. As more and more main stream programming environments adopt
lambda calculus, there are many materials about it. The Implementation of Functional
Programming Languages by Simon Peyton Jones is a good book introduced lambda cal-
culus in depth. Gödel, Escher, Bach: An Eternal Golden Braid by Douglas Hofstadter
intensively presents the unbelievable ideas of recursion and self-reference. It won the
Pulitzer Prize for general non-fiction and the National Book Award for Science.

2.9 Appendix: Example program for 2 water jars puz-
zle

After figure out the integer solutions for 2 water jars puzzle, we can generate the detailed
steps, and output them like table (2.2).

−− Populate the steps
water a b c = if x > 0 then pour a x b y

else map swap $ pour b y a x
where

(x, y) = jars a b c

−− Pour from a to b, fill a for x times, and empty b for y times.
pour a x b y = steps x y [(0, 0)]

where
steps 0 0 ps = reverse ps
steps x y ps@((a', b'):_)

| a' == 0 = steps (x − 1) y ((a, b'):ps) −− fill a
| b' == b = steps x (y + 1) ((a', 0):ps) −− empty b
| otherwise = steps x y ((max (a' + b' − b) 0,

min (a' + b') b):ps) −− a to b

Run this program, enter water 9 4 6, the best pour water steps are output as below:
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[(0,0),(9,0),(5,4),(5,0),(1,4),(1,0),(0,1),(9,1),(6,4),(6,0)]



Chapter 3

Symmetry

One must be able to say at all
times–instead of points, straight lines,
and planes–tables, chairs, and beer
mugs

——David Hilbert

Leonardo da Vinci, Vitru-
vian Man, 1490

Symmetry appears everywhere in our world. It is often
related to a sense of harmonious, order, pattern, beautiful
proportion and balance. We, as human is symmetric, left
and right, the sagittal plane divides our body into bilateral
halves. Vitruvian Man by Leonardo da Vinci is often used
as a representation of symmetry in the human body and
by extension, the natural universe. The beautiful butterfly,
the fish, and birds all represent the symmetry in biology.
In our civilization, people created symmetric artifacts, arts,
and buildings. The ancient clay jars are rotational symmet-
ric; the Arabic carpets and rags are rectangular symmetric;
the fine Chinese style window pane is radial symmetric. The
great buildings like Taj Mahal, the forbidden city are re-
flectional symmetric. We are surprised about the symmetry
in snowflakes, every one is unique, but all follow the same
hexagon symmetric pattern. When step in the garden in
spring, we see all kinds of the beautiful flowers with radial
symmetry; while in the woods in autumn, the matured fruits
and spikes, the colorful leaves demonstrate us an amazing
canvas in the language of symmetry.

In the great world of astronomy, the galaxy rotates its
symmetric arms; in the small world of particle, the symmet-
ric crystal lattice reflects light to tell us the mystical nature.
A meaningful palindrome poem leads to deep thinking, a rando variation music moves our
feeling. Our minds contain symmetric things, like connotation and denotation concepts,
like abstraction versus material. Mathematics is full of symmetric things in geometry, in
algebra, in equations, in curves. Programming is also about symmetry, push in and pop
out of a stack, computation scheduling, allocation and release. What is symmetry? How
to accurately define, or even measure symmetry?

Mathematician developed group to define, explain, and measure symmetry. And sur-
prisingly, some hard problems, like the solvability of equation is ultimately solved by

45
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revealing the symmetry of roots. Other famous problems, like the three classic geometric
problems in ancient Greece are also solved by this. To uncover the secret of symmetry,
we are going to follow the path in this chapter to the abstract algebra world of groups,
rings, and fields.

Humans gradually developed the habit to sort things. We classify similar things
together. The methods and properties those apply to the entire class are also valid for
every thing in it. In this way, we needn’t repeatedly solve the concrete individual problems
one by one, but solve the abstract problem as a whole. It greatly improved our ability to
understand the world.

In previous chapters, we generalized the abstract ‘folding’ operation from sum and
factorial for numbers. We observed their similar structures, abstracted zero in sum,
and one in factorial to unit element; then abstracted add and multiplication to binary
operation. As the result, we developed the fold operation for numbers in a higher level.
With this powerful tool, we then further solved a large sort of problems that are isomorphic
to natural number, such as the Fibonacci numbers.

For another example, we defined the abstract foldr operation for list in chapter 1.
With this tool, we can sum a list of numbers as sum = foldr(0,+); we can also multiply
them as product = foldr(1,×). In computer programming, there is a data structure
called ‘binary search tree’. We introduced about it in chapter 2. Binary search tree is
a special binary tree. Its elements are comparable1. For any branch node, all elements
in its left sub-trees are ahead of the element in this node; while all elements in its right
sub-trees are behind it. Due to this kind of ordering, we also call it ‘sorted binary tree’.
We can define insert operation for binary search tree as below:

insert(nil, x) = node(nil, x, nil)

insert(node(l, y, r), x) =

{
x < y : node(insert(l, x), y, r)

x > y : node(l, y, insert(r, x))

According to this definition, when insert element x to binary search tree, if the tree
is empty, the result is node(nil, x, nil); otherwise, we compare x with the element y in
the branch node. If x is ahead of y (the ‘<’ holds), then we recursively insert it to the
left sub-tree, else insert to the right sub-tree. Is there any similarity among the insertion,
sum, and factorial? Insertion is also a binary operation, nil can be considered as the unit
element. Then we can apply the abstract fold operation to turn a list of elements into a
binary search tree:

build = foldr(nil, insert)

Figure 3.2 shows the binary search tree generated when compute build [4, 3, 1, 8, 2, 16, 10, 7, 14, 9].
We have similar experience when developing the concept of add. The addition op-

eration was applied to specific things at first, like the fruits being collected, the prey
being hunted. People later abstracted the addition for numbers and removed the specific
meanings for things. Then we extended our understanding about numbers from integers
to fractions, although the detailed addition process is quite different. We need firstly
unify the denominators, then add the nominators together, and finally reduce the frac-
tion. People generalized the two different processes to the unified addition for rational
numbers. We learned to think about the essence and principles of addition. Every time
when people extended the concept of numbers, there was a new definition for addition.
Along this way, we defined the addition for real numbers and complex numbers. We
found the method established for abstract things without specific meanings had a greater

1The meaning of comparable is abstract. If the elements are numbers, we can compare which one is
bigger, if they are words, we can compare their lexicographical order.
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4
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1

2

7 16

10

9 14

Figure 3.2: The binary search tree generated from folding.

scope of application. Abstract method can solve a whole kind of problems rather than
the individual ones. Similar things happened in computer engineering. People developed
the object-oriented method, generic type system, and dynamic type system. All these are
sorts of mechanisms to support abstraction.

We should always ask an important question when developing abstract tools or generic
methods. ‘What is the applicable scope for this abstraction? When will the abstraction
be invalid?’ It could lead to ridiculous result if ignore this. One example is about the
sum of the infinite geometric series 1+x+x2+x3+ ... = 1/(1−x). It is so powerful that
people can solved the Zeno’s paradox2 with it. The mathematicians in the 17 Century
substituted x with -1, then got a result of 1− 1 + 1− 1 + ... = 1/2. While, someone had
a different idea that, S = (1− 1)+ (1− 1)+ ... = 0. And there was another different one:
S = 1+ (−1 + 1) + (−1 + 1) + ... = 1. There were people supported the result should be
1/2, because S = 1 − (1 − 1 + 1 − 1 + ...) = 1 − S, solving this equation gave S = 1/2.
The Italian mathematician Grandi (1671 - 1742) found more surprising results. By using
the infinite series:

1

1 + x+ x2
= 1− x+ x3 − x4 + x6 − x7 + ...

1

1 + x+ x2 + x3
= 1− x+ x4 − x5 + x8 − x9 + ...

...

Let x = 1, Grandi found the sum of the infinite series 1 − 1 + 1 − 1 + 1 − 1 + ...
could be 1/3, 1/4, ... Even the great mathematician Leibniz thought the result could be
0 or 1 with the same probability, therefore the ‘true’ value should be the average 1/2.
Grandi offered a new explanation in 1710: Two brothers inherited a priceless gem from
their father, who forbade them to sell it, so they agreed that it would reside in each
other’s museums on alternating years. If this agreement last for all eternity between the

2Here it is the Achilles and turtle paradox, which is one of the four famous paradoxes by Zeno, the
ancient Greek philosopher. Achilles was a hero in ancient Greek. Zeno supposed Achilles wanted to catch
up with the turtle ahead. When he ran to the position where the tortoise left, the tortoise had moved a
short distance forward. Achilles must continue to run to that new position, but the turtle moved forward
again. Repeated this process, Zeno argued that Achilles would never catch up the turtle. We’ll explain
Zeno’s paradox in detail in Chapter 5.
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brother’s descendants, then the two families would each have half possession of the gem,
even though it changed hands infinitely often[8]. People kept suffering from these strange
puzzles until the French mathematician Cauchy introduced the convergence concept for
infinite series.

This chapter introduces the basic abstract algebra structures. They are not only ab-
straction to numbers, but also the abstraction to concepts, properties, and relationships.
They are the most valuable things from many great thoughts and minds. Some contents
challenge our limit of abstract thinking. It’s quite common that you can’t grasp them
during the first time reading. I intended to add many stories about those great math-
ematicians, how they made breakthrough with unbelievable difficulties. I hope these
interesting stories could encourage you keep going forward.

3.1 Group

Gerolamo Cardano, 1501-1576

The group theory is originate from the history of equations. Equation is a powerful
tool developed in ancient time. From Rhind Mathematical Papyrus and Babylonian clay
tablets, we know that the ancient Egyptians and Babylonians mastered the method to
solve the linear and quadratic equations with one unknown. However, people didn’t find
the way to solve the generic cubic equations until the 16th Century. Several Italian math-
ematicians made great progress. Gerolamo Cardano finally published the radical solutions
to generic cubic equation and quartic in his 1545 book Ars Magna. It was not only about
to pursue higher and higher orders, but also along with the totally new understanding to
numbers in the past thousand years. All the negative roots were discarded because people
in that time believed they were meaningless. People also thought the coefficients must be
positive numbers. The equation x2 − 7x+8 = 0 is quite common today to us, but it had
to be written in form of x2+8 = 7x to ensure the coefficients are positive. After Cardano
list 20 different types of quartic equation in Ars Magna, he said there were another 67
types of quartic equation could not be given because the coefficient is either negative or
zero[18]. It was the French mathematician François Viète who unified different forms
of equations. Although most people thought the negative square root made no sense,
Cardano found an interesting thing when solve the cubic equations like x3 = 15x + 4.
His formula gives the intermediate result of 3

√
2 +
√
−121+ 3

√
2−
√
−121. Then it could

next generate the three rational roots of 4, −2±
√
3. Such problems expand our view to

the irrational number, and finally, the great German mathematician Carl Friedrich Gauss
developed the fundamental theorem of algebra3.

3Gauss proved the fundamental theorem of algebra several times along his life. in 1799 at age of 22, he
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Gauss (1777-1855) in 10 Mark

People encountered surprisingly difficulty when seek for radical solutions for generic
quintic and higher order equations in the next 300 years. The breakthrough happened
in the 19th Century with unexpected result. The French young Genius Évariste Galois
developed an innovative idea, he was able to determine a necessary and sufficient condition
for a polynomial to be solvable by radicals while still in his teens4.

Galois, 1811 - 1832

It was a tragedy in Galois’ short 20 years life, but his work laid the foundations of ab-
stract algebra. Galois was born on October 25th, 1811 in Paris. His mother, the daughter
of a jurist, was a fluent reader of Latin and classical literature and was responsible for
her son’s education for his first twelve years. In 1823, he entered a prestigious school in
Paris. At the age of 14, he began to take a serious interest in mathematics. He found
a copy of Elements adapted by Legendre which, it is said, he read ”like a novel” and
mastered at the first reading. At 15, he was reading the original papers of Joseph-Louis
Lagrange, which likely motivated his later work on equation theory, yet his classwork

proved in his doctor thesis that every single-variable polynomial of degree n with real coefficient has at
least one complex root, thus deduced the single-variable equation of degree n has and only has n complex
roots (counted with multiplicity for the same ones). Gauss gave another two different proofs in 1815 and
1816. In 1849, to celebrate the 50th anniversaries that Gauss received his doctor degree, he published
the fourth proof and extend the coefficient to complex number.

4Around 1770, Joseph Louis Lagrange began the groundwork that unified the method to solve equa-
tions, he introduced the new idea to permute roots in the form of Lagrange resolvents. But he didn’t
consider the combination among the permutations. In 1799 The Italian mathematician Paolo Ruffini
marked a major improvement, developing Lagrange’s work on permutation theory. However, in general,
Ruffini’s proof was not considered convincing, and was discovered later incomplete. In 1824, the young
Norwegian mathematician Niels Henrik Abel first completed proof demonstrating the impossibility of
solving the general quintic equation in radicals. It is called ‘Abel–Ruffini theorem’ nowadays. We know
that there are radical solutions to the special quintic equation x5−1 = 0. In what condition a polynomial
is solvable in radicals? This problem was completely solved by Galois[19].
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remained uninspired, and his teachers accused him of affecting ambition and originality
in a negative way.

In 1828, he attempted the entrance examination for the École Polytechnique, the
most prestigious institution for mathematics in France at the time, without the usual
preparation in mathematics, and failed for lack of explanations on the oral examination.
In that same year, he entered the École Normale, a far inferior institution for mathematical
studies at that time, where he found some professors sympathetic to him.

In 1829 April, Galois’ first paper, on continued fractions, was published. It was around
the same time that he began making fundamental discoveries in the theory of polynomial
equations. He submitted two papers on this topic to the Academy of Sciences. But both
were rejected due to some reasons5

On July 28, 1829, Galois’ father, a mayor of the village, committed suicide after a bitter
political dispute with the village priest[20]. On August 3, Galois made his second and last
attempt to enter the Polytechnique, and failed yet again. It is undisputed that Galois was
more than qualified; however, accounts differ on why he failed. More plausible accounts
state that Galois made too many logical leaps and baffled the incompetent examiner,
which enraged Galois. Having been denied admission to the Polytechnique, Galois took
the Baccalaureate examinations in order to enter the École Normale. He passed. His
examiner in mathematics reported, “This pupil is sometimes obscure in expressing his
ideas, but he is intelligent and shows a remarkable spirit of research.”

Eugène Delacroix, Liberty Leading the People, 1830, Louvre, Paris

In February 1830, following Cauchy’s suggestion Galois submitted his memoir on equa-
tion theory to the Academy’s secretary Joseph Fourier, to be considered for the Grand
Prize of the Academy. Unfortunately, Fourier died soon after, and the memoir was lost.
The prize was awarded that year in June to Niels Henrik Abel6 posthumously and also
to Carl Gustav Jacob Jacobi[12].

5There was saying that the paper was lost by Cauchy. Actually, Cauchy refereed these papers, but
refused to accept them for publication for reasons that still remain unclear. However, in spite of many
claims to the contrary, it is widely held that Cauchy recognized the importance of Galois’ work, and
that he merely suggested combining the two papers into one in order to enter it in the competition for
the Academy’s Grand Prize in Mathematics. Cauchy, an eminent mathematician of the time, though
with political views that were at the opposite end from Galois’, considered Galois’ work to be a likely
winner[20].

6The young Norwegian mathematician Abel died on April 6, 1829. He made pioneering contributions in
a variety of fields. His most famous single result is the first complete proof demonstrating the impossibility



3.1. GROUP 51

Galois lived during a time of political turmoil in France. The July Revolution broke
out in France in 18307. While their counterparts at the Polytechnique were making
history in the streets, Galois and all the other students at the École Normale were locked
in by the school’s director. Galois was incensed and wrote a blistering letter criticizing
the director, which he submitted to the Gazette des Écoles, signing the letter with his
full name. Although the Gazette’s editor omitted the signature for publication, Galois
was expelled.

Galois quit school and joined the staunchly Republican artillery unit of the National
Guard. He divided his time between his mathematical work and his political affiliations.
Due to controversy surrounding the unit, soon after Galois became a member, on Decem-
ber 31, 1830, the artillery of the National Guard was disbanded out of fear that they might
destabilize the government. He was arrested the on May 10, 1831, but was acquitted on
June 15. On the Bastille Day (July 14), Galois was at the head of a protest, wearing the
uniform of the disbanded artillery, and came heavily armed with several pistols, a rifle,
and a dagger. He was again arrested. On October 23, he was sentenced to six months in
prison for illegally wearing a uniform. Early in 1831, Siméon Poisson asked him to submit
his work on the theory of equations, which he did on January 17, 1831. Around July 4,
1831, Poisson declared Galois’ work “incomprehensible”, declaring that “The argument is
neither sufficiently clear nor sufficiently developed to allow us to judge its rigor8”. While
Poisson’s report was made before Galois’ July 14 arrest, it took until October to reach
Galois in prison. It is unsurprising, in the light of his character and situation at the time,
that Galois reacted violently to the rejection letter, and decided to abandon publishing
his papers through the Academy and instead publish them privately through his friend
Auguste Chevalier. Apparently, however, Galois did not ignore Poisson’s advice, as he
began collecting all his mathematical manuscripts while still in prison, and continued
polishing his ideas until his release on April 29, 1832.

Shortly after released from prison, Galois was involved in a obscure duel because of
love. On May 29, Galois was so convinced of his impending death that he stayed up all
night writing letters to his friends and composing what would become his mathematical
testament, the famous letter to Auguste Chevalier outlining his ideas, and three attached
manuscripts. German mathematician Hermann Weyl said of this testament, “This letter,
if judged by the novelty and profundity of ideas it contains, is perhaps the most substantial
piece of writing in the whole literature of mankind.” In these final papers, he outlined
the rough edges of some work he had been doing in analysis and annotated a copy of the
manuscript submitted to the Academy and other papers.

When read Galois’ 7 pages testament, there are some words really sad: “these subjects
are not the only ones that I have explored... But I don’t have time, and my ideas are
not yet well developed in this area, which is immense...it would not be too much in my
interest to make mistakes so that one suspects me of having announced theorems of which
I would not have a complete proof.” The most impressed and saddest words are: “I don’t
have time” At the end of the letter, he asked his friend to “Ask Jacobi or Gauss publicly
to give their opinion, not as to the truth, but as to the importance of these theorems.

of solving the general quintic equation in radicals. He was also an innovator in the field of elliptic functions,
discoverer of Abelian functions. He made his discoveries while living in poverty and died at the age of 26
from tuberculosis.

7The Bourbon monarch was restored after Napoleon’s defect in Waterloo. King Charles X cleaned
the soldiers who had worked for Napoleon in the army and caused dissatisfaction among the people.
Continues with a series of failures in politics, economy, culture, religion, and diplomacy, Charles X signed
the July Ordinances on July 25, 1830. These, among other steps, suspended the liberty of the press,
dissolved the newly elected Chamber of Deputies, and excluded the commercial middle-class from future
elections. It triggered the armed uprising of people, overthrew the Bourbon monarch through revolution.
It ended with Louis-Philippe becoming king. Known as the July Monarchy.

8However, the rejection report ends on an encouraging note: “We would then suggest that the author
should publish the whole of his work in order to form a definitive opinion.”[20]
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Later there will be, I hope, some people who will find it to their advantage to decipher
all this mess.”[21]

“E. Galois, le 29 mai 1832” at the bottom of the last page in his testament.

Early in the morning of May 30, 1832, Galois was injured badly in the duel. He was
shot in the abdomen. A passing farmer found him, and sent Galois to the hospital. He
died the following morning at ten o’clock, after refusing the offices of a priest. His younger
brother was notified, and came to the hospital. His last words to his brother Alfred were:
“Don’t cry, Alfred! I need all my courage to die at twenty!” We don’t know the exact
reason behind the duel, whether it was a love tragedy or a political murder. Whatever
the reason, a great talent mathematician was killed at the age of 20. He had only been
studied mathematics for 5 years. Within the only 67 pages of Galois’ collected works are
many important ideas that have had far-reaching consequences for nearly all branches of
mathematics.

Chevalier and Galois’ young brother published the testament in Revue encyclopedique,
but it was not noticed. It might be too brief and hard, there was almost no any impact
to the mathematics in that years9. Decades passed, in 1843 Liouville reviewed Galois
manuscript and declared it sound. It was finally published in the October–November
1846 issue of the Journal de Mathématiques Pures et Appliquées. The most famous
contribution of this manuscript was a novel proof that there is no quintic formula – that
is, that fifth and higher degree equations are not generally solvable by radicals. Although
Abel had already proved the impossibility of a ”quintic formula” by radicals in 1824,
Galois’ methods led to deeper research in what is now called Galois theory. For example,
one can use it to determine, for any polynomial equation, whether it has a solution by
radicals. Liouville thought about this tragedy and commented in the introduction to
Galois’ paper: “Perhaps, his exaggerated desire for conciseness was the cause of this
defect, and is something which one must endeavor to refrain from when dealing with
the abstract and mysterious matters of pure Algebra. Clarity is, indeed, all the more
necessary when one has intention of leading the reader away from the beaten roads into
the desert... But at present all that has changed. Alas, Galois is no more! Let us cease
carrying on with useless criticisms; let us leave its defects, and instead see its qualities...
My zeal was soon rewarded. I experienced great pleasure the moment when, after having
filled in the minor gaps, I recognized both the scope and precision of the method that
Galois proved.”[22]

In 1870, French mathematician Camille Jordan wrote the book Traité des substitutions
et des équations algébriques based on Galois’ theory10. Galois’ most significant contribu-
tion to mathematics is his development of Galois theory. He realized that the algebraic

9The similar lessons happened to Abel as well. When he spent his own money to publish the paper
about why quintic equation couldn’t be solved by radicals in 1824, to save money, he tried all means
to consolidate the paper in 6 pages. As the result, it’s too brief and obscure for people to notice and
understand it till Abel’s death.

10Galois’ theory was notoriously difficult for his contemporaries to understand, especially to the level
where they could expand on it. For example, in his 1846 commentary, Liouville completely missed the
group-theoretic core of Galois’ method. Joseph Alfred Serret who attended some of Liouville’s talks,
included Galois’ theory in his 1866 textbook (third edition) Cours d’algèbre supérieure. Jordan was
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solution to a polynomial equation is related to the structure of a group of permutations
associated with the roots of the polynomial, the Galois group of the polynomial. It laid
the foundation of group theory and lead to the development of abstract algebra and mod-
ern mathematics. As the ironic result “Instead of the political revolution, what Galois
actually triggered was the mathematics revolution[10].”

3.1.1 Group
Let us start the journey from group to understand what Galois landed for abstract algebra.

Definition 3.1.1. A group is a set G equipped with a binary operation “·”, which satisfied
four axioms:

1. Closure: For all a, b ∈ G, the result of the operation a · b ∈ G;

2. Associativity: For all a, b, c in G, (a · b) · c = a · (b · c);

3. Identity element: There exists an element e in G such that, for every element a
in G, the equation a · e = e · a = a holds;

4. Inverse element: For each element a ∈ G, there exists an element a−1, such that
a · a−1 = a−1 · a = e, where e is the identity element.

The binary operation is often called “multiplication”, and the “product” a ·b is usually
written as ab. e is the identity element. The elements in a group can be finite or infinite
many, thus the group is called finite group or infinite group. the order of a finite group
is the number of the elements in that group. A group contains infinite many elements is
said to have infinite order.

The “multiplication” operation of the group may not be commutative like the normal
multiplication for numbers. For example, all the invertible matrix with real entities,
together with the matrix multiplication form a group. However, the matrix multiplication
order matters, it is not commutative. Groups for which the community equation ab = ba
always holds are called abelian groups (in honor of Abel).

let us see some examples to understand the definition of groups.

1. Integers with addition. Elements are all integers, the binary operation is addition.
This is one of the most familiar groups;

2. The set of remainders of all integers divided by 5, that is {0, 1, 2, 3, 4}. The binary
operation is addition then divided by 5, and take the remainder. For example
3 + 4 = 7 mod 5 = 2. They form a group called addition group of integers modulo
5. Denoted as Z5. We can consider it as partition the integers by taking the
remainder11. It is called residue class or residue modulo n;

3. The rotations of Rubik cube form a group. The elements are all cube rotations12,
the binary operation is the composition of cube rotates, corresponding to the result
of performing one cube rotate after another.
It’s helpful to think about symmetry through the Rubik cube group. In original
state, all 6 sides have the same color for each. Let a kid play it with a series of

Serret’s pupil. Outside France, Galois’ theory remained more obscure for a longer period. It turned a
century in Britain. In Germany, it was Dedekind lectured on Galois’ theory at Göttingen in 1858, showing
a very good understanding.

11It is denoted as ZZZ/5ZZZ nowadays.
12There are 18 Rubik cube rotations. A cube move rotates one of the 6 faces, front, back, top, bottom,

left, right, 90°, 180°, or -90°. For example, rotating the left side 90°, 180°, -90°can be denoted as
L�L2�L′[23]. Plus the identity transform, there are total 19 elements.
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Figure 3.8: There are total 18 Rubik cube rotates for the 6 faces, plus the identity
transformation. These moves together with the composition operation form a group.

random rotations. The player need to figure out a way, restore the Rubik cube to
its original state, the all sides are back to the unified color. If we record the kid’s
rotations with a camera as {t0, t1, ..., tm}, and the restore process as {r0, r1, ..., rn}.
Then the whole process to solve the Rubik cube puzzle means:

(rn · rn−1... · r0) · (tm · tm−1... · t0) = e

Obviously, one solution is to reverse every rotation made by the kid, that is ri =
t−1
m−i, or ri · tm−i = e. Hence the above equation must hold. However, in practice,

a seasoned player restores the Rubik cube through a set of ‘formulas’. Although
the above equation holds, not every ri is the reversed rotation of some tm−i. Even
the number of steps to restore may not equal to the number of steps to disrupt the
Rubik cube.

4. For a plane, all the rotations around a fixed point form a group. The group elements
are all the degrees for rotation. The group binary operation is the composition,
corresponding to the result of rotating a degree after another degree. The unit
rotation is zero degree.
We say a shape has rotational symmetry if it can be rotated about a fixed point,
and still looks same. A snowflake for example, keeps same by rotating 60°, 120°,
180°, 240°, and 360°. However, the rotational group in this example can not define
the symmetry of snowflakes. It actually tells such a fact. If two rotations satisfy
rα · rβ = e, then the two degrees either negate to each other α = −β, or their sum
are multiples of 360°. The only symmetric shapes under this rotational group are
circles at the same centre. We’ll give the group that defines the snowflake symmetry
in later sections.

While the following examples are not groups:

1. All the integers except 0, together with multiplication do not form a group. We
can’t use 1 as the identity element, otherwise there will be no inverse element for 3
for example (1/3 is not an integer);

2. For the same reason, remainders of modulo 5 {0, 1, 2, 3, 4}, together with multipli-
cation modulo 5 do not form a group. However, when exclude all multiples of 5,
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then the set {1, 2, 3, 4} and multiplication modulo 5 form a group. We can see this
fact from the following “multiplication table” modulo 5:

1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Therefore, 1 is the identity element, it is also the inverse element of itself; 2 and 3
are inverse elements for each other; the inverse element for 4 is 4 again;

3. Although all the none zero remainders modulo 5 form a group under modulo mul-
tiplication, the none zero remainders modulo 4 do not form a group. Observe the
multiplication table modulo 4:

1 2 3
1 1 2 3
2 2 0 2
3 3 2 1

Note that (2 × 2) mod 4 = 0, which is not in set {1, 2, 3}. This negative example
shows that, only the remainders that are coprime to n form a group under the
multiplication modulo n. This kind of groups are called multiplicative group of
integers modulo n. For any prime number p, set {1, 2, ..., p−1} forms a multiplicative
group modulo p.

4. All the rational numbers together with multiplication do not form a group. Although
all rational number with form p/q has a inverse element q/p, but there is no inverse
element for 0. All the rational number exclude 0 form a group under multiplication.

Exercise 3.1

1. Do all the even numbers form a group under addition?
2. Can we find a subset of integers, that can form a group under multiplication?
3. Do all the positive real numbers form a group under multiplication?
4. Do integers form a group under subtraction?
5. Find an example of group with only two elements.
6. What is the identity element for Rubik cube group? What is the inverse element

for F?

3.1.2 Monoid and semi-group
The criteria to be a group is a bit strict. From the negative examples in previous section,
we see some common algebraic structures can’t satisfy all the group axioms. Sometimes
we needn’t inverse element. If relax the limitation, we get the monoid structure.

Definition 3.1.2. A monoid is a set S together with a binary operation ‘·’, which
satisfies two axioms:



56 CHAPTER 3. SYMMETRY

1. Associativity: For any three elements in S, the equation (a · b) · c = a · (b · c) holds.

2. Identity element: There exists an element e in S, such that for every element a
in S, the equation a · e = e · a = e holds.

The monoid definition is quite similar to group except there is no axiom about in-
verse element. Many negative examples for group are monoids. For example, integers
under multiplication form a monoid. The identity element is 1. Monoid often appears in
computer programming. We’ll revisit this important algebraic structure in next chapter
about category theory. Here are some more examples about monoid:

1. Given a character set, all finite strings with the concatenation operation form a
monoid. The elements are strings; the binary operation is string concatenation; the
identity element is the empty string.

2. Expand from string to list of type A (List A). All lists form a monoid under the
concatenation operation. The monoid elements are lists; the binary operation is the
list concatenation (denoted as ++); the identity element is the empty list nil.
By using monoid as the algebraic structure, we can abstract both string and list as
the below example program.
instance Monoid (List A) where

e = nil
(*) = (++)

The folding operation to string and list, can be abstracted to the level of monoid as
well13. The below concatenate operation for example, is defined to any monoid:

concat = foldr e (∗)

We can concatenate list with this concat operation like this:
concat [[1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3], [1, 3, 2]] gives result: [1, 2, 3, 1, 2, 1, 3,
2, 3, 1, 2, 3, 1, 3, 2].

3. Heap is a common data structure in programming. If the top element in the heap
is always the minimum one, it’s call the min-heap; If the top element is always the
maximum one, it’s called max-heap. Skew heap is a type of heap realized in binary
tree ([14], section 7.3).
data SHeap A = nil | node (SHeap A, A, SHeap A)

The definition is as same as binary tree except for its name. The minimum element is
always located at the root for the none empty heap. We define the merge operation
for two heaps as below:

merge(nil, h) = h
merge(h, nil) = h

merge(h1, h2) =

{
k1 < k2 : node(merge(r1, h2), k1, l1)

otherwise : node(merge(h1, r2), k2, l2)

When merge two heaps, if one is empty, the result is the other one; if neither one
is empty, we denote h1, h2 as node(l1, k1, r1) and node(l2, k2, r2) respectively. To

13We’ll introduce how to realize the abstract folding in next chapter about category theory
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merge them, we firstly compare their root, select the smaller one as the new root;
then merge the other heap with the bigger element to one of its sub-trees. Finally,
we exchange the left and right sub-trees. For example, if k1 < k2, we select k1 as
the new root. Then we can either merge h2 to l1, or merge h2 to r1. Without loss
of generality, we merge to r1. Then, we exchange the left and right sub-trees to get
the final result (merge(r1, h2), k1, l1). Note the binary merge operation is recursive.
The set of all the skew heaps, together with the binary merge operation form a
monoid. The identity element is the empty heap nil.

4. Heap can also be realized in multi-trees as explained in previous chapter, for example
pairing heap is defined as the following ([14] section 9.4):
data PHeap A = nil | node (A, List (PHeap A))

The definition is as same as multi-tree except for its name. It is a recursive definition.
A pairing heap is either empty; or a multi-tree with a root and a list of sub-trees.
The minimum element is located at the root for a none empty heap. We define the
merge operation for pairing heap as below:

merge(nil, h) = h
merge(h, nil) = h

merge(h1, h2) =

{
k1 < k2 : node(k1, h2 : ts1))

otherwise : node(k2, h1 : ts2))

If either heap is empty, then the merge result is the other heap. Otherwise if neither
heap is empty, we represent the two heaps h1, h2 as node(k1, ts1) and node(k2, ts2)
respectively. We compare the root elements, let the bigger one be another new sub-
tree of the other. The set of all the pairing heaps form a monoid under the merge
operation. The identity element is the empty heap nil.

If relax the limitation one more step, to remove the requirement of identity element,
then we get another algebraic structure, semigroup.

Definition 3.1.3. A semigroup is a set together with the associative binary operation.

The binary operation for semigroup is associative. It means for any three elements a,
b, and c the equation (ab)c = a(bc) holds. The constraints for semigroup is relaxed one
more step from monoid. Here are some semigroup examples:

1. All the positive integers form a semigroup under addition, as well as under multi-
plication;

2. All the even numbers together with addition form a semigroup, so as under multi-
plication.

As we mentioned before, people often call the binary operation for group, monoid, and
semigroup as ‘multiplication’, therefore we use the term ‘power’ to represent applying the
binary operation multiple times, for example: x · x · x = x3. Generally, the ‘power’ of
group and monoid is defined as below recursively:

xn =

{
n = 0 : e

otherwise : x · xn−1

For semigroup, since the identity element is not defined, n must be none zero positive
integer:
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xn =

{
n = 1 : x

otherwise : x · xn−1

Exercise 3.2
1. The set of Boolean values {True, False} forms a monoid under the logic or operator
∨. It is called ‘Any’ logic monoid. What is the identity element for this monoid?

2. The set of Boolean values {True, False} forms a monoid under the logic and opera-
tor ∧. It is called ‘All’ logic monoid. What is the identity element for this monoid?

3. For the comparable type, when compare two elements, there can be three different
results. We abstract them as {<,=, >}14. For this set, we can define a binary
operation to make it a monoid. What is the identity element for this monoid?

4. Prove that the power operation for group, monoid, and semigroup is commutative:
xmxn = xnxm

3.1.3 Properties of group
One powerful idea in abstract algebra is that, we can focus on the inner pattern of the
abstract structures and their relations without caring about the concrete object and its
meaning. The pattern and the revealed insight are applicable to all objects by the nature
of abstraction. When know the generic group properties, if the elements represent points,
lines, and surfaces, then we obtain the properties of geometry; if the elements represent
Rubik cube rotations, then we obtain the properties of Rubik cube transformation; if the
elements represent some data structure in programming, we obtain the properties of the
algorithm on top of that data structure. We introduce some important group properties
in this section.

Theorem 3.1.1. There is one and only one identity element for any group.

Proof. Suppose there is another identity element e′, for all element a, the equation e′a =
ae′ = a holds. Substitute a with e, we have e = ee′ = e′. Hence proved the uniqueness of
the identity element.

For any group, not only the identity element, but also the inverse element for every
element is unique.

Theorem 3.1.2. The unique existence of inverse element. For all element a, there is
one and only one a−1 that satisfies aa−1 = a−1a = e. We call a−1 the inverse element of
a.

Proof. We know the existence of inverse element from the group identity element axiom.
Therefore, we only need proof the uniqueness. Suppose there exists another element b,
that also satisfies ab = ba = e. We multiply a−1 to the equation from right to get:

aba−1 = baa−1 = ea−1

⇒ be = a−1 Apply associative law to the 2nd term
⇒ b = a−1 Uniqueness of the inverse element

14Some programming languages, such as C, C++, Java use negative number, zero, and positive number
to represent these three results. In Haskell, they are GT, EQ, and LE respectively.
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Figure 3.9: Repeatedly rotating a Rubik cube with F 4 times returns to the original state.

We defined the order of group before. For group element, we can define order as well.
For element a, the minimum positive integer m that satisfies am = e is called the order
of a. If such m does not exist, we say the order of a is infinite. Using the Rubik cube
group for example, if we repeat F rotation 4 times, the cube returns to its original state.
Therefore, the order of F is 4. Because rotating F ′ twice returns the original state, the
order of F ′ is 2. Another example is the integer multiplicative group modulo 5. For all
elements except 1, the 4th power modulo 5 are 1. All their orders are 4. Actually, we
have the following interesting theorem:

Theorem 3.1.3. For any finite group, all elements have finite order.

Proof. Denote the order of a given finite group G as n. For any element a, we can
construct a set {a, a2, ..., an+1}. There are n+ 1 elements in this set, however, the order
of the group is n. According to the principle of pigeon hole, there are at least two equal
elements. Denote such two equal elements as ai and aj , where 0 < i < j ≤ n+1 without
loss of generality. We have:

aja−i = aia−i since ai = aj

aja−i = e ai is inverse to a−i

aj−i = e the order of a is j − i

Thus the order of a, j − i is finite.

We use the term ‘isomorphism’ in chapter 1 to describe things that have the same
inner structure. It’s time to give the strict definition for homomorphism and isomorphism.
Suppose there is a mapping (morphism) f from set A to set B. a and b are two elements
in A, their images in B are f(a) and f(b) respectively. Let’s consider the element a · b,
which is result of the binary closed operation defined in A. Under the map (morphism)
f , its image in B is f(a · b). If for the binary closed operation defined in B, the following
equation always holds:

f(a) · f(b) = f(a · b)

We say f is a homomorphism from A to B. If f is a surjection, known as ‘onto’,
which means every element b in B, has the corresponding a in A, that f(a) = b, then f is
called surjective homomorphism. For example, consider a test function odd : Z → Bool,
it accepts an integer number, if the number is odd, then it returns True, otherwise returns
False. All integers form a group under addition, while the Boolean value set {True, False}
also forms a group under logic exclusive or operation. We can verify that:

1. Both a and b are odd numbers. odd(a) and odd(b) are both True. Their sum is
even, odd(a+ b) is False. Equation odd(a)⊕ odd(b) = odd(a+ b) holds;



60 CHAPTER 3. SYMMETRY

A : semigroup N(·) B : semigroup for squares N2(·)

b f(b)

a f(a)

ab f(ab)

f : x→ x2

a = 2 f(a) = 4
b = 3 f(b) = 9
ab = 6 f(ab) = f(a)f(b) = 36

Figure 3.10: Isomorphism

2. Both a and b are even numbers. odd(a) and odd(b) are both False. Their sum is
also even, odd(a+ b) is False. Equation odd(a)⊕ odd(b) = odd(a+ b) holds;

3. a and b one is odd, the other is even; odd(a) and odd(b) one is True, the other is
False. Their sum is odd, odd(a+ b) is True. Equation odd(a)⊕ odd(b) = odd(a+ b)
holds.

If f is not only a surjection, but also a injection (there are no any two different elements
map to the same image), then it’s one-to-one mapping. We call f is the isomorphism
from A to B. Denote as A ∼= B. Isomorphism is a very powerful relationship. Besides
group, isomorphism is also applicable to semigroups, monoids and other algebraic struc-
tures. As shown in figure 3.10. If A is isomorphic to B, from the abstracted view, they
are essentially the same thing with different names. If there is a algebraic property in A,
then there is exactly a same property in B ([24] pp.25). The special isomorphism from
A to A is called automorphism of A. For example, the group of integers with addition
has a automorphism under the negate operation.

People often use the familiar concrete, example to help understanding abstract alge-
braic structure. For groups, most time, we think about integers with addition. How those
concepts, properties of group will be for integers? But this approach may give us illusion
that the element of group is kind of entity, like numbers; and the binary operation is more
like the common addition or multiplication that is commutative. We’ll introduce an ‘ex-
ceptional’ example, the transformation group. On one hand, it is not abelian, the binary
operation is not commutative; on the other hand, its group elements are not numbers,
but transformations.

Transformation is a map from set A to A itself. Denoted as τ : A → A. It maps
element a in A to τ(a). That is a→ τ(a). There are varies transformations for a set. The
following are all the transformations for Boolean set, we denote true as T , false as F .

τ1 : T → T, F → T
τ2 : T → F, F → F
τ3 : T → T, F → F
τ4 : T → F, F → T
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cat

sheepdog

cow collar bell

milk

wool

f(dog) = collar f(cat) = bell
f(sheep) = wool f(cow) = milk

Figure 3.11: Graph isomorphism. The two different graphs have the same structure.

Among them, τ3 and τ4 are one to one transformations. For a given set A, all its
transformations form a new set:

S = {τ, λ, µ, ...}

Let’s next define a binary operation for S, and call it as multiplication. For convenient
purpose, we express τ(a) as this way:

τ : a→ aτ = τ(a)

Note that aτ does not mean the τ power of a. It is only a notation means transfor-
mation. Observe two elements τ and λ in S.

τ : a→ aτ , λ : a→ aλ

It’s obvious that a→ (aτ )λ = λ(τ(a)) is also a transformation for A. We define it as
the product of τ and λ.

τλ : a→ (aτ )λ = aτλ

Such multiplication is actually composition operation of two transformations. You
can choose some Boolean transformations to verify their products. The multiplication is
actually associative, since:

τ(λµ) : a→ (aτ )λµ = ((aτ )λ)µ

(τλ)µ : a→ (aτλ)µ = ((aτ )λ)µ

We benefit from the power expression. We can’t say too much about a powerful
notation system in the history of math. Euler, Leibniz were all masters invented many
great symbols. For the above multiplication we defined, the identity element in S is the
identity transformation of A, which maps every element to itself, ϵ : a→ a. We can verify
that:

ϵτ : a→ (aϵ)τ = aτ

τϵ : a→ (aτ )ϵ = aτ

Therefore ϵτ = τϵ = τ . With this multiplication operation, set S almost forms a
group. Although we say it ‘almost’, it eventually can not form a group. This is because
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for a given transformation τ , there is not necessarily an inverse element. For example the
τ1 in the Boolean set, it maps any Boolean value to true. None of the 4 transformations
can change τ1 back. Thus there is no reverse element for τ1.

Although S can not form a group, interestingly, its subgroup G can. In fact, as long
as G only contains the one-to-one transformations of A, then it form a group under the
multiplication operation.

For set A, the set of one to one transformations of A together with the composite
operation (defined above as multiplication) form a transformation group of A. We
have the below important theorem:

Theorem 3.1.4. All the one to one transformations of set A form a transformation
group G.

Transformation groups are not necessarily abelian. It’s easy to find negative examples.
Consider the shift transformation τ1 which moves the origin point from (0, 0) to (1, 0) in
the plane, and the rotation transformation τ2 which rotate around the origin by π/2. We
have:

τ1τ2 : (0, 0)→ (0, 1)
τ2τ1 : (0, 0)→ (1, 0)

x

y

a b

c

x

y

a

b′ c′

Figure 3.12: The transform order matters, and cause different results.

Therefore, this transformation group is not abelian. Transform groups are important
and have wide applications. We have a strong fact:

Theorem 3.1.5. Every group is isomorphic to a transformation group.

We skip the proof. This theorem tells us, for any abstract group, we can find a concrete
instance as a transformation group. In other words, we needn’t concern about finding an
abstract group in the future, which is totally a castle in the air([24] pp49).

Exercise 3.3

1. Is the odd-even test function homomorphic between the integer addition group
(Z�+) and the Boolean logic-and group (Bool,∧)? What about the group of inte-
gers without zero under multiplication?

2. Suppose two groups G and G′ are homomorphic. In G, the element a→ a′. Is the
order of a same as the order of a′?

3. Prove that the identity element for transformation group must be identity trans-
formation.
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3.1.4 Permutation group
In this section, we introduce permutation group. It is the permutation group that Galois
used to determine if a given equation is radical solvable. Permutation group is a special
transformation group. Let’s first define what is permutation. A permutation is a one to
one transformation for a finite set. The permutations of a finite set form a permutation
group under the composite operation. As the name indicates, it permutes elements in
the set. Further, the group of all permutations of a set with n elements is the symmetric
group of degree n, denoted as Sn.

We know from the permutation theory learned in high school, there are n! different
permutations for n elements. Therefore, the symmetric group of degree n has the order
of n!. A permutation maps element ai in the set to aki , where i = 1, 2, ..., n. The
permutation can be determined by n pairs of (1, k1), (2, k2), ..., (n, kn). We can express
the permutation as: (

1 2 ... n
k1 k2 ... kn

)
For example (

1 2 3 4 5
2 5 4 3 1

)
It represents a permutation. Since the first row is always in the form 1, 2, ..., n, we

can further simplify the permutation to (2, 5, 4, 3, 1). This permutation moves the 2nd
element to the 1st position; moves the 5th element to the 2nd position and so on. We
can use this notation to list all permutations for a set with 3 elements. It is group S3:

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)

When do the multiplication, which is composition essentially, we can determine the
element for every position in this way: for the i-th position, first check what the new
position should be in the first permutation, for example j; then check where j should be
mapped to in the second permutation, for example k. Therefore, the final position as
the result of the multiplication is k. Let’s pick two elements from S3 to examine if it is
abelian:

(1, 3, 2)(2, 1, 3) = (2, 3, 1)
(2, 1, 3)(1, 3, 2) = (3, 1, 2)

They are different results. S3 is not abelian. Actually, it is the smallest finite none
abelian group. A finite none abelian group contains at least 6 elements. Observe the
permutation for 5 elements (2, 3, 1, 4, 5), only the first three ones change, while the rest
two keep same. The changes for the first three elements have a pattern: 2 → 1, 3 → 2,
1→ 3, which is cyclic.

With this pattern, we can simplify the permutation notation from (2, 3, 1, 4, 5) to
(2 3 1). Note there is no comma between elements, and we treat (1 2 3), (2 3 1),
and (3 1 2) represent the same 3-cyclic permutation15. Formally, we define k-cyclic
permutation (ij1ij2 ...ijk). It maps the next element to its previous position, and send the
first element to the last to form the cycle:

ij2 → ij1 , ij3 → ij2 , ..., ij1 → ijk

15There are people use (231) notation without any spaces as deliminator. However, when there are over
10 elements, it causes ambiguity. As it can also be (23 1).
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1 2 3

2 3 1

Figure 3.13: Permutation (2 3 1) is cyclic

The elements in k-cyclic permutation are not necessary adjacent, for example (3 9 4),
nor in a fixed order, for example (2 4 1 3). If there are only two element in the circle,
like (i j), we call it transposition (swap). Identity transformation is the special case, for
example (1, 2, 3, 4, 5), we denote it as ϵ = (1), and let:

ϵ = (1) = (2) = ... = (n)

Observe the permutation (2, 1, 4, 5, 3), it contains two cycles, one is the 2-cyclic per-
mutation (1 2), the other is 3-cyclic permutation (3 4 5). We can use the permutation
multiplication to express this fact:

(2, 1, 4, 5, 3) = (1 2)(3 4 5)

In fact, every permutation π for n elements can be expressed with some mutual ex-
clusive (without any common numbers) cyclic permutations. This approach brings us
a useful advantage, although permutations are not commutative in common case, as
k-cyclic permutations don’t share same numbers, they are commutative. For example
(1 2)(3 4 5) = (3 4 5)(1 2).

The following list express all the permutations in S3 in this way:

(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)

Given a permutation (k1, k2, ..., kn), how to express it as the product of cyclic forms?
We can do it with such prescription. From left to right compare every position with the
number in the permutation, if ki equals i, it means the element has already in the right
position; otherwise open a pair of parentheses, write down the number in position ki in
the parentheses, let say it is kj , then check the position kj with j, if they are not equal,
write in the parentheses. Repeat this step till we found some element form a cycle to
the starting point. At this time point, we close the parentheses of this cycle. After that,
we go on checking from left to right till all the elements are processed ([25], pp27). If
for all positions, we have ki equals to i, then we write down (1) to present the identity
permutation. It very convenient to realize this process in programming. Below is the
algorithm for it with example source code in a real programming language.

function k-cycles(π)
r ← []
for i← 1 to |π| do

p← []
while i 6= π[i] do

p← π[i] : p
Exchange π[i]↔ π[π[i]]

if p 6= [] then
r ← r : (π[i] : reverse(p))
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if r 6= [] then
return r

else
return [[1]] ▷ Identity permutation

Express any permutation as product of k-cycle notation:
def kcycles(a):

r = []
n = len(a)
for i in range(n):

p = []
while i + 1 != a[i]:

p.append(a[i])
j = a[i] − 1
a[i], a[j] = a[j], a[i]

if p != []:
r.append([a[i]] + p)

return r if r != [] else [[1]]

From the theorem in previous section, we further have:

Theorem 3.1.6. Every finite group is isomorphic to a permutation group.

For any finite group, like the solutions of a equation, we can study it with the permu-
tation group, as it is easy to manipulate. This is exactly how Galois solve the problem to
determine if the equation is radical solvable.

Exercise 3.4
1. List all the elements in S4.
2. Express all the elements in S3 as the product of cyclic forms.
3. Write a program to convert the product of k-cycles back to permutation.

3.1.5 Groups and symmetry
Why the group of all permutations of a set is called symmetric group? Because it exactly
defines what is symmetry. Let us consider a regular triangle for example:

Denote the 3 vertex as 1, 2, 3. We choose from S3 three elements, (1 2), (1 2 3), and
(1 3 2), and apply them to the triangle vertexes as shown in figure 3.14.

1. The shape on the right side is the transformed result after applying (1 2). The
three vertexes change from 123 to 213. It is exactly the mirrored result to flip
the triangle against the axis at vertex 3. Because the shapes are same before and
after transform, it means the regular triangle is reflection symmetric. Besides (1 2),
there are another two reflection symmetric transforms, which are (1 3) and (2 3)
respectively. Their corresponding axes are the heights at vertex 2 and 1.

2. The bottom right is the transformed result after applying (1 2 3). The three vertexes
change from 123 to 231. It means the triangle rotate 120° clockwise against its
centre. Because the shapes are same before and after, it tells us that the regular
triangle has rotational symmetry of 120°.

3. The bottom shape is the transformed result after applying (1 3 2). The tree vertexes
change from 123 to 312. It is equivalent that the triangle rotates 120° counter
clockwise, or rotates 240° clockwise. Because the shapes are same before and after,
it tells us that the regular triangle has rotational symmetry of 240°.
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Figure 3.14: Symmetric transforms of a regular triangle

Every symmetry of the regular triangle (3 reflection symmetries, 2 rotational symme-
tries, and the identity) is exactly defined by an element in the symmetric group S3. This
is the beautiful relation between groups and symmetry.

Among the transformations, those do not change the dimensions of the body are called
congruences. A congruence is either proper or improper. For the difference, consider the
two sea snails in below figure: on the left is the normally sinistral (left-handed) shell of
Neptunea angulata, (now extinct) found mainly in the Northern Hemisphere; on the right
is the normally dextral (right-handed) shell of Neptunea despecta. a similar species found
mainly in the Southern Hemisphere. Although they looks so symmetric side by side, we
can not make them congruence no matter what rotations, flips, or motions being applied.
They are reflexive in fact.

Figure 3.15: Chirality

In real world, there is no way to tranform a sinistral object to its dextral image in
the mirror. This is the difference between proper and improper congruence. The proper
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congruence carries a left skew into a left and a right one into a right; the improper (or
reflexive) congruence changes a left skew into a right one and vice versa[37]. The reflection
sends any points P to its antipode point P ′ with respect to O found by joining P with
O and prolonging the straight line PO by its own length: |PO| = |OP ′|. It’s also called
inversion in a point. For the four points in the figure of sea snails, the transform (2 4)
in symmetric group S4 is an improper congruence. It carries the left skew snail into the
right. As such, the symmetric groups depict both the real and the mirrored worlds.

Exercise 3.5
What symmetries for what shape are defined by the symmetric group S4?

3.1.6 Cyclic group
Among all the groups, the cyclic group is the easiest. It’s the group we completely
understand as of today. Is it possible that all the elements in a group G are powers of a
given element? Such group does exist. Consider the integer multiplicative group modulo
5 without 0 for example. It contains 4 elements {1, 2, 3, 4}. If list all the powers of 2
modulo 5, we have the following result:

21 mod 5 = 2
22 mod 5 = 4
23 mod 5 = 3
24 mod 5 = 1

Thus the powers of 2 generate all the elements in this group. We define:

Definition 3.1.4. If all the elements in a group G are the powers of a fixed element a,
we say G is a cyclic group. In other words G is generated by element a, denoted as:

G = (a)

We call a the generator of group G.

Let us see two important examples of cyclic group:

Example 3.1.1. The additive group of integers. All integers are ‘powers’ of 1. Here
the binary operation is addition, therefore, power means keep adding 1. For any positive
integer m:

1m = 1 · 1 · 1 · ... · 1 m-power of
= 1 + 1 + ...+ 1 + is the multiplicative operation for G(Z,+)
= m

In additive group of integers, the inverse element of 1 is -1. This is because 1 + (-1)
= 0, and 0 is the identity element. For any negative integer −m:

1−m = (−1)m inverse element
(−1)m = (−1) · (−1) · (−1) · ... · (−1) m times

= −1 + (−1) + ...+ (−1) + is the multiplicative operation for G(Z,+)
= −m

As 0 is the identity element, we define 0 = 10. Summarize all these three cases, we
have Z = (1).

The additive group of integers is an example of infinite cyclic group. Let us see an
example of finite cyclic group.
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Example 3.1.2. Consider integers residue modulo n. For integer a, we use notation [a]
to represent the residue a belongs to. Define the binary operation as the addition modulo
n.

[a] + [b] = [a+ b]

For instance, when compute [3] + [4] modulo 5, the result is 7 mod 5 = [2]. It’s easy
to verify this binary operation satisfies the associative axiom. The identity element is
[0], and all elements have inverse. We call this group additive group of integer residues
modulo n. The group elements are [0], [1], ..., [n-1]. It is a cyclic group because every
element [i] can be expressed as i-power of [1].

[i] = [1] + [1] + ...+ [1] Total i times

We intent to choose these two examples. In fact, we’ve already understood all the
cyclic groups through these two examples! This is because of the following theorem:

Theorem 3.1.7. If G is a cyclic group generated by element a, then the algebraic structure
of G is completely determined by order of a:

• If the order of a is infinite, then G is isomorphic to the additive group of integers;

• If the order of a is n, then G is isomorphic to the additive group of integer residues
modulo n.

Proof. If the order of a is infinite, we have ah = ak if and only if h = k. Otherwise, if
h 6= k, let h > k without loss of generality, we have ah−k = e, which conflicts with the
condition that the order of a is infinite. Therefore, we can construct a one to one map:

f : ak → k

This map is isomorphic between the cyclic group G = (a) and the additive group of
integers Z. That is ahak → h+ k.

If the order of a is integer n, which means an = e. Then ah = ak if and only if h ≡ k
mod n. We can construct another one to one map:

f : ak → [k]

This map is isomorphic between the cyclic group G = (a) and the additive group of
integer residues modulo n. That is:

ahak = ah+k → [h+ k] = [h] + [k]

Therefore, from the abstract perspective, there is only one group that the order of
generator is infinite, and there is only one group that the order of generator is a given
positive integer. We clearly understand the algebraic structure of these cyclic groups:

• The order of a is infinite

– Group elements: ..., a−2, a−1, a0, a1, a2, ...
– Binary operation: ahak = ah+k

• The order of a is n

– Group elements: a0, a1, a2, ..., an−1
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Figure 3.16: Snowflake crystal photos by Wilson Bentley, 1902

– Binary operation: ahak = a(h+k) mod n

Now we are ready to explain the symmetry of snowflake. The hexagon shaped
snowflake has rotational symmetry, that can be exactly defined by C6. A snowflake
aligns with itself after rotate 60°, 120°, 180°, 240°, 300°, and 360° around its centre. Each
rotation is corresponding to an element of C6. Generic speaking, the cyclic group of order
n defines the symmetry of regular n-polygon. It also defines the symmetry of the cross
section of a regular polygonal prism. The famous photographer Wilson Bentley in US
(1865 - 1931) took over 5000 photographs of snowflake crystal. He donated his collection,
the crystal of science and art, to the Buffalo Museum of Science. From these photos,
Bentley came to the conclusion that every child today knows: each snowflake is unique.

Exercise 3.6

1. Proof that cyclic groups are abelian.

3.1.7 Subgroup
The next important concept is subgroup. It helps us to understand a group through its
subset.

Definition 3.1.5. For a given group G, a subset H of G is called subgroup if H forms
a group under the multiplication of G.

For any group G, there are at least two subgroups. One is G itself, the other is the sin-
gleton set only contains the identity element {e}. They are called trivial subgroups. Tak-
ing the additive group of integers for example, all the even numbers under addition form
a subgroup, while the odd numbers do not form a subgroup (do you know why?). Here
is another example, for the permutation group S3, consider its subset H = {(1), (1 2)}.
H form a subgroup under the composite operation. We can verify it as the following:
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1. Close under multiplication: (1)(1) = (1), (1)(1 2) = (1 2), (1 2)(1) = (1 2),
(1 2)(1 2) = (1). The last equation means to swap the first two elements, then
swap again. It equals to identity transformation;

2. The associative law applies to all elements in S3, thus also applies to H;

3. The identity element (1) ∈ H;

4. All elements in H have inverse: (1)(1) = (1)�(1 2)(1 2) = (1)�

It’s tedious to verify all these group properties for arbitrary subset. Fortunately, there
is a powerful tool:

Theorem 3.1.8. For any group G, a none empty subset H forms a subgroup if and only
if�

1. For all a, b ∈ H, the product ab ∈ H;

2. For all element a ∈ H, its reverse a−1 ∈ H.

We leave the proof to this theorem as exercise. From this theorem, we can deduce
that, if H is a subgroup of G, then the identity element in H is also the identity element
in G, and for any element a in H, its reverse element in H is also the reverse element in
G. We can combine the two conditions in this theorem into one:

Theorem 3.1.9. For any group G, a none empty subset H forms a subgroup if and only
if, for all a, b ∈ H, then ab−1 ∈ H holds.

Proof. First prove the sufficiency. Let a, b ∈ H, from the second condition in theorem
3.1.8, we have b−1 ∈ H. Then using the first condition, we get ab−1 ∈ H;

Next prove the necessity. Let a ∈ H, according to the identity axiom, we have
aa−1 = e ∈ H. Since e, a ∈ H, therefore, ea−1 = a−1 ∈ H. This is the second condition
in theorem 3.1.8; For all a, b ∈ H, we just proved b−1 ∈ H. Therefore, a(b−1)−1 = ab ∈ H.
This is the first condition in theorem 3.1.8.

If the subset H is finite, then the condition to form a subgroup can be further simpli-
fied:

Theorem 3.1.10. For any group G, the finite subset H forms a subgroup if and only if
for all a, b ∈ H, ab ∈ H holds.

For another example, one of the most important subgroups for the symmetric group
Sn of n objects, is the alternating group An. This subgroup contains all the permutations
that when apply to x1, x2, ..., xn, the product

∆ =
∏
i<k

(xi − xk)

keeps same. Such permutations are called even permutations. They flip the sign of ∆
even times, hence it is not changed. The rest permutations are odd permutations. The
product of two even or odd permutations is still even, while an even one and an odd one
gives an odd permutation. There are equal numbers of even and odd permutations, both
are n!/2.

With integer n, we can partition all the integers into residues modulo n. Using the
similar idea, we can partition the elements in a group. Consider the additive group of
integers Z, let H be the subset of all multiples of n, i.e. H = {kn} where k = 0,±1,±2, ....
For any two elements hn and kn, hn+ (−k)n = (h− k)n ∈ H. While −kn is exactly the
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inverse of kn in Z, and + is the binary operation in additive group of integers. According
to the theorem 3.1.9, H is the subgroup of Z.

When we partition integers into residues modulo n, we use the equivalence relation
as:

a ≡ b mod n, if and only if n|(a− b)

Using subgroup H, this equivalence relation can also be defined as:

a ≡ b mod n, if and only if (a− b) ∈ H

Thus we use subgroup H to partition Z into residues. Now let’s expand this to more
generic case, to partition any group G with subgroup H. To do that, we need define the
equivalence relation ∼ with subgroup H first:

a ∼ b, if and only if ab−1 ∈ H

Given a and b, we can strictly determine if ab−1 belongs H. Why is ∼ an equivalence
relation? Because it satisfies all the three conditions for equivalence:

1. As aa−1 = e ∈ H, we have a ∼ a. It is reflexive;

2. If ab−1 ∈ H, then its reverse (ab−1)−1 = ba−1 ∈ H. Therefore, a ∼ b⇒ b ∼ a. It is
symmetric;

3. If ab−1 ∈ H, bc−1 ∈ H, we have (ab−1)(bc−1) = ac−1 ∈ H. Therefore a ∼ b, b ∼
c⇒ a ∼ c. It is transitive.

Definition 3.1.6. The subset determined by the equivalence relation ∼ is called the right
coset of subgroup H. if a is a group element, the right coset that includes a is denoted
as Ha.

When using a to multiply every element in H from right, we get the coset that includes
a. In other words, Ha contains all the elements in G with the form ha, where h ∈ H.

Ha = {ha|h ∈ H}

H
0,±3,±6, ...

H0
0,±3,±6, ...

H1
...− 2, 1, 4, 7, ...

H2
...− 1, 2, 5, 8, ...

Figure 3.17: Right coset. For the additive group of integers, the subgroup H contains all
multiples of 3. Using 0, 1, 2 add to all these multiples, we get three non-overlapping sets.
It is exactly a partition of integers.

As shown in figure 3.17, Z is the additive group of integers. Set H contains all
multiples of 3, includes 0,±3,±6, .... It forms a subgroup under the addition. We add 0
in Z from right16 to every element in H, which gives H0. Obviously, H0 equals to H. It

16As the additive group of integers is abelian, the addition is commutative, therefore, the left and right
cosets are same.
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contains all the remainders of 0 modulo 3, denoted as [0]. Adding 1 in Z from right to
every element in H gives H1. It contains all remainders of 1 modulo 3, denoted as [1];
Adding 2 in Z from right to every element in H gives H2. It contains all remainders of
2 modulo 3, denoted as [2]. If add 3 to every element in H, the result is as same as H0.
In fact, whatever element a we choose from H0 to generate a right coset Ha, it is always
as same as H0; whatever element b we choose from H1 to generate a right coset Hb, it is
always as same as H1; whatever element c we choose from H2 to generate a right coset
Hc, it is always as same as H2. Put the three right cosets H0, H1, and H2 together, the
result is exactly all the integers Z. It is a partition of Z: [0], [1], [2].

H
(1), (1 2)

H(1)
(1), (1 2)

H(1 3)
(1 3), (1 2 3)

H(2 3)
(2 3), (1 3 2)

Figure 3.18: right cosets of a finite non-abelian group.

Let’s see another example about finite non-abelian group. Consider a permutation
group with degree 3.

G = S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}�
It has a subgroup H = {(1), (1 2)}. We use the identity permutation (1) and another

two permutations (1 3), (2 3) to multiply H from right. It gives 3 right cosets:

H(1) = {(1), (1 2)}
H(1 3) = {(1 3), (1 2 3)}
H(2 3) = {(2 3), (1 3 2)}

We can use another three different elements to form the right cosets:
H(1 2)�H(1 2 3)�H(1 3 2)
Because (1 2) ∈ H(1), (1 2 3) ∈ H(1 3), (1 3 2) ∈ H(2 3), therefore we have:

H(1) = H(1 2)
H(1 3) = H(1 2 3)
H(2 3) = H(1 3 2)

The subgroupH partitions the groupG = S3 into three disjoint right cosetsH(1),H(1 3),
and H(2 3). Putting these three right cosets together gets exactly G. They form a par-
tition of G.

Symmetric to right coset, we can also define left coset. Define the symmetric equiva-
lence relation ∼′ as:

a ∼′ b if and only if b−1a ∈ H

The subset determined by equivalence relation ∼′ is called left coset of subgroup H.
The left coset respect to element a is denoted as aH. It contains all the elements in form
of ah, h ∈ H in G. As the multiplication operation for group may not be necessarily
commutative, ∼ is not identical to ∼′ typically, therefore the left and right cosets are not
necessarily same as well. However, there is a common property for both left and right
cosets:

Theorem 3.1.11. For a given subgroup H, there are same numbers of left and right
cosets. They are either infinity many, or the same finite number.
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To prove this theorem, we can construct a map from the left coset to the right coset of
H: f : Ha→ a−1H. It’s easy to verify this map is bijective (one to one correspondence).
For all Ha = Hb, we have ab−1 ∈ H, and (ab−1)−1 = ba−1 ∈ H. Therefore, a−1H =
b−1H. Since there exists one to one mapping, the numbers of left and right cosets are
same.

With this theorem, we can use the number of the cosets (left or right) for a subgroup
H to define the index of H in G.

In common cases, the right coset Ha does not equal to the left coset aH. If they
are same, such subgroup is called normal subgroup. It was Galois, who first introduced
normal subgroups to analyze if equations are solvable in radicals.

Definition 3.1.7. For a group G, the subgroup N is called normal subgroup (or
invariant subgroup) if for every element a in G, the equation:

Na = aN

holds. The left (or right) coset for a normal group is called coset of N .

For the symmetric reason, a normal subgroup is also called the center of a group. We
have two theorems to determine if a group is normal subgroup:

Theorem 3.1.12. For a group G, the subgroup N is a normal subgroup (or invariant
subgroup) if and only if for every element a in G, equation:

aNa−1 = N

holds.

Theorem 3.1.13. For a group G, the subgroup N is a normal subgroup (or invariant
subgroup) if and only if for every element a in G, n in N , equation:

ana−1 ∈ N

holds.

For a normal subgroup N , all the cosets {aN, bN, cN, ...} form a set. We define the
multiplication for this set as:

(xN)(yN) = (xy)N

It easy to verify that, the set of cosets form a group under this multiplication oper-
ation. This group is called quotient group, denoted as G/N . There is an important
relation between the normal subgroup, quotient group, and homomorphism. First, there
is a homomorphism between G and every its quotient group G/N . To proof it, we can
construct a map a→ aN, a ∈ G. It is obvious that this map is surjective. For all elements
a, b in G, we have ab → abN = (aN)(bN). Therefore, it is a surjective homomorphism.
This fact tell us, we can either use the subgroup, or quotient group to understand the
property of G. To do that, let us define the concept of ‘kernel’.

Definition 3.1.8. If f is a surjective homomorphism from group G to another group G′,
consider the identity element e′ in G′, its preimage under f is a subset of G. This subset
is called the kernel of the homomorphism.

We have the following theorem. If G is homomorphic to G′, then the kernal N of the
homomorphism is the normal subgroup of G. And the quotient group G/N ∼= G′. A
group is homomorphic to every of its quotient group, and from the abstract point of view,
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G can only be homomorphic to its quotient groups. Sometimes, we find G is homomorphic
to G′, and we don’t know well about the properties of G′. However, we are sure to be
able to find a normal subgroup N of G, that the properties of G′ are essentially identical
to the quotient group G/N . We can see the importance of the normal subgroup and the
quotient group. Galois did use this idea to figure out the way to define the equation group
is solvable or not.

Exercise 3.7

1. Proof theorem 3.1.8, which determines if a subset forms a subgroup.
2. List the left cosets for H in figure 3.18.

3.1.8 Lagrange’s theorem
Lagrange’s theorem greatly demonstrates the power of abstract algebra. We can reveal
the inner pattern of the abstract structure even without knowing any concrete meanings
of the group elements or their operations.

Stamp of Joseph-Louise Lagrange

Joseph-Louise Lagrange, was an mathematics,
physics, and astronomer. He was born on January
25, 1736 in Turin, Italy. Lagrange was of Italian
and French descent. His paternal great-grandfather
was a French army officer who had moved to Turin,
and married an Italian. His father, who had charge
of the king’s military chest and was Treasurer of the
Office of Public Works and Fortifications in Turin.
But before Lagrange grew up he had lost most of
his property in speculations. A career as a lawyer
was planned out for Lagrange by his father, and cer-
tainly Lagrange seemed to have accepted this will-
ingly. He later claimed: “If I had been rich, I prob-
ably would not have devoted myself to mathemat-
ics.” Lagrange studied at the University of Turin.
At first he had no great enthusiasm for mathemat-
ics, finding Greek geometry rather dull.

It was not until he was seventeen that he showed
any taste for mathematics – his interest in mathe-
matics being first excited by a paper by Edmond Halley which he came across by accident.
That paper introduced about the new calculus invented by Newton. Alone and unaided
he threw himself into mathematical studies.

Starting from 1754, he worked on the problem of tautochrone, discovering a method of
maximising and minimising functionals in a way similar to finding extrema of functions.
Lagrange wrote several letters to Leonhard Euler between 1754 and 1756 describing his
results. His work made him one of the founders of the calculus of variations. Euler was
very impressed with Lagrange’s results. As an accomplished mathematician, Lagrange
was appointed to be an mathematics assistant professor at the Royal Military Academy
of the Theory and Practice of Artillery in 1755. Already in 1756, Euler and Maupertuis,
seeing Lagrange’s mathematical talent, tried to persuade him to come to Berlin, but
Lagrange had no such intention and shyly refused the offer.

In 1766, king Frederick of Prussia wrote to Lagrange expressing the wish of “the
greatest king in Europe” to have “the greatest mathematician in Europe” resident at his
court. Lagrange was finally persuaded and he spent the next twenty years in Prussia,
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where he produced not only the long series of papers published in the Berlin and Turin
transactions, but also his monumental work, the Mécanique analytique.

Lagrange was a favourite of the king, who used frequently to discourse to him on the
advantages of perfect regularity of life. The lesson went home, and thenceforth Lagrange
studied his mind and body as though they were machines, and found by experiment the
exact amount of work which he was able to do without breaking down. Every night he
set himself a definite task for the next day, and on completing any branch of a subject he
wrote a short analysis to see what points in the demonstrations or in the subject-matter
were capable of improvement. He always thought out the subject of his papers before he
began to compose them, and usually wrote them straight off without a single erasure or
correction.

Nonetheless, during his years in Berlin, Lagrange’s health was rather poor on many
occasions, and that of his wife Vittoria was even worse. She died in 1783 after years of
illness and Lagrange was very depressed.

In 1786, following Frederick’s death, Lagrange accepted the offer of Louis XVI to move
to Paris. In France he was received with every mark of distinction and special apartments
in the Louvre were prepared for his reception, and he became a member of the French
Academy of Sciences. It was about the same time, 1792, that the unaccountable sadness of
his life and his timidity moved the compassion of 24-year-old Renée-Françoise-Adélaïde Le
Monnier, daughter of his friend, the astronomer Pierre Charles Le Monnier. She insisted
on marrying him, and proved a devoted wife to whom he became warmly attached.

In September 1793, the French revolution broke out. Under intervention of Antoine
Lavoisier (known as the father of modern chemistry, who recognized and named oxygen
and hydrogen), who himself was by then already thrown out of the Academy along with
many other scholars, Lagrange was specifically exempted by name in the decree of October
1793 that ordered all foreigners to leave France. On May 4, 1794, Lavoisier, who had saved
Lagrange from arrest, and 27 other tax farmers were arrested and sentenced to death and
guillotined on the afternoon after the trial. According to a story, the appeal to spare
Lavoisier’s life so that he could continue his experiments was cut short by the judge, J.
B. Coffinhal: “The Republic has no need of scientists or chemists; the course of justice
cannot be delayed.”. Lagrange said on the death of Lavoisier on May 8: “It took only
a moment to cause this head to fall and a hundred years will not suffice to produce its
like.”[26]

After Coup of Brumaire 18, 1799, Napoleon attained the power of France. He warmly
encouraged science and mathematics studies in France, and was a liberal benefactor of
them. He loaded Lagrange with honors and distinctions, appointed Lagrange as senator.
In 1808, Napoleon made Lagrange a Grand Officer of the Legion of Honour and a Count
of the Empire. Then honoured him with the Grand Croix of the Ordre of the Reunion
on April 3, 1813. A week after, Lagrange died on April 10 at the age of 77. The
funeral operation was pronounced by Laplace, represented the House of Lords, and Dean
Lacépède represented the French Academy. The commemorative events were held in
Italian universities.

Lagrange was the great mathematician and scientist in the 18 to 19 Century. He made
significant contributions to the fields of analysis, number theory, and both classical and
celestial mechanics. Napoleon said “Lagrange is the lofty pyramid of the mathematical
science”. But above all his contribution, he is best known for his work on mechanics, where
he transformed Newtonian mechanics into a branch of analysis, Lagrangian mechanics as
it is now called, and presented the so-called mechanical ”principles” as simple results of
the variational calculus.

Lagrange made important progress in solving algebraic equations of any degree in the
first decades in Berlin. He introduced a concept called Lagrange resolvents. The signifi-
cance of this method is that it exhibits the already known formulas for solving equations
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of second, third, and fourth degrees as manifestations of a single principle. He failed to
give a general formula for solutions of an equation of degree five and higher, because the
auxiliary equation involved had higher degree than the original one. Nevertheless, La-
grange’s idea already implied the concept of permutation group. The permutations made
the resolvent invariant form a subgroup, and the order of the subgroup is the factor of
the original permutation group. This is exactly the famous Lagrange’s theorem in group
theory. Lagrange is a pioneer of group theory. His thoughts were adopted and developed
later by Abel and Galois, and was foundational in Galois theory.

Let us first introduce a lemma before Lagrange’s theorem.

Lemma 3.1.14. For a subgroup H, there exists one to one mapping between H and every
right coset Ha.

As the left and right cosets are symmetric, this lemma applies to left cosets as well.
To prove it, we can build a map f : h→ ha. It is one to one mapping from the subgroup
to right cosets because:

1. For every element h in H, there exists unique image ha;

2. For every element ha in Ha, it is the image of h in subgroup H;

3. For any h1a = h2a, the equation h1 = h2 holds.

From the existence of this one to one mapping, we know that for finite group G,
the number of elements for any coset must equal to the order of the subgroup H. And
according to the partition nature, every element in the group must be in some coset.
Therefore, we have the insight between the subgroup H and the finite group G through
cosets:

Theorem 3.1.15. Lagrange’s theorem: For any finite group G, the order (number of
elements) of every subgroup H of G divides the order of G.

Proof. First, we know that G can be fully partitioned by the cosets of H; From the
equivalence relation defined for coset, we know there is no overlap among them. If element
c belongs to both Ha and Hb, then c ∼ a, and c ∼ b, therefore, a ∼ b. Equation Ha = Hb
holds. And with the one to one mapping between the subgroup H and cosets, we know
the order of every coset equals to the order of H, which is |H| = n. Given the number of
cosets is m (which equals to the index of H), we finally get the result:

|G| = mn

Note that there is a conversed question to Lagrange’s theorem, whether every divisor
of the order of a group is the order of some subgroup? This does not hold in general.
Later we’ll see such negative example in figure 3.32 (c). The order of alternative group
A4 is 12, but it has no subgroup of order 6. We can deduce many interesting results from
Lagrange’s theorem.

Corollary 3.1.16. If G is a finite group, the order of every element a is a divisor of the
order of G.

This is because a generates a subgroup of order n, therefore n divides |G|.

Corollary 3.1.17. If G has prime order, then G is cyclic.

This is because for every element a excludes the identity element, the subgroup gen-
erated by a has the same order as G. Therefore, a is the generator of G, i.e. G = (a).
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Corollary 3.1.18. For every element a in a finite group G, equation a|G| = e holds.
This is because the order n of a divides G, let |G| = nk, we have:

a|G| = ank = (an)k = ek = e

Lagrange’s theorem in group theory can be used to prove the Fermat’s little theorem
in number theory. The theorem is named after Pierre de Fermat, who found it in 1636.
In a letter he wrote to a friend17 in October 18, 1640, Fermat stated this theorem first. It
is called the “little theorem” to distinguish it from Fermat’s last theorem. Euler provided
the first published proof in 1736. But Leibniz had given virtually the same proof in an
unpublished manuscript from sometime before 1683.
Theorem 3.1.19. Fermat’s little theorem: If p is prime, for any integer a that
0 < a < p, then p divides ap−1 − 1.
Proof. Consider the multiplicative integer group modulo p. The group elements are all
none zero residues modulo p. As p is prime, therefore the group elements are 1, 2, ...,
p− 1. The identity element e = 1. The order of the group is thus p− 1. According to the
corollary 3.1.18 of Lagrange’s theorem, we have:

ap−1 = e

Since the identity element is 1, this equation can be written as:

ap−1 ≡ 1 mod p

Therefore, p divides ap−1 − 1.

Compare to this method, the way to prove Fermat’s little theorem in elementary
theory of number is much more complex (for example, section 5.2 - 5.4 in [10]). Here we
give another interesting combinatorial method called proof by counting necklace[27].

Proof. Consider there are pearls in a different colors. we are going to make strings of
length p, where p is prime. Obviously there are total ap different strings, because every
pearl can be chosen among a colors, and we need make p times selection.

For example there are pearls in two different colors: A red, and B green. When make
strings containing 5 pearls, that is a = 2, p = 5, there are total 25 = 32 different strings:

AAAAA, AAAAB, AAABA, ..., BBBBA, BBBBB.

Corresponding to

red-red-red-red-red,
red-red-red-red-green,
red-red-red-green-red,
...,
green-green-green-green-red,
green-green-green-green-green.

We are going to prove that, among these ap strings, if remove a strings that are all
in the same color (in the above example, they are strings of AAAAA and BBBBB), the rest
ap − a strings can be divided in several groups. Each group has exactly p strings, thus p
divides ap − a.

If we link the head and tail for every pearl string to make a necklace, some different
strings will become the same necklace. When a string can transform to the other by
rotation, the two strings must form the same necklace. The following 5 strings form the
same necklace for example:

17Friend and confidant, French mathematician Frénicle de Bessy.
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AAAAB, AAABA, AABAA, ABAAA, BAAAA.

(a) A necklace in 3 colors represents 7 dif-
ferent strings: ABCBAAC, BCBAACA, CBAACAB,
BAACABC, AACABCB, ACABCBA, CABCBAA

(b) The necklace in same color only repre-
sent one string: AAAAAAA

Figure 3.20: Partition strings through necklace

By this means, the 32 pearl strings in above example, can be partitioned into 5 neck-
laces in different colors and 2 necklaces in the same color:

[AAABB, AABBA, ABBAA, BBAAA, BAAAB];
[AABAB, ABABA, BABAA, ABAAB, BAABA];
[AABBB, ABBBA, BBBAA, BBAAB, BAABB];
[ABABB, BABBA, ABBAB, BBABA, BABAB];
[ABBBB, BBBBA, BBBAB, BBABB, BABBB];
[AAAAA];
[BBBBB].

How many strings can a necklace represent? If a string S can be split into several
same sub-string T , while T can’t be split into sub-string any more, then the necklace
S represents |T | different strings, where |T | is the length of sub-string T . For example,
string S =ABBABBABBABB can be split into sub-string T =ABB, while ABB can’t be split
any more. If we rotate a pearl per time, there are total 3 different results:

ABBABBABBABB,
BBABBABBABBA,
BABBABBABBAB.

There are not any other different strings besides these 3. Since the length of ABB is 3,
further rotation must give the same result. Basically, there are two types for all the ap
pearl strings. One contains a strings in same color; the rest are strings in different colors.
However, as the length of the string p is prime, it cannot be generated by duplicating
sub-strings. Therefore, every necklace in different colors, represents p different strings.
There are total ap − a strings in different colors. They can be partitioned into groups by
the necklaces. Each group contains exactly p strings all can be represented with the same
necklace. It tells us p must divide ap−a = a(ap−1− 1). Since a and p are coprime, hence
p divides ap−1 − 1.

The proof by counting necklaces might be the most straightforward method people
developed. It need little mathematical knowledge. The key idea is two different counting
methods must give the same result.
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Pierre de Fermat, 1601-1665

It took 100 years from the born of Fermat’s little the-
orem to Euler’s proof. It is not rare, but a typical Fer-
mat style. Fermat’s last theorem stimulated many tal-
ent mathematicians. It took 358 years till British math-
ematician Andrew Wiles solved it in 1995 successfully.
The main tools Wiles used include elliptic curves, mod-
ularity theory, and Galois representations[12]. These
conjectures left by Fermat are a rich mathematical trea-
sure.

Pierre de Fermat was a French mathematician, born
about August 1601. His father was a wealthy leather
merchant. He became a lawyer at the Parlement of
Toulouse French after grown up. In 1630, he bought
the office of a councillor at the Parlement of Toulouse,
one of the High Courts of Judicature in France, and was
sworn in by the Grand Chambre in May 1631. He held
this office for the rest of his life. Fermat thereby became

entitled to change his name from Pierre Fermat to Pierre de Fermat. He was fluent in
six languages. Fermat studied mathematics in his spare time. But the mathematical
achievements made by Fermat were the peak of his time. Fermat’s pioneering work in
analytic geometry was circulated in manuscript form in 1636. It was based on results he
achieved in 162918. Together with René Descartes, Fermat was one of the two leading
mathematicians of the first half of the 17th Century developed analytic geometry.

Fermat and Blaise Pascal laid the foundation for the theory of probability through
their correspondence in 1654. From this brief but productive collaboration on the problem
of points, they are now regarded as joint founders of probability theory. Fermat is credited
with carrying out the first ever rigorous probability calculation.

In physics, Fermat refined the ancient Greek result about light and generalized to
“light travels between two given points along the path of shortest time” now known as
the principle of least time. For this, Fermat is recognized as a key figure in the historical
development of the fundamental principle of least action in physics. The terms Fermat’s
principle and Fermat functional were named in recognition of this role. Fermat also
contributed to the early development of calculus.

But Fermat’s crowning achievement was in the theory of numbers. Fermat was inspired
by the Diophantus’s great work Arithmetica in ancient Greek. It was translated into Latin
and published in France in 1621 by Claude Bachet. Fermat bought this book in Paris,
and was deeply attracted by the puzzles in theory of numbers. One special feature of
this edition was there were wide margin left in pages, it turned to be Fermat’s ‘note
book’ when reading it. During the study of Diophantus’ problems and answers, Fermat
often got inspired to consider wider and deeper problems, then wrote his thoughts and
comments in the margin.

Fermat published nearly nothing in his lifetime, although it is unbelievable from the
view point of today. It was common in Fermat’s time, that sometimes he wrote mails to his
scholar friends about his findings. Some of the most striking of his results were found after
his death on loose sheets of paper or written in the margins of works which he had read
and annotated, and are unaccompanied by any proof. He was constitutionally modest
and retiring, and does not seem to have intended his papers to be published. Fermat
was totally driven by the strong curiousity to explore the mathematical mysteries. It’s

18The 8 pages paper, Introduction to Plane and Solid Loci was completed in 1630, but it was published
posthumously in 1679, which was 14 years after Fermat’s death.
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purely because he treated mathematics study as a hobby. When he found the result
that had never been touched, Fermat was truly exciting and self-satisfied. It was not
significant to him to publish the result and get recognition[12]. Interestingly, this silent
genius sometimes liked to tease people. He often challenged other mathematicians in
mails by asking them to prove his discoveries.

The 1670 edition of the Arith-
metica of Diophantus, with
Fermat’s annotation.

When Fermat died in Jan, 1665, his research results
were scattered here and there. His son Clément-Samuel
Fermat spent 5 years to collect Fermat’s mails and notes,
then produced a special edition of Arithmetica contained
his father’s achievement. On the cover page, it printed
“augmented with Fermat’s commentary”. This edition in-
cludes 48 comments by Fermat. In 1679, Samuel collected
and published the second volume of Fermat’s work. His
research results were finally circulated, which greatly en-
riched the mathematics in the 17th Century, and impact
the development of mathematics later.

Before Fermat, the theory of numbers was basically a
collection of problems. It was Fermat who first systemat-
ically studied the theory of numbers. He proposed a large
number of theorems, and introduced generalized methods
and principles, thus brought the theory of numbers to the
modern development. It can be said that it was Fermat’s
systematic work that the theory of numbers really began
to become a branch of mathematics. With his gift for
number relations and his ability to find proofs for many
of his theorems, Fermat essentially created the modern
theory of numbers. He was called the ”father of modern
number theory.” Before Gauss’s Arithmetic Research, the development of number theory
was originally driven by Fermat.

However, for many propositions conjectured, Fermat only provided some key part,
or even without any proof. Some of them were found wrong19. Before given the strict
mathematical proof, these propositions could only be called conjecture. Most of them
were later solved by Euler. What’s more, Euler greatly developed the theory of numbers
on top of Fermat’s work.

The Euler theorem in theory of numbers, is more generic than Fermat’s little theorem.
Euler did not satisfied after successfully proved Fermat’s little theorem. What if p is not
prime? After carefully studied the general condition that covered composite numbers,
Eular found and proved the following theorem.

Theorem 3.1.20. Euler theorem: If 0 < a < n, a and n are coprime, then n divides
aϕ(n) − 1.

Where ϕ(n) is Euler function20. It is defined as the number of all positive integers
that less than n, and coprime to n.

ϕ(n) = |{i|0 < i < n and gcd(i, n) = 1}|

19For example Fermat number, named after Fermat who first studied them in 1640, is a positive
number of the form 22

n
+ 1. Fermat claimed all such numbers are primes. It is true when n is 0, 1,

2, 3, 4. The corresponding numbers are 3, 5, 17, 257, 65537. However, in 1732 Euler calculated that
22

5
+ 1 = 641× 6700417, is not a prime number. As of 2017, people have found 243 negative examples,

without finding the 6th Fermat prime number. It is still a unsolved conjecture whether there are any
other Fermat primes.

20Also know as Euler totient function, or Euler ϕ(n) function.
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Euler proved this theorem with the method in elementary theory of numbers. There
is a elegant proof by using Lagrange’s theorem in group theory.

Proof. Consider the none zero residues modulo n. We pick out all the mutually inverse
residues under the multiplication modulo n. They form a multiplicative group modulo n.
From the definition of Euler ϕ function, the value of ϕ(n) is the number of all positive
integers that less than n and coprime to n. While these positive numbers are exactly the
elements of the multiplicative group. Thus the order of this group is ϕ(n). From the
corollary 3.1.18 of Lagrange’s theorem, we have:

aϕ(n) = e

Therefore, aϕ(n) ≡ 1 mod n, which immediately gives the result, n divides aϕ(n) −
1.

Let us see an example. Below is the multiplication table for all the none zero residues
modulo 10. We can locate the identity element 1, and mark the cells underline. Then
from that cell, along with the row and column, we can find two numbers, marked in bold.
Their modulo product is 1, and both are coprime to 10. On the other hand, for every
residue number that is not coprime to 10, the row and column where it is in also contain
0. But 0 is not group element. We can see that all the residues that are coprime to 10
are exactly the group elements 1, 3, 7, 9.

1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 8
2 2 4 6 8 0 2 4 6 8
3 3 6 9 2 5 8 1 4 7
4 4 8 2 6 0 4 8 2 6
5 5 0 5 0 5 0 5 0 5
6 6 2 8 4 0 6 2 8 4
7 7 4 1 8 5 2 9 6 3
8 8 6 4 2 0 8 6 4 2
9 9 8 7 6 5 4 3 2 1

Given integer n, how to evaluate Euler function? As any integer greater than 1 can
be factored as power of prime numbers, let us first see how to evaluate ϕ(pm) for the
m power of prime p. We are going to count how many numbers from 1 to pm − 1 are
coprime to pm. We can easily do this by removing the multiples of p. These numbers are
p, 2p, 3p, ..., pm−p. Divide them by p, gives the nature number sequence 1, 2, 3, ..., pm−1−1.
We immediately know there are pm−1 − 1 numbers. On top of this, we deduce the value
of Euler function for the power of prime as:

ϕ(pm) = (pm − 1)− (pm−1 − 1)

= pm − pm−1

= pm(1− 1

p
)

We next consider number in form of n = puqv, which is product of power of different
prime numbers. We need first remove all multiples of p, then remove all multiples of
q. But there are numbers that are the multiples of both p and q. They are removed
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twice. We need add these multiples of pq back (Principle of inclusion and exclusion in
combinatorics). Thus we have:

ϕ(puqv) = (n− 1)− (
n

p
− 1)− (

n

q
− 1) + (

n

pq
− 1)

= n(1− 1

p
)(1− 1

q
)

= pu(1− 1

p
)qv(1− 1

q
)

= ϕ(pu)ϕ(qv)

Particularly when both u and v are 1, we have ϕ(pq) = ϕ(p)ϕ(q). We can expand this
result to multiple powers of prime numbers. Given n = pk1

1 , p
k2
2 ...p

km
m , the Euler function

can be evaluated as:

ϕ(n) = n(1− 1

p1
)(1− 1

p2
)...(1− 1

pm
)

= ϕ(pk1
1 )ϕ(pk2

2 )...ϕ(pkm
m )

We can develop the fast evaluation algorithm from this result. We leave this as an
exercise in this chapter.

Leonhard Euler was a great Swiss mathematician and scientist. He is held to be one
of the greatest mathematician in the history together with Archimedes, Newton, and
Gauss. Euler was born on April 15, 1707 in Basel Switzerland. As a paster, his father
urged him to study theology and became paster too. Euler enrolled at the University of
Basel at the age of 13 with major of philosophy and theology. During that time, he was
receiving Saturday afternoon lessons from Johann Bernoulli, the foremost mathematician
in Europe. Bernoulli quickly discovered Euler’s incredible talent for mathematics, and
convinced his father that Leonhard was destined to become a great mathematician.

In 1727, Euler became a member of Imperial Russian Academy of Sciences in Saint
Petersburg. He devoted himself to research work and later became the head of mathe-
matics department after his friend, Daniel Bernoulli left for Basel. During the 14 years
in Russia, Euler studied analytics, number theory, and mechanics. In 1747, Euler took
up a position at the Berlin Academy, which he had been offered by Frederick the Great
of Prussia. He lived for 25 years in Berlin, where he wrote over 380 articles. During
this time, his research was more extensive, involving planetary motion, rigid body move-
ment, thermodynamics, ballistics, and demography. These work was closely connected
with his research in mathematics. Euler made groundbreakings in differential equations,
and surface differential geometry. After the political situation in Russia stabilized after
Catherine the Great’s accession to the throne, in 1766 Euler accepted an invitation to
return to the St. Petersburg Academy. He spent the rest of his life in Russia.

Euler worked in almost all areas of mathematics, such as geometry, infinitesimal calcu-
lus, trigonometry, algebra, and number theory, as well as continuum physics, lunar theory
and other areas of physics. He is a seminal figure in the history of mathematics; From
the age of 19 till he died at 76, he published huge number of research papers and books
in half a Century. Euler’s name is associated with almost every area in mathematics. He
was the top productive mathematician in the history with a total of 856 papers, and 31
books. And these did not counted the loss of the fire in St. Petersburg in 1771. (Euler’s
record was refreshed by Hungarian mathematician Paul Erdős in the 20th Century, who
published 1525 papers and 32 books) [28].
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Stamps commemorating Leonhard Euler (1707 - 1783)

Euler had unbelievable strong willpower. His right eye lost sight from a fever. Three
years later, he became almost blind in his right eye. But even worse, his left eye lost sight
too in 1771. But Euler rather blamed the painstaking work on cartography he performed
for his condition. Just as deafness did not stop Beethoven’s music creation, blindness
did not stop Euler’s mathematical exploration[12]. Euler remarked on his loss of vision,
“Now I will have fewer distractions.” As he compensated for it with his mental calculation
skills and exceptional memory. He could not only remember the first 100 prime numbers,
but also their squares, cubics, and even higher powers. He could also perform complex
mental arithmetic. With the aid of his scribes, Euler’s productivity on many areas of
study actually increased. He produced, on average, one mathematical paper every week
in the year 1775. Half of Euler’s work was dictated after his eyes were completely blind.
The French physicist François Arago said “Euler calculated without any apparent effort,
just as men breathe, as eagles sustain themselves in the air.” Euler could work in any bad
environments. He often held the child on the lap to complete the papers, regardless of
any noise around.

Among Euler’s work, there are difficult monographs as well as readings for the general
public. Euler wrote over 200 letters to a German Princess in early 1760s, which were
later compiled into a best-selling volume entitled Letters of Euler on different Subjects
in Natural Philosophy Addressed to a German Princess. This book became more widely
read than any of his mathematical works and was published across Europe and in the
United States. The popularity of the ”Letters” testifies to Euler’s ability to communicate
scientific matters effectively to a lay audience, a rare ability for a dedicated research
scientist. Euler also wrote a course on elementary algebra for readers of non-mathematics
background, which is still in print today. Many popular mathematical notations we are
using today were carefully introduced by Euler, for example π (1736), the imaginary
unit i (1777), the base of the natural logarithm e, now also known as Euler’s number
(1748), circular function sin, cos (1748), and tg (1753), ∆x (1755), summation

∑
(1755),

function f(x) (1734) and so on[12].
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On September 18, 1783, after lunch with his family, Euler was discussing the newly
discovered planet Uranus and its orbit with a fellow academician. As usual, he played
with one of his granddaughter while having tea. Suddenly, the pipe drop from his hand.
He said “My pipe”, then bent over to pick it, but he was not able to stand, uttered only
“I am dying” before he lost consciousness. “He ceased to calculate and to live.”21

Fermat little theorem is widely used in our everyday life, from internet shopping to
electronic payment. In 1976, professor Whitfield Diffie and Martin Hellman in Stanford
University developed the concept of asymmetric public-private key cryptosystem. In 1977,
Ron Rivest, Adi Shamir, and Leonard Adleman in Massachusetts Institute of Technology
(MIT) developed a one-way function that was hard to invert based on theory of numbers.
The algorithm is now known as RSA – the initials of their surnames in same order as
their paper.

The key asymmetry concept of RSA is based on the fact that we can easily create
a composite numbers from two large prime numbers, while there is practical difficulty
to factor them. This is known as the factoring problem. For a large number of over
200 digits, even the most powerful super computer will cost time longer than the age of
universe. In order to construct a encrypt key hard to break, we need a method that can
find large prime numbers fast. However, people do not know the exact pattern about how
prime numbers distributed in nature numbers. There is no formula to enumerate prime
numbers. The brute force method is to randomly pick a number n, then examine from
1 to

√
n, check if all do not divide n. But this primality test method is very ineffective.

The time will also exceed the age of universe. A better method is the Eratosthenes sieve
algorithm. We first enumerate all numbers from 2 to n. Starting from 2, removal all
multiples of 2, then remove all multiples of 3... Repeat this every time from the next
number that is not filtered out, till the number not greater than

√
n. This process gives

all the prime numbers to n. However, it is still only applicable for small n, but can’t serve
for the large number primality test.

Interestingly, Fermat’s little theorem provides a way for fast primality test. For a
large number n, we can randomly select a positive integer a less than it as a ‘witness’.
Then check if the remainder of an−1 modulo n is 1. If not 1, n must not be prime number
according to Fermat’s little theorem. Otherwise if it is 1, then n may be a prime number.

The Fermat primality test algorithm (also known as Fermat test) based on this idea
can be described as below:

function primality(n)
Random select a positive integer a < n
if an−1 ≡ 1 mod n then

return prime number
else

return composite number
We needn’t compute the exact value of n − 1 power of a, then divide n to get the

remainder. We can use modular arithmetic to speed up. The intermediate result can
be largely re-used. After we calculate b = a2 mod n, we can next get b2 mod n, which
equals to a4 mod n. For example, when evaluate a11 mod n, since:

a11 = a8+2+1 = ((a2)2)2a2a mod n

What have to calculated are only a2 mod n, (a2)2 mod n, and ((a2)2)2 mod n. Ba-
sically, we can express n in binary format, and only iterate calculating the modular

21In the eulogy for the French Academy, French mathematician and philosopher Marquis de Condorcet
wrote this.
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product for the digits of 1. The complexity of this algorithm is O(lgn) (proportion to the
logarithm of n). Fermat test is very fast because of this.

However, even a number can pass Fermat test, it is not necessarily prime. For example
341 = 11 × 31 is a composite number, but 2340 ≡ 1 mod 341 can pass the Fermat test.
To reduce the probability of such failure, people developed many improvements. The first
improvement is to increase the number of witness. We can prove that, if a number does
not pass Fermat test, then there exist at least half of n numbers that can’t pass too ([30],
pp26).

Theorem 3.1.21. For positive integer a less than n, and coprime with n, if an−1 6≡ 1
mod n, then for all selected a < n, it also holds for at least half.

pass Fermat test not pass Fermat test

b ab

c

f : b→ ab

Set {1, 2, ..., n− 1}

Figure 3.24: Map from the set that pass Fermat test to the set that does not

Proof. If for some a that an−1 6≡ 1 mod n holds, then for any witness b that passes
Fermat test (It means bn−1 ≡ 1 mod n), we can create a negative case for Fermat test
ab.

(ab)n−1 ≡ an−1bn−1 ≡ an−11 6≡ 1 mod n

And because i 6= j, we have a · i 6≡ a · j, therefore, all these negative cases are not
same.

As shown in figure 3.24, if there exists a number that can’t pass Fermat test, then the
positive cases are as same amount as the negative cases.

If we select k different witness and perform Fermat test, we can reduce the probability
of failure that n is not prime number to 1

2k
. However, there exist such composite number

n, that for any a less than n and coprime to n, an−1 ≡ 1 mod n holds. It means whatever
a we selected, such composite number can pass Fermat test. Carmichael found first such
number in 1910, that 561 = 3 × 11 × 17. This kind of numbers is called Carmichael
numbers or Fermat pseudoprime22. Erdős conjectured there are infinite many Carmichael
numbers. In 1994, people proved for sufficient large n, there are at least n2/7 Carmichael
numbers from 1 to n. Thus explains Erdős’ conjecture[29].

22The Czech mathematician Václav Šimerka found the first 7 Fermat pseudoprimes: 561 = 3 ×7 ×11,
1105 = 5 ×13 ×7, 1729 = 7 ×13 ×19, 2465 = 5 ×17 ×29, 2821 = 7 ×13 ×31, 6601 = 7 ×23 ×41, 8911
= 7 ×19 ×67. However, his work was not well known to the people
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The primality test algorithm in RSA is Miller-Rabin algorithm. It is also a proba-
bilistic algorithm23. According to the above theorem, if select more than 100 witnesses,
the probability of failure is expected less than 1

2100
. Donald Knuth commented “far less,

for instance, than the probability that a random cosmic ray will sabotage the computer
during the computation!”

We summarized the relations for group, semigroup, monoid introduced so far as the
following diagram.

abelian group

group

monoid

semigroup

associativity binary operation

identity element

inverse element

community

Figure 3.25: group, semigroup, monoid

Exercise 3.8

1. Today is Sunday, what day it will be after 2100 days?
2. Given two strings (character string or list), write a program to test if they form

the same necklace.
3. Write a program to realize Eratosthenes sieve algorithm.
4. Extend the idea of Eratosthenes sieve algorithm, write a program to generate Euler

ϕ function values for all numbers from 2 to 100.
5. Write a program to realize fast modular multiplication, and Fermat’s primality

test.

3.2 Ring and Field
The modern theory of rings, fields, and abstract algebra was greatly developed by Ger-
man mathematician Emmy Noether. Noether was born to a Jewish family in Erlangen
Germany on March 23, 1882. Her father was a mathematician in the University of Er-
langen. She originally planned to teach French and English after passing the required
examinations in 1900, but she chose instead to continue her studies at the University of
Erlangen where her father lectured.

This was an unconventional decision. Two years earlier, the Academic Senate of the
university had declared that allowing mixed-sex education would “overthrow all academic
order”. As one of only two women in a university of 986 students, Noether was only allowed
to audit classes rather than participate fully, and required the permission of individual
professors whose lectures she wished to attend. Despite these obstacles, on July 14, 1903
she passed the graduation exam at a Realgymnasium in Nuremberg.

23There is a deterministic version of Miller-Rabin algorithm, but the correctness is on top of the
generalized Riemann hypothesis (GRH)[31].
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Emmy Noether, 1882-1935

During the 1903–1904 winter semester, she studied at
the University of Göttingen, attending lectures given by
astronomer Karl Schwarzschild and mathematicians Her-
mann Minkowski, Otto Blumenthal, Felix Klein, and David
Hilbert. Noether returned to Erlangen. She officially reen-
tered the university in October 1904, and declared her inten-
tion to focus solely on mathematics. Under the supervision
of Paul Gordan she wrote her dissertation. For the next
seven years (1908–1915) she taught at the University of Er-
langen’s Mathematical Institute without pay only because
she was a woman.

The mathematician Ernst Fischer was an important in-
fluencer on Noether, in particular by introducing her to the
work of David Hilbert. From 1913 to 1916 Noether published
several papers extending and applying Hilbert’s methods to
mathematical objects such as fields of rational functions and
the invariants of finite groups. This phase marks the be-
ginning of her engagement with abstract algebra, the field of mathematics to which she
would make groundbreaking contributions.

In the spring of 1915, Noether was invited to return to the University of Göttingen by
David Hilbert and Felix Klein. Their effort to recruit her, however, was blocked by the
philologists and historians among the philosophical faculty: Women, they insisted, should
not become privatdozenten. Hilbert responded with indignation, stating, “I do not see
that the sex of the candidate is an argument against her admission as privatdozent. After
all, we are a university, not a bath house.”

During her first years teaching at Göttingen she did not have an official position and
was not paid; her family paid for her room and board and supported her academic work.
Her lectures often were advertised under Hilbert’s name, and Noether would provide
“assistance”.

Soon after arriving at Göttingen, however, she demonstrated her capabilities by prov-
ing the theorem now known as Noether’s theorem, which shows that a conservation law
is associated with any differentiable symmetry of a physical system. American physicists
Leon M. Lederman and Christopher T. Hill argue in their book Symmetry and the Beauti-
ful Universe that Noether’s theorem is “certainly one of the most important mathematical
theorems ever proved in guiding the development of modern physics, possibly on a par
with the Pythagorean theorem”.

In 1919 the University of Göttingen allowed Noether to proceed with her habilitation.
Noether was not paid for her lectures until she was appointed to the special position in
1923.

Noether’s work in algebra began in 1920. She published the important paper Theory of
Ideals in Ring Domains in 1921. This revolutionary work gave rise to the term “Noetherian
ring” and the naming of several other mathematical objects as Noetherian. In 1931,
Noether’s student, Dutch mathematician Van der Waerden published Moderne Algebra, a
central text in the field developed by Noether. Although Noether did not seek recognition,
Van der Waerden included a note “based in part on lectures by E. Artin and E. Noether”.
This classic book influenced a generation of young mathematicians in that time. In
Göttingen, Noether supervised more than a dozen doctoral students. In November 1932,
Noether delivered one hour speech at the 9th International Congress of Mathematicians
in Zürich. with 800 attendees. Apparently, this prominent speaking position was a
recognition of the importance of her contributions to mathematics. The 1932 congress is
sometimes described as the high point of her career.

However, the huge reputation and recognition did not improve her difficult situation
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as a woman. Her colleagues were frustrated for the fact that she was not elected to the
Göttingen academy of sciences and was never promoted to the position of full professor.
Her frugal lifestyle was due to being denied pay for her work; However, even after the
university began paying her a small salary in 1923, she continued to live a simple and
modest life.

After Hitler gain the power of German, Nazi administration persecuted Jews intensi-
fied. In 1929, Noether was taken out of the apartment where she lived. In April 1933,
Noether was forced to stop teaching at the University of Göttingen. Several of Noether’s
colleagues, including Max Born and Richard Courant, also had their positions revoked.
Noether accepted the decision calmly, providing support for others during this difficult
time. Hermann Weyl later wrote that “Emmy Noether—her courage, her frankness, her
unconcern about her own fate, her conciliatory spirit—was in the midst of all the hatred
and meanness, despair and sorrow surrounding us, a moral solace.”

As dozens of newly unemployed professors began searching for positions outside of Ger-
many. Albert Einstein and Hermann Weyl were appointed by the Institute for Advanced
Study in Princeton, while others worked to find a sponsor required for legal immigration.
Although Noether was the world famous mathematician, it was very hard for her to get
a position from large institutions as a women. After a series of negotiations with the
Rockefeller Foundation, a grant to Bryn Mawr College in the United States was approved
for Noether and she took a position there, starting in late 1933. This is a girl’s Uni-
versity, and Noether lectured there as a visiting scholar. Although she was invited to
Princeton University to give lectures, she remarked that she was not welcome at “the
men’s university, where nothing female is admitted”.

In April 1935, doctors discovered a tumor in Noether’s pelvis. She was died after the
surgery on April 14 at the age of 53.

Noether is best remembered for her contributions to abstract algebra. Nathan Jacob-
son wrote that: “The development of abstract algebra, which is one of the most distinctive
innovations of twentieth century mathematics, is largely due to her.” She sometimes al-
lowed her colleagues and students to receive credit for her ideas, helping them develop
their careers at the expense of her own. She was described by Pavel Alexandrov, Albert
Einstein, Jean Dieudonné, Hermann Weyl and Norbert Wiener as the most important
woman in the history of mathematics[32].

3.2.1 Ring
Let us see how ring is defined.

Definition 3.2.1. A ring is a set R that satisfies below ring axioms:

1. R is an additive group, it means R forms an abelian group under the addition
operation defined on it;

2. There is multiplication defined for R, and R is close under this multiplication op-
eration;

3. The multiplication is associative. For all a, b, c, equation (ab)c = a(bc) holds;

4. Multiplication is distributive with respect to addition, meaning that, for all a, b, c,
we have:

a(b+ c) = ab+ ac
(b+ c)a = ba+ ca

Obviously, all integers form a ring under the addition and multiplication. Other
examples are polynomials and matrix form ring under the addition and multiplication.
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The ring definition only requires the addition operation is commutative, thus the ring is
an abelian group under addition. It does not have such requirement for multiplication.
When the ring multiplication is also commutative, we call it commutative ring. In
commutative ring, for positive integer n and any two elements, the following equation
holds:

anbn = (ab)n

The ring definition does not require an identity element for the multiplication too. If
there exists an element e in R, it satisfies the below equation for all elements:

ea = ae = a

We call e the unity (multiplicative identity element) of the ring. A ring may not
necessarily have unity24. Traditionally, we use 1 to represent the unity. It is just a
symbol, but not means the actual number 1. With unity, we can also define inverse
element. If ab = ba = 1, we say b is the inverse element of a. According to the group
property, we know that if the ring has an identity element for multiplication, it is unique.
If an element is invertible, the inverse element is also unique. While it is not necessary
that all elements are invertible. For example, the integer ring has unity, but except for
±1, all other integers are not invertible. We call the invertible element a unit.

From the distributive axiom, we have:

(a− a)a = a(a− a) = aa− aa = 0

in short:

0a = a0 = 0

It means for two elements a, b in the ring, if either one is 0, then ab = 0. But the
inverse proposition does not hold. We can not deduce from ab = 0 to either a or b is 0.
Let’s see a negative example. Consider the residue class modulo n, where the addition
operation is modulo addition: [a] + [b] = [a + b], which takes modulo n on top of the
sum. It forms an abelian addition group. The multiplication modulo n is defined as:
[a][b] = [ab], which takes modulo n on top of the product. It’s easy to verify that this is
a ring, named as residue ring modulo n.

If n is not prime, for example 10, we can multiply two none zero elements [5][2] =
[5× 2] = [0]. In fact, for any two factors of n, their modulo product must be zero.

In a ring, if there exists a 6= 0, b 6= 0, but ab = 0, we call a is a left zero divisor,
and b is a right zero divisor of the ring. For the commutative ring, a left zero divisor
is also right zero divisor. Of course, it’s possible there is no zero divisor, for example the
integer ring. For ab = 0, we can deduce either a or b is 0 only if there is no zero divisor
in the ring. And we have the following theorem:

Theorem 3.2.1. For a ring without zero divisor, the following two cancellation rules
hold.

• If a 6= 0, and ab = ac, then b = c;

• If a 6= 0, and ba = ca, then b = c.
24More people define a ring to have a multiplicative identity nowadays, and use symbol rng for a ring

without multiplicative identity.
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Conversely, if one cancellation rule holds in a ring, then the other cancellation rule
also holds, and there is no zero divisor in this ring.

So far, we introduced three additional conditions: (1) Multiplication is commutative;
(2) There exists unity; (3) No zero divisor. A ring that satisfies these three additional
constraints is called integral domain (nonzero commutative ring). It’s obvious that
integer ring is an integral domain.

The ring constraints are strong. Sometimes, we needn’t the additive inverse. By
weakening the limitation, we obtain the semiring.

Definition 3.2.2. A set R under the addition and multiplication forms a semiring if it
satisfies the following axioms:

1. R forms a commutative monoid under addition, and there exists the identity element
0;

2. R forms a monoid under multiplication, and there exists the identity element 1
(unity);

3. Multiplication is distributive with respect to addition. For any a, b, c:

a(b+ c) = ab+ ac
(b+ c)a = ba+ ca

4. Any element multiplies 0 gives 0, meaning that: a0 = 0a = 0.

Natural numbersN is an example of semiring. The Boolean operations form a semiring
with two elements.

Exercise 3.9

1. Prove the theorem that the two cancellation rules hold in a nonzero ring (ring
without zero divisor).

2. Prove that, all real numbers in the form of a+ b
√
2, where a, b are integers form a

integral domain under the normal addition and multiplication.

3.2.2 Division ring and field
We know that not all elements have inverse element in a ring. If every non-zero element
has its inverse, then it forms a special ring. For example all rational numbers form a ring
under the normal addition and multiplication. In this ring, every non-zero element a has
its inverse 1

a
.

Definition 3.2.3. A ring R is a division ring if it satisfies the following conditions:

1. R contains at least one non-zero element;

2. R has unity;

3. Every non-zero element in R is invertible (unit).

Definition 3.2.4. A commutative division ring is a field�.
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According to this definition, all rational numbers form a field. Similarly, all real
numbers and all complex numbers form fields under the addition and multiplication25.
There are some interesting properties for division ring and field. There is no zero divisor
in a division ring. This is because if a 6= 0, and ab = 0, then we multiply the inverse
element of a from left to both sides:

a−1ab = b = 0

Thus b must be zero, therefore, division ring is a nonzero ring (does not contain zero
divisor). The other property is that, all non-zero elements in division ring R form a group
under multiplication, denoted as R∗. We call R∗ the multiplicative group of division ring
R. A division ring consists of two groups: addition group and multiplication group. The
distributive axiom bridges the two groups together. We summarized the ring, semiring,
integral domain, division ring, and field as figure 3.27.

semiring

ring

commutative ring unit nonzero

integral domain division ring

field

add monoid mul monoiddistributive

add invertible
mul commutative

mul invertible

Figure 3.27: semiring, ring, integral domain, and field

We skipped some important algebraic structure here like subring, ideal, principal ideal
domain, and Euclidean domain.

3.3 Galois theory
Galois theory provides connection between group and field. Using Galois theory, certain
problems in field theory can be reduced to group theory, which is in some sense simpler and
easier to understand. A field can contain infinite many elements with adding, subtracting,
multiplying, and dividing. It’s a complex mathematical object. Galois theory can simplify
the problems in field to a corresponding problem in finite group with only one operation.
This is the key idea of Galois theory.

Galois theory is famous for its difficulty and hard to understand. Compare to its
original form, the modern Galois theory is no longer ambiguous, and much clearer and
elegant. This is because more than two dozens of masters greatly developed and improved
it in the past. The most important contributors are Jordan, Dedekind, and Emil Artin.
Jordan and Dedekind first systematically developed Galois theory in France and Germany.
The definition of Galois group we are using today was given by Dedekind. The modern
form of Galois theory is made by Artin[33]. We adopted a gentle explanation that is
friendly to beginners[34] in this short section. It’s quite common that we can’t understand

25We’ll see in later chapter, rational number field is countable, while real number field and complex
number field are not countable.
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it in the first time reading. It’s always helpful to read the masters. Our life is not linear.
I recommend the way to revisit what we learned before, find more great books to read.
Our understanding changes along the time, and there must be aha moment in the future.

3.3.1 Field extension
From the definition of field, we know that all rational numbers form a field Q. Let us
consider a set of all the numbers in the form of a + b

√
2, where a and b are rational

numbers[35]. Obviously, the set of rational numbers is a subset of it (just let b = 0). It’s
easy to verify that, for any two such numbers, the result of add, subtract, multiply, and
divide are still in the form of a + b

√
2. Among them, divide takes more steps to verify.

Given x =
1

a+ b
√
2

, we can multiply both nominator and denominator by a − b
√
2 to

get:

x =
a− b

√
2

(a+ b
√
2)(a− b

√
2)

=
a− b

√
2

a2 − 2b2

Let p = a2 − 2b2, then x can be expressed as (a/p) − (b/p)
√
2. Thus we verified for

divide operation as well. This set is really a field. We denote it as Q[
√
2]. Similarly,

Q[
√
3] is also a field. They are both example of field extension concept.

Definition 3.3.1. If field E contains field F , then E is field extension of F , denoted
as F ⊆ E or E/F .

For example, the field of real numbers is the field extension of rational numbers; Q[
√
2]

is the field extension of rational numbers Q. Basically, for field F , if α ∈ F , but
√
α 6∈ F ,

then F1 = F [
√
α] is also a field. We can keep extending the field with this method. If

β ∈ F1, but
√
β 6∈ F1, then:

F2 = F1[
√
β]

= F [
√
α][
√
β]

= F [
√
α,
√
β]

All numbers like a+ b
√
β where a, b ∈ F1 form a higher level field extension. Starting

from rational numbers, we can obtain a series of field extensions Q ⊂ F1 ⊂ F2... ⊂ Fn.
Why does field extension matter? For example, equation x2 − 2 = 0 can not be

solved in the field of rational numbers (there are not any rational numbers satisfy this
equation), however, if we extend from the rational number field, there is pair of solutions
in the Q[

√
2], which are x = ±

√
2. Here is another example, for equation x4−5x2+6 = 0,

there is no rational number solution, but there are two solutions in field extension Q[
√
2],

which are ±
√
2; if we extent the field one more step to Q[

√
2,
√
3], we obtain the complete

four solutions: ±
√
2, and ±

√
3. It leads to the important concept of splitting field.

Definition 3.3.2. For equation p(x) = 0, the smallest field extension that contains all
the roots is called the splitting field of p(x). It’s also called as root field.

Thus the splitting field of equation x2−2 = 0 is Q[
√
2]. Why is it named as ‘splitting’?

The polynomial x2 − 2 can not be decomposed in rational number field Q, however, in
field extension Q[

√
2] it can be split to:

(x+
√
2)(x−

√
2)



3.3. GALOIS THEORY 93

For a given polynomial equation, if we can start from the basic rational number field,
with a series of field extension, reach to its splitting field, then this equation is radical
solvable.

We’ve seen the example of square root. There are more complex cases. Cubic equation
may need cubic root, some equation even requires imaginary unit i. From the high
school math, we know that for the simplest equation xp − 1 = 0, there are p roots of
1, ζ, ζ2, ..., ζp−1, where ζ 6= 1 is a complex root in the unit circle. We need a strict
description of field extension to cover these cases.

ζ0 = ζ3 = 1

ζ =
−1 + i

√
3

2

ζ2 =
−1− i

√
3

2

Figure 3.28: Unit root of x3 − 1 = 0

If the integer power of α is some element b in field F , which means αm = b ∈ F ,
such α can be obtained through radical form of b as α = m

√
b. We can extend the field

with a series of such radical forms to F [α1][α2]...[αk]. If each αi is radical form, we call
the field extension F [α1, α2, ..., αk] as radical extension of F . Let the equation roots be
x1, x2, ..., xn (Note xi may not be radical form), if the splitting field E = Q[x1, x2, ..., xn]
is radical extension, then the equation is radical solvable.

Exercise 3.10
1. Prove that Q[a, b] = Q[a][b], where Q[a, b] contains all the expressions combined

with a and b, such as 2ab, a+ a2b etc.

3.3.2 Automorphism and Galois group
Our thought so far is to start from the rational number field, where the coefficients of
the equation belong to, then move forward to the splitting field step by step through
a series of radical extensions. How to further simplify the problem to find the answer?
At this stage, Galois changed his mind to another direction. He turned to consider the
symmetry among the roots of the equation. For example, There is a pair of roots for
equation x2 − 2 = 0, which are ±

√
2. Obviously, if replace

√
2 with −

√
2, the equation

still holds. Besides that, replacing
√
2 in equation

√
2
2
+
√
2 + 1 = 3 +

√
2 with −

√
2,

then the equation holds too. It means, the pair of roots ±
√
2 is symmetric to the relation

α2 + α+ 1 = 3+ α. We can further say, for any expressions that only consist of addition
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and multiplication of
√
2, the pair of roots can be exchanged with each other. We know

that the most powerful tool to describe symmetry is group, in particular, the symmetric
group (we just introduced it in section 3.1.4). To connect field extension and group,
Galois introduced an important concept of field automorphism.

Using the same example of Q[
√
2], we can define a function from Q[

√
2] to Q[

√
2] with

type f : Q[
√
2]→ Q[

√
2]. The definition is as this:

f(a+ b
√
2) = a− b

√
2

Then f is a field automorphism.

Definition 3.3.3. Field Automorphism is a invertible function f , that maps the field
to itself. It satisfies f(x+ y) = f(x) + f(y)�f(ax) = f(a)f(x)�f(1/x) = 1/f(x).

We can verify the example function f(a + b
√
2) = a − b

√
2 satisfies all the three

conditions. The idea behind field automorphism is that, we can permute some elements
in the field without any impact to the field structure.

Definition 3.3.4. F -Automorphism: If E is field extension of F , the automorphism f
of field E also satisfy an extra condition, that for any element in F , equation f(x) = x
holds, then it is called F -automorphism of E.

The symmetry among roots is precisely defined under the F -automorphism. All the
elements in F keep unchanged, while all the new elements, and only these new elements
in filed extension E are changed. The changing among the elements in the field exactly
means permutation, while the relations keep unchanged after permutation exactly means
symmetry. For the example of Q[

√
2], there are only two functions in Q-automorphism:

one is the identity function g(x) = x, the other is f we defined above.
Let us summarize the result we obtained so far with the example p(x) = x2 − 2:

1. The splitting field of p(x) is Q[
√
2];

2. The Q-automorphism defines the symmetry of the roots of p(x). It contains two
functions: f(a+ b

√
2) = a− b

√
2, and g(x) = x.

However, we can’t ensure the symmetry to all roots if only extend to the splitting field.
For example, the splitting field of equation x4− 5x+6 = 0 is Q[

√
2,
√
3]. Although there

is automorphism f that swaps (permute) ±
√
2, there does not exist Q-automorphism per-

mutes
√
2 and

√
3. Otherwise, suppose there was f(

√
2) =

√
3, then f(

√
2)2 = f(

√
2
2
) =

f(2) = 2, because f preserves multiplicative structure and f(x) = x for rational x. On
the other hand, since f(

√
2) = f(

√
3), we have f(

√
2)2 =

√
3
2
= 3. It means 2 = 3, which

is clearly nonsense. Besides that, consider field extension Q[x1, ..., xn,
√
x1], it contains

the square root of x1, but does not contain the square root of x2. Therefore, there is not
automorphism that permutes x1 and x2. In order to obtain the complete symmetry, we
need keep extending the field with √x2, ...,

√
xn.

Theorem 3.3.1. For each radical extension E of Q[x1, ..., xn], there exists a bigger radical
extension E ⊆ E with automorphisms σ extending all permutations of x1, ..., xn.

With this, we connected the field extension with automorphism. If we put all the
automorphisms together as a set, using composition as the binary operation, and let the
identity function be the identity element, we obtain a group, named Galois group.

Definition 3.3.5. Galois group: For field extension E from F , there is a set G contains
all the F -automorphisms of E. For any two F -automorphisms f and g in G, define the
binary operation as (f ·g)(x) = f(g(x)). We define G as the Galois group of field extension
E/F . Denoted as Gal(E/F ).
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We still use p(x) = x2 − 2 for example. Galois group G = Gal(p) = {f, g}, contains
two elements, one is f(a + b

√
2) = a − b

√
2, the other is g(x) = x. Where the identity

element is g. Let’s verify if f · f = g:

(f · f)(a+ b
√
2) = f(f(a+ b

√
2)) Composition

= f(a− b
√
2) Definition of f for inner parenthesis

= a+ b
√
2 Definition of f again

= g(a+ b
√
2) Definition of identity function g

We do see that G is a group. It’s isomorphic (identical) to a 2-cycle cyclic group,
and is also isomorphic to the degree 2 symmetric group S2. This group can be written
as {f, f2}, since f2 = f · f = 1 is the identity element. It can also be written as the
permutation group {(1), (1 2)}, where (1) keeps the two roots unchanged, and (1 2) swaps
the two roots.

It’s a critical idea to study the equation through the symmetry of its roots in Galois
theory. By using the concept of automorphism, we can give the definition symmetry:
in mathematics, the symmetry of object is the automorphism to the object itself
while preserving all of its structure.

Exercise 3.11
1. Prove that, for any polynomial p(x) with rational coefficients, E/Q is the field

extension, f is the Q-automorphism of E, then equation f(p(x)) = p(f(x)) holds.

2. Taking the complex number into account, what is the splitting field for polynomial
p(x) = x4 − 1? What are the functions in its Q-automorphism?

3. What’s the Galois group for quadratic equation x2 − bx+ c = 0?
4. Prove that, if p is prime number, then Galois group for equation xp − 1 is the

(p− 1)-cycle cyclic group Cp−1.

3.3.3 Fundamental theorem of Galois theory
We come to the center of Galois theory. Starting from the equation coefficient field F , we
keep extending the fields to the splitting field F ⊂ F1 ⊂ F2... ⊂ E. The corresponding
Galois group is Gal(E/F ). Galois found, there was one to one correspondence between
the Galois subgroups and its intermediate fields F1, F2, ... in the reversed order.

Theorem 3.3.2. Fundamental theorem of Galois theory: If E/F is field exten-
sion26, G is the corresponding Galois group. There is one to one correspondence between
subgroups of G and intermediate fields. If F ⊂ L ⊂ E, and Gal(E/L) = H, then H is
the subgroup of Gal(E/F ).

The reason why it’s in reversed order is because the group gets smaller when extend
the field. The starting point of field extension is F , the corresponding Galois group is
G = Gal(E/F ); the end point is the splitting field E, while the corresponding group only
contains one element, which is the identity permutation {1}. For the intermediate field
L, the corresponding group is H = Gal(E/L). It’s a subgroup, Gal(E/L) ⊂ Gal(E/F ).
If H is a normal subgroup (refer to previous section 3.1.7), then its quotient group is
G/H = Gal(L/F ).

26Strictly speaking, it should be Galois extension, we skipped the definition of Galois extension here.
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Let us see a concrete example[36] (pp. 490). Consider equation x4 − 8x2 + 15 = 0, it
can be factored as (x2−3)(x2−5) = 0. The coefficients are in rational field Q, the splitting
field is E = Q[

√
3,
√
5]. The order of its Galois group Gal(E/Q) is 4. It is isomorphic to

a 4-cycle cyclic group. We can find 3 intermediate field extensions: Q[
√
3], Q[

√
5], and

Q[
√
15]. The Galois subgroup orders corresponding to all these 3 intermediate fields are

2. While the Galois group of the equation, which is the 4-cycle cyclic group only has one
subgroup of order 2. Besides that, it hasn’t any other non-trivial subgroups. According
to the fundamental theorem of Galois theory, we know there is no other field extension
besides those 3 intermediate field extensions. We can consider it from another view point.
All elements in the splitting field are in the form of α = a + b

√
3 + c

√
5 + d

√
15, where

a, b, c, d are rational numbers. For any elements in the 3 intermediate field extensions,
among b, c, d, there are at least two are 0.

Q[
√
3,
√
5]

Q[
√
5] Q[

√
15] Q[

√
3]

Q

{1}

{1, f} {1, (f · g)} {1, g}

{1, f, g, (f · g)}

Galois group

field extension correspondence

field extensions subgroups

Figure 3.29: Galois correspondence

As shown in figure 3.29, any element in the splitting field can be written in form:

α = (a+ b
√
3) + (c+ d

√
3)
√
5

= a+ b
√
3 + c

√
5 + d

√
15

Where a, b, c, d are rational numbers. We define the following automorphisms:
Morphism f negates

√
3:

f((a+ b
√
3) + (c+ d

√
3)
√
5) = (a− b

√
3) + (c− d

√
3)
√
5

= a− b
√
3 + c

√
5− d

√
15

Morphism g negates
√
5:

g((a+ b
√
3) + (c+ d

√
3)
√
5) = (a+ b

√
3)− (c+ d

√
3)
√
5

= a+ b
√
3− c

√
5− d

√
15

The composite morphism f · g negates
√
3 and

√
5 at the same time:

(f · g)((a+ b
√
3) + (c+ d

√
3)
√
5) = (a− b

√
3)− (c− d

√
3)
√
5

= a− b
√
3− c

√
5 + d

√
15

In addition to the identity morphism 1, for the base field Q, there are four elements
in its Galois group: G = {1, f, g, (f · g)}. This group is isomorphic to Klein four group,
while the Klein group is the product of two 2-cycle cyclic groups. It has 5 subgroups,
each is corresponding to a field extension:
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Klein four group. Symmetric when flip horizontally, vertically, or flip at the same time.

• The subgroup only contains the identity element {1}, it corresponds to the splitting
field Q[

√
3,
√
5];

• G itself, corresponds to the rational field Q;

• Order 2 subgroup {1, f}, corresponds to field extension Q[
√
5]. f only negates

√
3

and leaves
√
5 unchanged;

• Order 2 subgroup {1, g}, corresponds to field extension Q[
√
3]. g only negates

√
5

and leaves
√
3 unchanged;

• Order 2 subgroup {1, (f · g)}, corresponds to field extension Q[
√
15]. (f · g) negates√

5 and
√
3 at the same time, and leaves

√
15 unchanged.

We can also write the Galois group of this equation in the form of permutation group
{(1), (1 2), (3 4), (1 2)(3 4)}. Where (1) keeps all the 4 roots unchanged; (1 2) swaps
±
√
3; (3 4) swaps ±

√
5; while (1 2)(3 4) swaps these two pairs at the same time.

Through the fundamental theorem of Galois theory, we managed to convert the equa-
tion problem in field to an equivalent problem about permutation group. The last attack
is to reveal the solvability essence with group.

3.3.4 Solvability
Through Galois correspondence, we connect the radical extension with group structure.
To simplify the problem, we add some extra conditions. First, for every radical extension
F [αi], we assume the αi being extended is a p-th root for some prime p. For example, we
will factor 6

√
α to

√
α = β and 3

√
β. Then extend the field two times with them one by

one. Second, if αi is p-th root, and the radical extension F [α1, ..., αi−1] does not contain
p-th root of unity, we can assume the next radical extension F [α1, ..., αi] does not contain
p-th root of unity too, unless αi itself is a p-th root of unity. For example, when we want

to extend the field with root α = 3
√
2, if the field F does not contain ζ =

−1 + i
√
3

2
as shown in figure 3.28, we can assume the radical extension F [ 3

√
2] does not contain ζ

too, unless α3 = 1, which means α itself equals ζ. If it isn’t the case, we can adjoin ζ
before αi, then the radical extension F [α1, ..., αi−1, ζ] contains all the p-th root of unity:
1, ζ, ζ2, ..., ζp−1. With both these modifications, the final field F [α1, ..., αk] is the same,
and it remains the same if the newly adjoined root ζ are included in the list α1, ..., αk.

Hence any radical extension F [α1, ..., αk] is a chain of ascending fields:

F = F0 ⊆ F1 ⊆ F2 ⊆ ... ⊆ Fk = F [α1, ..., αk]

Where every Fi = Fi−1[αi]. αi is the p-th root of some element in Fi−1, where p is
prime. They satisfy the condition about root of unity above. Corresponding to this chain
of radical extensions, we have a chain of descending groups:
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Gal(Fk/F0) = G0 ⊇ G1 ⊇ ... ⊇ Gk = Gal(Fk/Fk) = {1}

Where Gi = Gal(Fk/Fi) = Gal(Fk/Fi−1[αi]). Every step moves from Gi−1 to its
subgroup Gi, corresponding to adjoin p-th root αi to field F , where p is prime. Using
the terms in group theory, Gi is the normal subgroup of the previous group Gi−1, while
the quotient group Gi−1/Gi is abelian (commutative). We have the following theorem
reflects this fact:

Theorem 3.3.3. In field extension B ⊆ B[α] ⊆ E, αp ∈ B for some prime p, if B[α]
contains no p-th roots of unity not in B unless α itself is a p-th root of unity, then
Gal(E/B[α]) is a normal subgroup of Gal(E/B), and the quotient group

Gal(E/B)/Gal(E/B[α])

is abelian.

The proof is a bit complex, reader can skip it in the this frame

Proof. We’ll use the homomorphism theorem for groups introduced in section 3.1.7
to prove this theorem. We need find a homomorphism of Gal(E/B), with the kernal
of Gal(E/B[α]), into an abelian group (onto a subgroup of an abelian group, which
of course is also abelian). The obvious map with kernel Gal(E/B[α]) is restriction to
field B[α], we denote this map as |B[α]. According to the definition of Galois group,
the group elements are automorphisms:

σ ∈ Gal(E/B[α]) ⇐⇒ σ|B[α]is the identity map

All such automorphisms σ in Galois group Gal(E/B) satisfy the homomorphism
property:

σ′σ|B[α] = σ′|B[α]σ|B[α]

Since σ fixes all elements in B, σ|B[α] is completely determined by the value of
σ(α). There are two cases. In the first case, α is a p-th root of unity ζ, then:

(σ(α))p = σ(αp) = σ(ζp) = σ(1) = 1

Hence σ(α) = ζi ∈ B[α], since each p-th root of unity is some ζi. In the second
case, α is not a root of unity, then:

(σ(α))p = σ(αp) = αp

According to radical extension rule, αp is in field B, hence σ(α) = ζjα for some
p-th root of unity ζ, and ζ ∈ B, so again σ(α) ∈ B[α]. Thus B[α] is closed for every
σ.

This also implies that |B[α] maps Gal(E/B) into Gal(E/B[α]), so it now remains
to check that Gal(B[α]/B) is abelian. There are two cases: In the first case, α is
a root of unity, then every element in Galois group, which is automorphism σi =
σ|B[α] ∈ Gal(B[α]/B) can be written in form σi(α) = αi, hence:

σiσj(α) = σi(α
j) = αij = σjσi(α)

In the second case, α is not a root of unity, then each group element, the auto-
morphism σi is of the form σi(α) = ζiα, hence:
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σiσj(α) = σi(ζ
jα) = ζi+jα = σjσi(α)

Since ζ ∈ B, therefore ζ is fixed under the automorphism. Hence in either case,
Gal(B[α]/B) is abelian.

When observe the chain of Galois subgroups:

Gal(F [α1, ..., αk]/F ) = G0 ⊇ G1 ⊇ ... ⊇ Gk = {1}

Along this chain, if every group Gi is the normal subgroup of the previous group Gi−1,
and every quotient groupGi−1/Gi is abelian, then we say the Galois groupGal(F [α1, ..., αk]/F )
is solvable.

Now let us see the general n-th degree equation:

xn − a1xn−1 + a2x
n−2...± an = 0

The base field contains coefficients is Q[a1, ..., an]. Let its n roots (not necessarily be
radical) be x1, ..., xn, which means:

(x− x1)...(x− xn) = xn − a1xn−1...± an

The splitting field of the equation is Q[x1, ..., xn]. If whatever radical extension we
obtain, it can’t contain the splitting field, then the equation is not radical solvable.

Theorem 3.3.4. When n ≥ 5, any radical extension of Q[a1, ..., an] does not contain the
splitting field Q[x1, ..., xn].

Proof. We use the reduction to absurdity method. Suppose some radical extension E
contains the splitting field Q[x1, ..., xn]. According to the theorem we proved previously,
there exits a bigger radical extension E ⊇ E, such that the corresponding Galois group
G0 = Gal(E/Q[a1, ..., an]) includes automorphisms of permutations of all roots. Hence
we can construct a chain of Galois subgroups:

G0 ⊇ G1 ⊇ ... ⊇ Gk = {1}

Where each Gi is the normal subgroup of the previous group Gi−1, and the quotient
group Gi−1/Gi is abelian. We now show that this is impossible. Since the normal
subgroup Gi is the kernel of the homomorphism of Gi−1, for any two automorphisms
σ, τ in Gi−1, we have:

σ−1τ−1στ ∈ Gi

When n ≥ 5, G0 contains the permutations of all roots. It is isomorphic to symmetric
group Sn, it must include 3-cycle permutation (a b c). Suppose Gi−1 also include 3-cycle
permutation, we have:

(a b c) = (d a c)−1(c e b)−1(d a c)(c e b) ∈ Gi

Where a, b, c, d, e are distinct. It means Gi includes 3-cycle permutation as well. Ac-
cording to mathematical induction, all groups in the chain include 3-cycle permutation.
But this is impossible, because the last group in this chain is {1}, it does not include
3-cycle permutation.

Thus we proved the general 5th degree equation is not radical solvable. We can
explain from another perspective. The symmetric group S5 has 120 elements, its only
normal subgroup is A5. Where A5 is called alternating group, which contains 60 elements.
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Symmetric group S5 is the production of alternating group A5 and 2-cycle cyclic group.
It can describe the symmetry of a football

The only normal subgroup of A5 is {1}. Hence the subgroup chain is S5 ⊃ A5 ⊃ {1}.
However, the quotient group A5/{1} is not abelian (not commutative). Therefore, it is
not solvable group. The corresponding general 5th degree equation is not radical solvable.

For the general 4th degree equation, the symmetric group S4 has a normal subgroup
A4, and the alternating group A4 has a normal subgroup:

{(1), (12)(34), (13)(24), (14)(23)}

This group is isomorphic to Klein group, which is solvable.
For the general cubic equation, the symmetric group S3 has a normal subgroup A3,

and the alternating group A3 is isomorphic to 3-cycle cyclic group. Hence it is also
solvable.

(a) Alternating A3 is isomor-
phic to 3-cycle cyclic group

(b) Symmetric group S3, the
upper part is A3

(c) Alternating group A4

Figure 3.32: Symmetric group and alternating group. Black point is identity element,
cycle is closed loop

We introduced Galois theory in this short section. Galois theory is a powerful tool in
abstract algebra. It can solve many problems, like to prove the fundamental theorem of
algebra, prove Gauss’s finding that the regular heptadecagon (17-sided polygon) can be
constructed with straightedge and compass. Galois theory can also prove that the three
classic geometric problems with straightedge and compass in ancient Greek, squaring the
circle, trisecting the angle, and doubling the cube, are all impossible. We hope that
readers can appreciate the depth and beauty of abstract thinking through this chapter.

Exercise 3.12
1. The 5th degree equation x5−1 = 0 is radical solvable. What’s its Galois subgroup

chain?
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3.4 Further reading
There are many textbooks introduce about abstract algebra. Groups and Symmetry by
Armstrong is a good book about basic concept of groups and how it related and define
symmetry in mathematics. Algebra by Micheal Artin is also a widely used textbook. It
introduces Galois theory in the last chapter. Galois Theory by Emil Artin published in
1944 is the classic book. It was republished several times in 1998 and 2007. Artin was
the important expositor. He gave the modern form of Galois theory. Harold M. Edwards
introduced the development history in his Galois Theory, and took the classic way to
explain this topic.
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Chapter 4

Category

Mathematics is the art of giving the
same name to different things.

–Henri Poincaré

Escher, Dewdrop, 1948

Welcome to the world of category! We just
see the wounderful scence about abstract algebra
in previous chapter. Congratulation to enter the
door to the new kingdom of abstraction. The road
to this kingdom is developed by may talent minds.
In the first stage, people abstracted the concept of
number and shape from the concrete things; in the
second stage, we removed the meaning of numbers,
shapes, and concrete arithmatics, abstract them to
algebraic structures (for example group) and rela-
tions (for example isomorphism); category theory
can be considered as the third stage.

What is category? Why does it matter? Any relationship between category and
programming? Category theory was a ‘side product’ when mathematicians studied ho-
mological algebra in 1940s. In recent decades, category theory has been widely used in
varies of areas. Because of the powerful abstraction capability, it is applicable to many
problems. It may also be used as an axiomatic foundation for mathematics, as an al-
ternative to set theory and other proposed foundations. Category theory has practical
applications in programming language theory. More and more mainstream programming
languages adopted category concepts. The usage of monads is relized in more than 20
languages[39]. Speaking in language of category, a monad is a monoid in the category of
endofunctors. Most of the foundamental computations have been abstracted in this way
nowadays1.

The most important thing is abstraction. Hermann Weyl said “Our mathematics of the
last few decades has wallowed in generalities and formalizations.” The samething happens
in programming. The problems in modern computer science are challenging us with the
complexicty we never seen before. Big-data, distributed computation, high concurrency,
as well as the requirement to consistency, security, and integrity. We can’t catch them up

1For example, the traditional generic folding from right:
foldr _ z [ ] = z
foldr f z (x:xs) = f x (foldr f z xs)
is written in the language of categories as: foldr f z t = appEndo (foldMap (Endo . f) t) z We’ll
explain it later in this chapter.

103
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in the traditional way, like brute-force exhaustive search, pragmatic engineering practice,
a smart idea plus some luck. It forces us to learn the new methods and tools from other
science and mathematics.

As Dieudonne said: “This abstraction which has accrued in no way sprang from a
perverse desire among mathematicans to isolate themselves from the scientific community
by the use of a hermetic language. Their task was to find solutions for problems handed
down by the ‘classical’ age, or arising directly from new discoveries in physics. They found
that this was possible, but only through the creation of new objets and new methods,
whose abstract character was indispensable to their success.” [38](page 2)

Category theory was developed by mathematician Samuel Eilenberg and Sauders Mac
Lane in 1940s.

Samuel Eilenberg, 1913 -
1998

Samuel Eilenberg born in Warsaw, Kingdom of Poland
to a Jewish family. His father is a brewer. Eilenberg stud-
ied at the University of Warsaw. A remarkable collection of
mathematicians were on the staff there. He earned his Ph.D.
from University of Warsaw in 1936. The second mathemat-
ical centre in Poland at that time was Lvov. It was there
that Eilenberg met Banach, who led the Lvov mathemati-
cians. He joined the community of mathematicians working
and drinking in the Scottish Café and he contributed prob-
lems to the Scottish Book, the famous book in which the
mathematicians working in the Café entered unsolved prob-
lems. In 1939 Eilenberg’s father convinced him that the right
course of action was to emigrate to the United States. Once
there he went to Princeton. This was not too long in com-
ing and, in 1940, he was appointed as an instructor at the
University of Michigan. In 1949 André Weil was working at
the University of Chicago and he contacted Eilenberg to ask
him to collaborate on writing about homotopy groups and
fibre spaces as part of the Bourbaki project. Eilenberg became a member of the Bour-
baki team. He wrote the 1956 book Homological Algebra with Henri Cartan. Eilenberg
mainly studied algebriac topology. He worked on the axiomatic treatment of homology
theory with Norman Steenrod, and on homological algebra with Saunders Mac Lane. In
the process, Eilenberg and Mac Lane created category theory. Eilenberg spent much of
his career as a professor at Columbia University. Later in life he worked mainly in pure
category theory, being one of the founders of the field. He was awarded Wolf prize in
1987 for his fundamental work in algebraic topology and homological algebra. Eilenberg
died in New York City in January 1998.

Eilenberg was also a prominent collector of Asian art. His collection mainly consisted
of small sculptures and other artifacts from India, Indonesia, Nepal, Thailand, Cambo-
dia, Sri Lanka and Central Asia. He donated more than 400 items to the Metropolitan
Museum of Art in 1992[40].

Saunders Mac Lane was born in Norwich, Connecticut in United State in 1909. He
was christened ”Leslie Saunders MacLane”, but ”Leslie” was later removed because his
parents dislike it. He began inserting a space into his surname because his wife found it
difficult to type the name without a space.

In high school, Mac Lane’s favorite subject was chemistry. While in high school, his
father died, and he came under his grandfather’s care. His half-uncle helped to send
him to Yale University, and paid his way there beginning in 1926. His mathematics
teacher, Lester S. Hill, coached him for a local mathematics competition which he won,
setting the direction for his future work. He studied mathematics and physics as a double
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major, and graduated from Yale with a B.A. in 1930. In 1929, at a party of Yale football
supporters in New Jersey, Mac Lane was awarded a prize for having the best grade point
average yet recorded at Yale. He met Robert Maynard Hutchins, the new president of
the University of Chicago, who encouraged him to go there for his graduate studies[41].
Mac Lane Joined University of Chicago2. At the University of Chicago he was influenced
by Eliakim Moore, who was nearly seventy years old. He adviced Mac Lane to study
for a doctorate at Göttingen in Germany certainly persuaded Mac Lane to work at the
foremost mathematical research centre in the world at that time. In 1931, having earned
his master’s degree, Mac Lane earned a fellowship from the Institute of International
Education and became one of the last Americans to study at the University of Göttingen
prior to its decline under the Nazis.

Saunders Mac Lane, 1909 -
2005

At Göttingen, Mac Lane studied with Paul Bernays
and Hermann Weyl. Before he finished his doctorate,
Bernays had been forced to leave the university because
he was Jewish, and Weyl became his main examiner.
Mac Lane also studied with Gustav Herglotz and Emmy
Noether. In 1934, he finished his doctor degree and
returned to United State3.

In 1944 and 1945, Mac Lane also directed Columbia
University’s Applied Mathematics Group, which was in-
volved in the war effort. Mac Lane was vice president
of the National Academy of Sciences and the American
Philosophical Society, and president of the American
Mathematical Society. While presiding over the Mathe-
matical Association of America in the 1950s, he initiated
its activities aimed at improving the teaching of mod-
ern mathematics. He was a member of the National
Science Board, 1974–1980, advising the American gov-
ernment. In 1976, he led a delegation of mathematicians
to China to study the conditions affecting mathematics

there. Mac Lane was elected to the National Academy of Sciences in 1949, and received
the National Medal of Science in 1989.

Mac Lann’s early work was in field theory and valuation theory. In 1941, while giving
a series of visiting lectures at the University of Michigan, he met Samuel Eilenberg and
began what would become a fruitful collaboration on the interplay between algebra and
topology. He and Eilenberg originated category theory in 1945.

Mac Lane died on April 14th, 2005 in San Francisco, California, USA.

4.1 Category
Let’s use an example of ecosystem to understand category. There are varies of living
species on African grassland, like lion, hyena, cheetah, antelope, buffalo, zebra, vulture,
lizard, cobra, ant, ... We call these animals objects. Every type of animals and plants is
an object. There are relation among these living things, for example, lion eats antelope,
antelope eats grass. We can easily form a food chain by drawing an arrow from antelope
to lion, and another arrow from grass to antelope. Hence these objects together with the
arrows form a structured and connected system.

2Hutchins soon offered Mac Lane a scholarship after the party. But Mac Lane neglected to actually
apply to the program, but showed up and was admitted anyway.

3Within days of finishing his degree, Mac Lane married Dorothy Jones, from Chicago, who had typed
his thesis. It was a small ceremony followed by a wedding dinner with a couple of friends in the Rathaus
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Figure 4.4: Living objects and food chain arrows for a structured system

To become a category, this system has to satisfy two conditions. First, every object
must have an arrow to itself. Such special arrow is called the identity arrow. For the
animals and plants on grassland, the arrow from lion to anteplope means the antelope
is downstream to the lion along the foodchain. We can define that every species is
downstream to itself along the foodchain (it does not mean one eats itself, but means
one does not eat itself), hence every species has an arrow points to itself. Second, arrows
need be composible. What does composable mean? There is an arrow f from grass to
antelope, an arrow g from antelope to lion. We can compose them to g ◦ f (read as g
after f), which means grass is downstream to lion along the food chain. This composed
arrow can be further composed with the third one. For example, vulture eats the dead
lion, thus we can draw an arrow h from the lion to the volture. Composing them together
gives h ◦ (g ◦ f). This arrow means grass is downstream to vulture along the food chain.
It is identical to the arrow (h ◦ g) ◦ f . Hence the upstream, downstream relations are
associative.

Besides composable, there is another concept called commutative. As shown in below
diagram:

Antelope

Grass Lion

f g

h

There are two paths from grass to lion. One is the composite arrow g◦f , which means
grass is downstream to antelope, and antelope is downstream to lion; the other is arrow
h, which means grass is downstream to lion. Hence we obtain a pair of parallel arrows:

Keller. The newly married couple quickly returned to the United States.
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Grass Lion
g ◦ f

h

These two arrows may or may not be the same, when they are, we say they are
commutative:

h = g ◦ f

and the grass, antelope, lion triangle commutes. We say the living things in the
grassland form a category under the food chain arrows. From this example, we can give
the formal definition of category.

Definition 4.1.1. A categoryCCC consists of a collection of objects4, denoted as A,B,C, ...,
and a collection of arrows, denoted as f, g, h, .... There are four operations defined on top
of them:

• Two total operations5, called source and target6. They assign source and target

objects to an arrow. Denoted as A f−−→ B. It means the source of arrow f is A, and
the target is B;

• The third total operation is called identity arrow7. For every object A, the identity
arrow points to A itself. Denoted as A idA−−−→ A;

• The fourth operation is a partial operation, called composition. It composes two
arrows. Given arrows B f−−→ C and A g−−→ B, the composite of f and g is f ◦g, read
as ‘f after g’. It means A f ◦ g−−−−→ C.

Besides these four operations, category satisfies the following two axioms:

• Associativity: Arrows are associative. For every three composable arrows f, g, h,
the equation:

f ◦ (g ◦ h) = (f ◦ g) ◦ h

holds. We can write it as f g h.

• Identity element: The identity arrow is the identity element for the composition.

For every arrow A
f−−→ B, equations:

f ◦ idA = f = idB ◦ f

hold.

Categories and arrows are abstract compare to the foodchain system on the grassland.
Let’s use some concrete examples to understand this definition.

4It has nothing related to the object oriented programming. Here the object means abstract thing.
5Total operation is defined for every object without exception. Its counterpart is partial operation,

which is not defined from some objects. For example, the negate x 7→ −x is total operation for natural
numbers, while the inverse operation x 7→ 1/x is not defined for 0, hence it is a partial operation.

6They should be treated as verb, which means assign source object as... and assign target object as...
7Similarly, identity arrow should be treated as verb, which means assign the identity arrow as...
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4.1.1 Examples of categories
In mathematics, a set is called a monoid if it is defined with a special identity element, and
associative binary operation. The integers for example, with 0 as the identity element,
and plus as the binary operation, form a monoid called integer additive monoid.

A monoid can contain other things besides numbers. Consider the set of English words
and sentences (called strings in programming). We can define the binary operation that
concatenates two English strings. For example “red” ++ “apple” = “red apple”. These
English strings form a monoid, where the identity element is the empty string “”. It’s
easy to verify the monoid conditions:

red++ (apple++ tree) = (red++ apple) ++ tree

The string concatenation is associative.

""++ apple = apple = apple++ ""

Concatenating any string with empty string (identity element) gives itself.
Put the monoid of strings aside, let’s consider another monoid. The elements are sets

of characters. The binary operation is the set union; the identity element is the empty
set. Union of two character sets gives a bigger set, for example:

{a, b, c, 1, 2} ∪ {X,Y, Z, 0, 1} = {a, b, c,X, Y, Z, 0, 1, 2}

Together with the first example, the integer additive monoid, we have three monoids
on hand. Let us setup the transforms among them8. First is the map from monoid of
English strings to monoid of character sets. For any given English word or sentence, we
can collect all the unique characters used in it to form a set. Let’s call this operation
“chars”. We can verify this operation satisfies the following:

chars(red++ apple) = chars(red) ∪ chars(apple) and chars("") = ∅

It means, the unique characters used in a concatenated English string are same as the
union result of the character sets for each one; empty string does not contain any charac-
ters (corresponding to the empty set). This is a strong property named homomorphism
defined in previous chapter.

Next, we define a transform from the character sets monoid to integer additive monoid.
For every given character set, we can count how many characters there are. Empty set
contains 0 character. We name this operation “count”9.

So far, we defined two transforms: “chars” and “count”, let us see how they composite:

String chars−−−−→ Character set count−−−−→ Integer

and

String count ◦ chars−−−−−−−−−−→ Integer

Obviously, the composite result “count ◦ chars” is also a transform. It means we first
collect the unique characters from English string, then count the number of characters.
We obtain the monoid category MonMonMon. The objects are varies of monoids, arrows are the
transforms among them. The identity arrow is from a monoid to itself.

8The transform is often called morphism in mathematics
9Although ‘count’ is not homomorphic, for example: |{r, e, d}|+ |{a, p, l, e}| = 3 + 4 = 7 6= |{r, e, d} ∪

{a, p, l, e}| = |{a, e, d, l, p, r}| = 6, it is a valid transform from set to integer.
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This is a very big category. It contains all the monoids in the universe10. On the other
hand, category can also be small. Let’s see another example, a category that contains
only one monoid. Consider the monoid of English strings. There is only one object. It
doesn’t matter what this object is. It can be any fixed set, or even the set of all English
strings (I am sorry that this set does not look small). For any English string, for example
‘hello’, we can define a prefix operation, that prepand ‘hello’ to any other English strings.
We call this operation as ‘prefix hello’. Apply ‘prefix hello’ to word ‘Alice’ gives result
‘helloAlice’; Similarly, we can define ‘prefix hi’, when applies to ‘Alice’ gives ‘hiAlice’. If
we define them as two different arrows, then their composition is:

prefix hello ◦ prefix hi = prefix hellohi

It means first prepend prefix ‘hi’, then prepend prefix ‘hello’. It’s easy to verify that,
any three such arrows are associative. For the identity element, any string keeps same
when prepended with empty string as prefix, hence it is the identity arrow. Now we
have a monoid category with only one object, as shown in figure 4.5. Every arrow in the
category is an element in the monoid, the arrow composition is given by monoid binary
operation, and the identity arrow is the identity element in the monoid.

f

g

f ◦ g

Figure 4.5: The monoid category with only one object

For monoid, we see both the category MonMonMon, that contains all the monoids in the
universe, and the category with only one monoid. It is like a hidden world in a piece of
sand. What’s more interesting, for any object A in a category CCC, define set hom(A,A)
as all the arrows from A to A itself. Then this set of arrows forms a monoid under
composite operation, where the identity element is the identity arrow. Such symmetry
emerges surprisingly.

Our second example is set. Let every set be an object11, the arrow is a function (or
map) from one set A to another set B. We call A the domain of definition, and B is the
domain of the function value12. The composition is function composite. For functions
y = f(x) and z = g(y), their composition is z = (g ◦ f)(x) = g(f(x)). It’s easy to verify
that function composition is associative. The identity element is the identity function
id(x) = x. Hence we obtain the category SetSetSet of all sets and functions.

Our third example contains a pair of concepts. partial order set and pre-order set.
Given a set, pre-order means we can compare every two elements in it. We often use
the symbol ≤ to represent this binary relation. It does not necessarily mean less than or
equal relation between numbers, it can mean one set is subset of the other, one string is
post-fix of the other, one person is descendant of the other etc. If the relation ≤ satisfies
the following conditions, we call it a pre-order:

10You may think about the Russel’s paradox. Strictly speaking, MonMonMon contains all ‘small’ monoids in
the universe

11Whenever consider the set of all sets, it ends up of Russel’s paradox ‘the set all sets that does not
contain itself’. We’ll revisit Russel’s paradox in chapter 7.

12It is total function, which can be applied to every elements in domain A.
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• reflexive: For every element a in the set, we have a ≤ a;

• transitive: If a ≤ b and b ≤ c, then a ≤ c;

On top of these two, if the relation is also anti-symmetric, we call it partial order:

• anti-symmetric: if a ≤ b and b ≤ a, then a = b;

We define the set satisfies pre-oder, and the set satisfies partial order as:

preset poset

Old “Scotty”
McDuck

Grandma
Duck

Scrooge
McDuck

Matilda
McDuck

Goosetail
Gander

Hortense
McDuck

Quackmore
Duck

Daphne
Duck

Gladstone
Gander

Donald
Duck

Thelma
Duck

Huey Dewey Louie

Figure 4.6: Duck family tree

Not every two elements are comparable in partial order set. The figures in Duck
Donald family form a partial order set under the descendant relation, as shown in figure
4.6. We can see Donald≤Quackmore, but there is no ≤ relation between Huey and
Donald, or between Donald and Scrooge. Although every one has its ancestor in this
family tree (The figures at the root can be considered as the ancestor of themselves
according to reflexive rule), but the figures at the same level or in different branches are
not comparable.

As shown in 4.7, for a given set {x, y, z}, all its subsets form a partial order set under
the inclusion relationship. Although every element (a subset) has a subset, elements at
the same level are not comparable. Besides that there are also non-comparable elements,
like {x} and {y, z} for example.

Figure 4.7: All subsets form a partial order set under inclusion relationship.

In general, any partial order set is a pre-order set, but the reverse is not necessarily
true. A pre-order set may not be partial order set. We learn monotone function in
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high school math. Monotone function never decreases, if x ≤ y, then f(x) ≤ f(y). By
composing monotone functions on top of partial order set or pre-order set, we obtain a
pair of categories.

PrePrePre PosPosPos

The objects are all presets and posets, the arrows are monotone maps. As the identity
map is also monotone, it is the identity arrow in the category.

We intend to choose categories of monoids and pre-set as two examples. They are
the two most simple categories. The study of monoids is the study of composition in
the miniature. The study of presets is the study of comparison in the miniature. It is
the core of the entire category to study the composition and comparison of mathematical
structures. In a sense every category is an amalgam of certain monoids and presets([42],
p13).

PrePrePre is a big category that contains all the pre-order sets in the world. On the other
hand, preset category can also be very small, that only contains one pre-order set. Con-
sider the set of elements i, j, k, ..., if i and j are comparable, and i ≤ j, we define

i −→ j

Hence for every two objects, either there is no arrow between them, which means they
are not comparable; or there exists one, which means there is ≤ relationship. In summary,
there is at most one arrow between any two objects. We can verify that such arrows are
composable, and for every element i, relation i ≤ i holds, hence there exists self-pointed
arrow. Such preset itself forms a category. Again, we see the symmetry between preset
and monoid categories. Monoid category contains only one object, but has many arrows;
while preset category contains many objects, but has at most one arrow between objects.

Exercise 4.1
1. Prove that the identity arrow is unique (hint: refer to the uniqueness of identity

element for groups in previous chapter).
2. Verify the monoid (S,∪,∅) (the elements are sets, the binary operation is set union,

the identity element is empty set) and (N,+, 0) (elements are natural numbers,
the binary operation is add, the identity element is zero) are all categories that
contain only one object.

3. In chapter 1, we introduced Peano’s axioms for natural numbers and the isomorphic
structures to Peano arithmetic, like the linked-list etc. They can be described in
categories. This was found by German mathematician Richard Dedekind although
the category theory was not established by his time. We named this category as
Peano category, denoted as PnoPnoPno. The objects in this category is (A, f, z), where
A is a set, for example natural numbers N ; f : A → A is a successor function. It
is succ for natural numbers; z ∈ A is the starting element, it is zero for natural
numbers. Given any two Peano objects (A, f, z) and (B, g, c), define the morphism
from A to B as:

A
ϕ−−→ B

It satisfies:

ϕ ◦ f = g ◦ ϕ and ϕ(z) = c

Verify that PnoPnoPno is a category.
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4.1.2 Arrow 6= function
In most examples so far, arrows are either functions, or function like things, such as maps
or morphisms. It gives us an illusion that arrows mean function like things. The next
example helps us to realize such deception. There is a relation category. The objects are
sets. The arrow from set A to set B, A R−−→ B is defined as:

R ⊆ B ×A

Let’s see what does it mean. Set B × A represents all element combinations from B
and A. It is called the product of B and A:

B ×A = {(b, a)|b ∈ B, a ∈ A}

Use the Donald Duck family for example, set A = { Scrooge McDuck, Matilda Mc-
Duck, Hortense McDuck} contains three members in McDuck family, set B = {Goosetail
Gander, Quackmore Duck} contains two external members, then the product of B×A is
{(Goosetail Gander, Scrooge McDuck),(Goosetail Gander, Matilda McDuck), (Goosetail
Gander, Hortense McDuck), (Quackmore Duck, Scrooge McDuck), (Quackmore Duck,
Matilda McDuck), (Quackmore Duck, Hortense MuDuck)}. Set R is a subset of B × A,
it represents some relation between A and B. If element a in A, and element b in B
satisfy relation R, then (b, a) ∈ R, we denote it as bRa. For this example, we can let R =
{(Goosetail Gander, Matilda McDuck), (Quackmore Duck, Hortense MuDuck)}, then R
means they are couples (In Donald Duck story, Goosetail married Matilda, they adopted
Gladstone as their child; Quackmore married Hortense, they are parents of Donald).

Hence the set of all arrows from A to B represents all possible relations from A to B.
Let’s consider the arrow composition:

A→ B → C

If there exists an element b in some intermediate set, that both relations bRa and
cSb hold, we say there is composition between arrows. Use the Donald Duck family
for example. Let set C = = {Gladstone, Donald, Thelma}. Relation S = {(Donald,
Quackmore), (Thelma, Quackmore)} means son and father. Thus the composite arrow
S ◦ R gives result {(Donald, Hortense), (Thelma, Hortense)}, it means the relation that
c is the son of mother a. Hence both relations are satisfied through Quackmore, so that
Donald and Thelma are sons of their mother Hortense. The definition of identity arrow
is simple, every element has an identical relation to itself.

We can generate a new category from any existing category, for example, by reversing
the arrows in category CCC, we obtained a dual opposite category CCCop. Hence when we
understand a category, we understand its dual category as well.

4.2 Functors
We mentioned category theory is the ‘second’ level abstraction on top of algebraic struc-
ture. We’ve seen how to abstract all sets and maps, groups and morphisms, posets and
monotone functions into categories. The next question is how to bridge these categories
and compare them? Functor13 is used to compare categories and their inner relations
(objects and arrows).

13Some C++ programming language materials use functor to name function object. It has nothing
related to category theory.
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4.2.1 Definition of functor
In some sense, functor can be considered as the transform (morphism) between categories.
However, it does not only map the object from one category to the other, but also maps
the arrow. This makes functor different from the normal morphism (between groups for
example).

We often use F to denote functor. Since functor likes the morphism for category,
it must faithfully preserve the structure and relations between categories. In order to
achieve this, a functor need satisfy two conditions:

1. Any identity arrow in one category is transformed to identity arrow in another
category. As shown in below figure:

A
id−−→ A 7−→ FA id−−→ FA

2. Any composition of arrows in one category is transformed to composition in another
category14.

B 7−→ FB

A C covariance FA FC

f g

g ◦ f

F(f) F(g)

F(g ◦ f)

F(g ◦ f) = F(g) ◦ F(f)

In summary, functor preserves identity morphisms and composition of morphisms.
Functors can also be composited, for example functor (FG)(f) means first apply G on
arrow f , then apply F on top of the arrow in the new category.

4.2.2 Functor examples

Constant functor acts like
a blackhole.

Let’s use some examples to understand functor. If a functor
maps a category to itself, it is called endo-functor15. The
simplest functor is the identity functor, which is an endo-
functor, denoted as id : CCC → CCC. It can be applied to any
category, maps object A to A, and maps arrow f to f .

The second simplest functor is the constant functor. It
acts like a blackhole. We denote it as KB : CCC → BBB. It can
be applied to any category, maps all objects to the blackhole
object B, and maps all arrows to the identity arrow in the
blackhole idB . The blackhole category has only one identity
arrow, it also satisfy the arrow composition condition: idB ◦
idB = idB .

Example 4.2.1. Maybe functor. Computer scientist, Tony Hoare (Sir Charles Antony
Richard Hoare), who developed the quicksort algorithm, and awarded ACM Turing award
in 1980, had an interesting speaking apologised for inventing the null reference16.

14There are two different types of transformation, one is called covariance, the other is contravariance.
The two terms are also used in programming language type system. We only consider covariance in this
book

15Similar to the automorphism in abstract algebra, which we introduced in previous chapter.
16At a software conference called QCon London in 2009
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Tony Hoare

I call it my billion-dollar mistake. It was the invention of the null reference
in 1965. At that time, I was designing the first comprehensive type system for
references in an object oriented language (ALGOL W). My goal was to ensure
that all use of references should be absolutely safe, with checking performed
automatically by the compiler. But I couldn’t resist the temptation to put in
a null reference, simply because it was so easy to implement. This has led to
innumerable errors, vulnerabilities, and system crashes, which have probably
caused a billion dollars of pain and damage in the last forty years[43].

After 2015, the mainstream programming environments gradually adopted the maybe
concept to replace the error prone null17.

Below diagram illustrates how Maybe behaves.

A Maybe A

B Maybe B

f Maybe(f)

The left side objects A and B can be data types, like integer, Boolean. While the right
side objects are mapped types through functor Maybe. If A represents Int, then the right
side corresponds to Maybe Int, if B represents Bool, then the right side corresponds to
Maybe Bool. How does the maybe functor map objects? that part is defined as:
data Maybe A = Nothing | Just A

It means, if the object is type A, then the mapped object is type Maybe A. Note
the object is type, but not value. The value of Maybe A is either empty, denoted as
Nothing, or a value constructed by Just.

Use type Int for example, through the maybe functor, it is mapped to Maybe Int.
The value could be Nothing or Just 5 for instance.

Consider a binary search tree, that contains elements of type A. When search a value
in the tree, it may not be found, therefore the type of search result is Maybe A18.

lookup Nil _ = Nothing

lookup (Br l k r) x =


x < k : lookup l x

x > k : lookup r x

x = k : Just k

17For example the Optional<T> in Java and C++
18The complete example program can be found in the appendix of this chapter
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For Maybe type data, we must handle two different possible values, for example:

elem Nothing = False
elem (Just x) = True

Functor maps object, and also maps arrow. We see how Maybe functor maps object.
How does it map arrow? On the left side in above diagram, there is an up-down arrow

A
f−−→ B, and there is also an arrow Maybe A

Maybe(f)
−−−−−−−−−→Maybe B on the right side.

Let’s name the right side arrow f ′. If we know the behavior of the left side arrow f , then
what does the right side arrow behave? We mentioned for Maybe type data, we must
handle two different possible values, hence f ′ should behave like this:

f ′ Nothing = Nothing
f ′ (Just x) = Just (f x)

For given f , maps to f ′, it is exactly what Maybe functor does for an arrow. In
programming environment, we often use fmap to define the map for arrow. We can
define every functor F satisfies:

fmap : (A→ B)→ (FA→ FB)

For functor F, it maps the arrow from A to B to the arrow from FA to FB. Hence
for Maybe functor, the corresponding fmap is defined as below:

fmap : (A→ B)→ (Maybe A→Maybe B)
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

Back to the binary search tree example, if the elements in the tree are integers, we
want to search a value, and convert it to binary format if find; otherwise return Nothing.
Suppose there has already existed a function that converts a decimal number to its binary
format:

binary(n) =

{
n < 2 : [n]

Otherwise : binary(bn
2
c) ++ [n mod 2]

Here is the corresponding example program. It uses tail recursion for performance
purpose.

binary = bin [] where
bin xs 0 = 0 : xs
bin xs 1 = 1 : xs
bin xs n = bin ((n `mod` 2) : xs) (n `div` 2)

With functor, we can ‘lift’ this function arrow up as shown in below diagram:

Maybe Int Maybe [Int]

Int [Int]

fmap binary

binary
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Hence, we directly use maybe functor and binary arrow to manipulate the search
result from the tree:

fmap binary (lookup t x)

We can consider there are two worlds in above diagram. The bottom is the world on
the earth, threatened by the null reference; the upper is the world in the sky, free from
null and safe. With maybe functor, all the legacy programs on the earth, even they are
not capable to handle null, can be lift to the sky, to the safe world dominated by the
maybe functor.

Proof. Readers can skip the contents in this box To verify Maybe is a functor,
we need check the two conditions about arrow mapping:

fmap id = id
fmap (f ◦ g) = fmap f ◦ fmap g

For the first condition, the definition of id is:

id x = x

Therefore:

fmap id Nothing = Nothing definition of fmap
= id Nothing reverse of id

And

fmap id (Just x) = Just (id x) definition of fmap
= Just x definition of id
= id (Just x) reverse of id

For the second condition:

fmap (f ◦ g) Nothing = Nothing definition of fmap
= fmap f Nothing reverse of fmap
= fmap f (fmap g Nothing) reverse of fmap
= (fmap f ◦ fmap g) Nothing reverse of function composition

And

fmap (f ◦ g) (Just x) = Just ((f ◦ g) x) definition of fmap
= Just (f (g x)) function composition
= fmap f (Just (g x)) reverse of fmap
= fmap f (fmap g (Just x)) reverse of fmap
= (fmap f ◦ fmap g) (Just x) reverse of function composition

Therefore, Maybe is really a functor.

Example 4.2.2. List functor. We introduced the definition of list in chapter 1 as:

data List A = Nil | Cons(A, List A)

From programming perspective, it defines the linked-list data structure. The elements
stored are of type A. We call it link-list of type A. From category perspective, a list
functor need define maps for both object and arrow. Here objects are types, arrows are
total functions. Below diagram illustrates how list functor behaves.
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A List A

B List B
f List(f)

Objects A,B on the left side are data types, like integer, Boolean, or even complex
types such as Maybe Char. Objects on the right side, are types mapped by list functor.
If A is integer type Int, then the right side corresponds to List Int; if B is character type
Char, then the right side corresponds to List Char, which is String essentially.

We highlight again that here the object is type, but not value. A can be Int, but
can not be 5, a particular value. Hence List A corresponds to list of integers, but not a
particular list, like [1, 1, 2, 3, 5]. How to generate list values? Function Nil and Cons
are used to generate empty list or list like List(1, List(1, List(2, Nil))).

Now we know how list functor maps objects. But how does it map arrows? Given a
function f : A → B, how to obtain another function g : List A → List B through list
functor? Similar to maybe functor, we can realize fmap to map arrow f to arrow g. The
type signature for list functor is:

fmap : (A→ B)→ (List A→ List B)

Let’s consider how g behaves. For the simplest case, no matter how f is defined, if
the value of List A is an empty list Nil, then applying g on it gives empty list anyway.
Therefore:

fmap f Nil = Nil

For the recursive case Cons(x, xs), where x is some value of type A, and xs is a sub-list
of type List A. If f(x) = y, which maps x of type A to y of type B, then we first apply
f to x, next recursively apply it to the sub-list xs to obtain a new sub-list ys with the
element type of B. Finally, we concatenate y and ys as the result:

fmap f Cons(x, xs) = Cons(f x, fmap f xs)

Summarize them together, we have the complete definition of fmap for list:

fmap : (A→ B)→ (List A→ List B)
fmap f Nil = Nil
fmap f Cons(x, xs) = Cons(f x, fmap f xs)

In chapter 1, we introduced the simplified notation, using the infix ‘:’ for Cons, and
‘[]’ for Nil, then the definition of list functor that maps arrows can be simplified as:

fmap : (A→ B)→ (List A→ List B)
fmap f [] = []
fmap f (x : xs) = (f x) : (fmap f xs)

Compare this definition with the list mapping definition in chapter 1, we find they are
exactly same except for the name. It means we can re-use the list mapping to define list
functor. This is the case in some programming environment, which re-uses map for list
functor.

instance Functor [] where
fmap = map
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At the end of this example, let’s verify the arrow mapping for list functor preserve
identity and composition. Readers can skip the proof in this box.

fmap id = id
fmap (f ◦ g) = fmap f ◦ fmap g

Proof. We use mathematical induction to verify the identity condition. First for
empty list:

fmap id Nil = Nil definition of fmap
= id Nil reverse of id

For the recursive case of (x : xs), assume fmap id xs = id xs holds, we have:

fmap id (x : xs) = (id x) : (fmap id xs) definition of fmap
= (id x) : (id xs) induction assumption
= x : xs definition of id
= id (x : xs) reverse of id

Again, we use mathematical induction to verify composition condition. For empty
list, we have:

fmap (f ◦ g) Nil = Nil definition of fmap
= fmap f Nil reverse of fmap
= fmap f (fmap g Nil) reverse of fmap
= (fmap f ◦ fmap g) Nil reverse of function composition

For the recursive case of (x : xs), assume fmap (f ◦g) xs = (fmap f ◦fmap g) xs
holds, we have:

fmap (f ◦ g) (x : xs) = ((f ◦ g) x) : (fmap (f ◦ g) xs) definition of fmap
= ((f ◦ g) x) : ((fmap f ◦ fmap g) xs) induction assumption
= (f(g x)) : (fmap f (fmap g xs)) function composition
= fmap f ((g x) : (fmap g xs)) reverse of fmap
= fmap f (fmap g (x : xs)) reverse of fmap again
= (fmap f ◦ fmap g) (x : xs) reverse of function composition

Thus we verified List is really a functor.

Exercise 4.2
1. For the list functor, define the arrow map with foldr.
2. Verify that the composition of maybe functor and list functor Maybe ◦ List and

List ◦Maybe are all functors.
3. Proof that the composition for any functors G ◦ F is still a functor.
4. Give an example functor for preset.
5. For the binary tree defined in chapter 2, define the functor for it.

4.3 Products and coproducts
Before we introduce more complex categories and functors, let us see what product and
coproduct are. We start from the product of sets. Given two set A and B, their Cartesian
product A×B is the set of all ordered pairs (a, b), where a ∈ A and b ∈ B:
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{(a, b)|a ∈ A, b ∈ B}

For example, the product of finite sets {1, 2, 3} and {a, b} is:

{(1, a), (2, a), (3, a), (1, b), (2, b), (3, b)}

If set A and B are the same algebraic structures, like group, ring etc., then we can
define objects and arrows as shown in below diagram:

(a, b)

A×B

a A B b

René Descartes (1596 - 1650). Portrait after Frans Hals, oil on canvas, Louvre Museum

Cartesian product, also known as direct product, is named after René Descartes, the
great French philosopher, mathematician, and scientist. In the days of Descartes, Latin
was a widely used academy language. He also had a Latinized name: Renatus Cartesius.
Its adjective form is Cartesian. This is the reason why we say Cartesian product or
Cartesian coordinate system today.

Descartes was born in La Haye, near Tours, France in 1596. His father was a member
of the Parlement of Brittany at Rennes. His mother died a year after giving birth to him,
and so he was not expected to survive. His father then remarried in 1600. Descartes lived
with his grandmother at La Haye. His health was poor when he was a child. Throughout
his childhood, up to his twenties, he was pale and had a persistent cough which was
probably due to tuberculosis. It seems likely that he inherited these health problems
from his mother.

In 1607, he entered the Jesuit college of La Flèche, where he was introduced to math-
ematics and physics, including Galileo’s work. While in the school his health was poor
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and, instead of rising at 5 AM. like the other boys, he was granted permission to remain
in bed until 11 o’clock in the morning, a custom he maintained until the year of his death.

After graduation in 1614, he studied for two years at the University of Poitiers. He
received a law degree in 1616 to comply with his father’s wishes but he quickly decided
that this was not the path he wanted to follow. He returned to Paris, then became a
volunteer in the army of Maurice of Nassau. In the army, Descartes started studying
mathematics and mechanics under the Dutch scientist Isaac Beeckman, and began to
seek a unified science of nature.

After this time in Holland he left the service of Maurice of Nassau and travelled
through Europe. In 1619 he joined the Bavarian army and was stationed in Ulm. An
important event in his life was three dreams he had in November 1619. These he believed
were sent by a divine spirit with the intention of revealing to him a new approach to
philosophy. The ideas from these dreams would dominate much of his work from that
time on.

From 1620 to 1628 Descartes travelled through Europe, spending time in Bohemia,
Hungary, Germany, Holland, through Switzerland to Italy, then Venice and Rome. He
returned Paris in 1625. His Paris home became a meeting place for philosophers and
mathematicians and steadily became more and more busy. By 1628 Descartes, tired of
the bustle of Paris, the house full of people, and of the life of travelling he had before,
decided to settle down where he could work in solitude. He gave much thought to choosing
a country suited to his nature and he chose Holland. What he longed for was somewhere
peaceful where he could work away from the distractions of a city such as Paris yet still
have access to the facilities of a city. It was a good decision which he did not seem to regret
over the next twenty years. He told his friend Marin Mersenne19 where he was living so
that he might keep in touch with the mathematical world, but otherwise he kept his place
of residence a secret. Descartes wrote all his major work during his 20-plus years in the
Netherlands, initiating a revolution in mathematics and philosophy. In 1633, Galileo was
condemned by the Italian Inquisition, and Descartes abandoned plans to publish Treatise
on the World, his work of the previous four years. Nevertheless, in 1637 he published
parts of this work in three essays: The Meteors, Dioptrics and Geometry, preceded by an
introduction, his famous Discourse on the Method.

In Geometry, Descartes exploited the discoveries he made with Pierre de Fermat.
This later became known as Cartesian Geometry. Descartes continued to publish works
concerning both mathematics and philosophy for the rest of his life. In 1641 he published
a metaphysics treatise, Meditations on First Philosophy. It was followed in 1644 by
Principles of Philosophy. He became the most influential philosophers in Europe.

In 1649 Queen Christina of Sweden persuaded Descartes to go to Stockholm. However
the Queen wanted to draw tangents at 5 AM. and Descartes broke the habit of his lifetime
of getting up at 11 o’clock. After only a few months in the cold northern climate, walking
to the palace for 5 o’clock every morning, he died of pneumonia February 1650 at the age
of 54.

Descartes left the best known philosophical statement “I think, therefore I am” (French:
Je pense, donc je suis; Latin: cogito, ergo sum). Descartes laid the foundation for 17th-
century continental rationalism. He was well-versed in mathematics as well as philosophy,
and contributed greatly to science as well. He is credited as the father of analytical ge-
ometry, the bridge between algebra and geometry—used in the discovery of infinitesimal
calculus and analysis. Descartes was also one of the key figures in the Scientific Revolu-
tion.

19Mersenne was a French polymath, whose works touched a wide variety of fields. He is perhaps best
known today among mathematicians for Mersenne prime numbers, in the form Mn = 2n−1 for some
integer n. He had many contacts in the scientific world and has been called ”the center of the world of
science and mathematics during the first half of the 1600s”.
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Symmetric to the Cartesian product of sets, there is a dual construct. From two sets
A and B, we can generate a disjoint union set (sum) A+B. For the element in the sum,
in order to know which set A or B it comes from, we can add a tag:

A+B = (A× {0}) ∪ (B × {1})

For every element (x, tag) in A+B, if the tag is 0, we know that x comes from A, else
if the tag is 1, then x comes from B. Hence the sum of finite set {1, 2, 3} and {a, b} is

{(1, 0), (2, 0), (3, 0), (a, 1), (b, 1)}

When programming, A+B can be defined as:

A+B = zip A {0, ...}++ zip B {1, ...}

If set A and B are the same algebraic structures, we can define the below objects and
arrows:

a A B b

(a, 0) A+B (b, 1)

The two constructions are symmetric. If rotate the two diagrams by 90 degree, laying
A on top of B, then the two problems appear left and right. They are symmetric like our
two hands. We can find a lot of such symmetric concepts in category theory. Our world
is full of symmetric things. When we understand one, we understand the dual one at the
same time.

4.3.1 Definition of product and coproduct
Definition 4.3.1. For a pair of objects A and B in category CCC, a wedge

to from

the pair A,B is an object X together with a pair of arrows

A A

X X

B B
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in the parent category CCC.

For a given pair of objects A,B in the category, there may be many wedges on one
side or the other. We look for the ‘best possible’ wedge, the one that is as ‘near’ the pair
as possible. Technically, we look for a universal wedge. It leads to the below (pair of)
definitions:

Definition 4.3.2. Given a pair object A,B of a category CCC, a

product coproduct

of the pair is a wedge:

A A

S S

B B

pA

pB

iA

iB

with the following universal property. For each wedge

A A

X X

B B

fA

fB

fA

fB

there is a unique arrow:

X
m−−→ S S

m−−→ X

such that,

A A

X S S X

B B

fA

fB

m
pA

pB

fA

fB

m
iA

iB

commutes. This arrow m is the mediating arrow (or mediator) for the wedge on X.

In this definition, the product or coproduct is not just an object S, but an object
together with a pair of arrows. For any given X, the mediating arrow m is unique. We
say the diagram commutes, it means the arrows satisfy the following equations:

fA = pA ◦m
fB = pB ◦m
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It immediately leads to this special case: If X equals to S, then m is an endo-arrow
(points to itself).

S
m−−→ S

Hence m must be identity arrow. The diagram then simplifies to:

A A

S S S S

B B

pA

pB

idS

pA

pB

iA

iB

idS

iA

iB

Among the many wedges, the product and coproduct are special, they are universal
solutions. In other words, they are the ‘closest’ or the ‘best’ wedge. We can prove that
product and coproduct are unique (see the appendix of this book). However, product
and coproduct may not exist at the same time, it’s also possible that neither does exist.
Let’s see what product and coproduct mean to set.

Lemma 4.3.1. Let A, B be a pair of sets. Then the

Cartesian product disjoint union
A×B A+B

furnished with canonical functions form the

product coproduct

of the pair in the category SetSetSet.

The detailed proof can be found in the appendix of this book. In program environ-
ment, product is often realized with paired tuple (a, b) and functions fst, snd. However,
coproduct is sometimes realized with a dedicated data type.

data Either a b = Left a | Right b

The advantage is that we needn’t the 0, 1 tags to mark if an element x of type Either
a b comes from a or b. The below example program handles the coproduct value through
pattern matching:

either :: (a → c) → (b → c) → Either a b → c
either f _ (Left x) = f x
either _ g (Right y) = g y

Let’s see an example, consider the coproduct Either String Int. It is either a string,
like s = Left "hello"; or an integer, like n = Right 8. If it is a string, we want to count
its length; if it is a number, we want to double it. To do this, we can utilize the either
function: either length (*2) x.

Thus either length (*2) s will count the length of string “hello” which gives 5;
while either length (*2) n will double 8 to give 16. Some programming environments
have the concept of union or enum data type to realize coproduct partially. In the future,
we sometimes call the two arrows of the coproduct left and right respectively.
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4.3.2 The properties of product and coproduct
According to the definition of product and coproduct, for any wedge consist of X and
arrows, the mediator arrow m is uniquely determined. In category SetSetSet, the mediator
arrow can be defined as the following:

product coproduct

m(x) = (a, b)

{
m(a, 0) = p(a)

m(b, 1) = q(b)

For a generic category, how to define the mediator arrow? To do that, we introduce
two dedicated symbols for arrow operation. Given any wedge:

A A

X X

B B

f

g

f

g

Define

m = 〈f, g〉 m = [f, g]

which satisfy: {
fst ◦m = f

snd ◦m = g

{
m ◦ left = f

m ◦ right = g

Hence the following diagram commutes:

A A

X A×B A+B X

B B

f

g

〈f, g〉
fst

snd

f

g

[f, g]

left

right

From this pair of diagrams, we can obtain some important properties for product and
coproduct directly. First is the cancellation law:{

fst ◦ 〈f, g〉 = f

snd ◦ 〈f, g〉 = g

{
[f, g] ◦ left = f

[f, g] ◦ right = g

For product, if arrow f equals to fst, and arrow g equals to snd, then we obtain the
special case of identity arrow mentioned in previous section. Similarly for the coproduct,
if arrow f equals to left, and arrow g equals to right, then the mediator arrow is also
the identity arrow. We call this property the reflection law:

id = 〈fst, snd〉 id = [left, right]
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If there exists another wedge Y and arrows h and k, together with f, g they satisfy
the following conditions:

product coproduct{
h ◦ ϕ = f

k ◦ ϕ = g

{
ϕ ◦ h = f

ϕ ◦ k = g

For

〈h, k〉 ◦ ϕ ϕ ◦ [h, k]

Substitute m, and apply cancellation law, then we obtain the fusion law:

product coproduct{
h ◦ ϕ = f

k ◦ ϕ = g
⇒ 〈h, k〉 ◦ ϕ = 〈f, g〉

{
ϕ ◦ h = f

ϕ ◦ k = g
⇒ ϕ ◦ [h, k] = [f, g]

It means:

〈h, k〉 ◦ ϕ = 〈h ◦ ϕ, k ◦ ϕ〉 ϕ ◦ [h, k] = [ϕ ◦ h, ϕ ◦ k]

We’ll see later, these laws play important roles during algorithm reasoning, simplifi-
cation, and optimization.

4.3.3 Functors from products and coproducts
With product in category theory, we can introduce the concept of bifunctor (also known
as binary functor). The functors we’ve seen so far transform the objects from one category
to the objects in another category; and also transforms arrows from one category to the
other. The bifunctor applies to the product of two categories CCC and DDD. In other words,
the source is CCC ×DDD. Bifunctor transforms objects as the following:

CCC ×DDD −→ EEE
A×B 7−→ F(A×B)

Besides objects, functor must transform arrows as well. For the arrow f in category CCC,
and the arrow g in category DDD, what the bifunctor behaves? Observe the below diagram:

A F(A×B)

C F(C ×D)

D B

f
F(f × g)

gCCC

DDD

EEE

From this diagram, the arrow A
f−−→ C and B

g−−→ D are sent to the new arrows in
category EEE through the functor F. The source object is F(A×B), and the target object
is F(C ×D). To do that, we first define the product of two arrows f and g, it applies to
the product of A and B. For every (a, b) ∈ A×B, it behaves as below:
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(f × g)(a, b) = (f a , g b)

The bifunctor F applies to this product of arrows f × g, sends it to the new arrow
�F(f × g). Hence the final definition for bifunctor is as below:

CCC ×DDD −→ EEE
A×B 7−→ F(A×B)
f × g 7−→ F(f × g)

We need verify the bifunctor satisfies the two conditions as a functor: the identity
condition and the composition condition. Readers can skip the proof in this
box.

F(id× id) = id
F((f ◦ f ′)× (g ◦ g′)) = F(f × g) ◦ F(f ′ × g′)

Proof. We treat the product as an object. If we prove the following two conditions
essentially, then the proof for the bifunctor can be deduced from it through the
known result of normal functors.

id× id = id
(f ◦ f ′)× (g ◦ g′) = (f × g) ◦ (f ′ × g′)

We start from proving the identity condition. For all (a, b) ∈ A×B, we have:

(id× id)(a, b) = (id(a), id(b)) product of arrows
= (a, b) definition of id
= id(a, b) reverse of id

Next we prove the composition condition.

((f ◦ f ′)× (g ◦ g′))(a, b) = ((f ◦ f ′) a, (g ◦ g′) b) product of arrows
= (f(f ′(a)), g(g′(b))) arrow composition
= (f × g)(f ′(a), g′(b)) reverse of arrows product
= (f × g)((f ′ × g′)(a, b)) reverse of arrows product
= ((f × g) ◦ (f ′ × g′))(a, b)

Hence proved the bifunctor satisfies both functor conditions.

Similar to fmap, some programming environments have limitation to use the same
symbol for both object and arrow mapping. To solve that, we can define a dedicated
bimap for bifunctor arrow mapping. We need every bifunctor F satisfy:

bimap : (A→ C)→ (B → D)→ (F A×B → F C ×D)

It means, if F is a bifunctor, then it send the two arrows A g−−→ C and B h−−→ D to an
arrow that maps from F A×B to F C ×D.

With the concept of bifunctor, we can define product and coproduct functors. We’ll
use the infix notation. Denote:

product functor as coproduct functor as
× +

Given two objects, the product functor maps them to their product; while the coprod-
uct functor maps them to their coproduct. For arrows, define:

f × g = 〈f ◦ fst, g ◦ snd〉 f + g = [left ◦ f, right ◦ g]
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We need verify the two functor conditions, Readers can skip the proof in this
box. For the identity condition. Substitute f, g with id:

id× id
= 〈id ◦ fst, id ◦ snd〉 Definition of ×
= 〈fst, snd〉 Definition of id
= id Reflection law

id+ id
= [left ◦ id, right ◦ id] Definition of +
= [left, right] Definition of id
= id Reflection law

Next we need verify the composition condition:

product coproduct
(f × g) ◦ (f ′ × g′) = f ◦ f ′ × g ◦ g′ (f + g) ◦ (f ′ + g′) = f ◦ f ′ + g ◦ g′

In order to prove it, we will first prove the absorption law for

product coproduct
(f × g) ◦ 〈p, q〉 = 〈f ◦ p, g ◦ q〉 [p, q] ◦ (f + g) = [p ◦ f, q ◦ g]

We only give the proof for the product on the left. the coproduct side can be
proved similarly. We leave it as exercise.

(f × g) ◦ 〈p, q〉
= 〈f ◦ fst, g ◦ snd〉 ◦ 〈p, q〉 Definition of ×
= 〈f ◦ fst ◦ 〈p, q〉, g ◦ snd ◦ 〈p, q〉〉 Fusion law
= 〈f ◦ p, g ◦ q〉 Cancellation law

Using the absorption law, let p = f ′ ◦ fst, q = g′ ◦ snd, we can verify the compo-
sition condition:

(f × g) ◦ (f ′ × g′)
= (f × g) ◦ 〈f ′ ◦ fst, g′ ◦ snd〉 Definition of × for the 2nd term
= (f × g) ◦ 〈p, q〉 Substitute with p, q
= 〈f ◦ p, g ◦ q〉 absorption law
= 〈f ◦ f ′ ◦ fst, g ◦ g′ ◦ snd〉 Substitute back p, q
= 〈(f ◦ f ′) ◦ fst, (g ◦ g′) ◦ snd〉 association law
= (f ◦ f ′)× (g ◦ g′) Reverse of ×

Product functor is an instance of bifunctor. We can define it as bimap like below:

bimap : (A→ C)→ (B → D)→ (A×B → C ×D)
bimap f g (x, y) = (f x, g y)

With the Either type to realize the coproduct functor, the corresponding bimap can
be defined like this:

bimap : (A→ C)→ (B → D)→ (Either A B → Either C D)
bimap f g (left x) = left (f x)
bimap f g (right y) = right (g y)

Exercise 4.3
1. For any two objects in a poset, what is their product? what is their coproduct?
2. Prove the absorption law for coproduct, and verify the coproduct functor satisfies

composition condition.
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4.4 Natural transformation
When Eilenberg and Mac Lane developed category theory in the early 1940s, they wanted
to explain why certain ‘natural’ construction are natural, and other constructions are not.
As the result, categories were invented to support functors, and these were invented to
support natural transformations. Mac Lane is said to have remarked, “I didn’t invent
categories to study functors; I invented them to study natural transformations.” We’ve
introduced categories and functors. In category theory, arrows are used to compare
objects, functors are used to compare categories. What will be used to compare functors?
It is natural transformation that serves this purpose.

Consider the following two functors:

SrcSrcSrc TrgTrgTrg

F

G

They connect two categories. Both are covariant or contravariant. How to compare
them? Since functors map both objects and arrows, we need compare the mapped objects
and mapped arrows. Consider an object A in category SrcSrcSrc, it is mapped to two objects
FA and GA in category TrgTrgTrg. We care about the arrow from FA to GA.

FA ϕA−−→ GA

Besides A, we do the similar study to all the objects in category SrcSrcSrc.

Definition 4.4.1. Given a parallel pair of functors F,G of the same variance as shown
in above figure, a natural transformation

F
ϕ−−→ G

is a family of arrows of TrgTrgTrg indexed by the object A of SrcSrcSrc.

FA ϕA−−→ GA

and such that for each arrow A
f−−→ B of SrcSrcSrc, the appropriate square in TrgTrgTrg commutes

FA GA A FA GA

FB GB B FB GB

ϕA

ϕB

F(f) G(f) f

ϕA

ϕB

F(f) G(f)

covariant contravariant

From the diagram of natural transformation, we see for every arrow f , there is a
corresponding square commutes. For covariant case, commutativity means for all arrow
f , the following equation holds:

G(f) ◦ ϕA = ϕB ◦ F(f)
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4.4.1 Examples of natural transformation
Natural transformation is a higher level of abstraction on top of categories, arrows, and
functors. Let’s see some examples to help understand this concept.

Example 4.4.1. The first example is the inits function. It enumerates all the prefixes
of a given string or list. For instances:
in its ” M i s s i s s i p p i ” = [””,”M”,”Mi”,”Mis”,”Miss”,” Miss i ”,” Miss i s ”,

” Mis s i s s ”,” M i s s i s s i ”,” M i s s i s s i p ”,” Mis s i s s ipp ”,” M i s s i s s i p p i ”]

in its [1, 2, 3, 4] = [[],[1],[1,2],[1,2,3],[1,2,3,4]]

The behavior of inits function can be summarized as this:

inits[a1, a2, ..., an] = [[], [a1], [a1, a2], ..., [a1, a2, ..., an]]

Consider the category SetSetSet, for every object, a set A (or type A), there exists inits
arrow indexed by A:

initsA : ListA→ List(ListA)

There is a list functor List, and another embedded list functor List List.
With the simplified ‘[]’ notation, this arrow can also be written as:

[A]
initsA−−−−−→ [[A]]

Next, we need verify that for any function A
f−−→ B, the equation

List(List(f)) ◦ initsA = initsB ◦ List(f)

holds. It means the below square diagram commutes:

A [A] [[A]]

B [B] [[B]]

f

initA

initB

List(f) List(List(f))

Proof. We’ll prove the community with the fmap defined in previous section. For n
elements of any type A: a1, a2, ..., an, the n elements b1, b2, ..., bn of type B are their
corresponding mapped value: f(a1) = b1, f(a2) = b2, ..., f(an) = bn. We have:

List(List(f)) ◦ initA[a1, ..., an]
= fmap[[]](f) ◦ initA[a1, ..., an] definition of fmap
= fmap[[]](f)[[], [a1], ..., [a1, a2, ..., an]] definition of inits
= map(map f)[[], [a1], ..., [a1, a2, ..., an]] fmap is defined as map for list functor
= [map f [],map f [a1], ...,map f [a1, a2, ..., an]] definition of map
= [[], [f(a1)], ..., [f(a1), f(a2), ..., f(an)]] apply map f to every sub-list
= [[], [b1], ..., [b1, b2, ..., bn]] definition of f
= initB [b1, b2, ..., bn] reverse of init
= initB [f(a1), f(a2), ..., f(an)] reverse of f
= initB ◦map(f) [a1, a2, ..., an] reverse of map f
= initB ◦ fmap[](f)[a1, ..., an] fmap is defined as map for list functor
= initB ◦ List(f)[a1, ..., an]
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Therefor, inits : List→ List ◦ List is a natural transformation.

Example 4.4.2. The next example is called safeHead, it can safely access the first
element of the list. Here ‘safe’ means it can handle the empty list (Nil) case without
exception. To do that, we will utilize the maybe functor defined previously. safeHead is
defined as the following:

safeHead : [A]→Maybe A
safeHead [] = Nothing
safeHead (x : xs) = Just x

In the category of set, every type A, which is an object, indexes the corresponding
arrow safeHead as:

[A]
safeHeadA−−−−−−−−−→Maybe A

The two functors involved here are the list functor and maybe functor. We need next

verify that, for every arrow (function) A f−−→ B, the below square diagram commutes:

A [A] Maybe A

B [B] Maybe B

f

safeHeadA

safeHeadB

List(f) Maybe(f)

That is to prove:

Maybe(f) ◦ safeHeadA = safeHeadB ◦ List(f)

Proof. We prove it for two cases. The first case is the empty list:

Maybe(f) ◦ safeHeadA []
= Maybe(f) Nothing definition of safeHead
= Nothing definition of fmap f Nothing
= safeHeadB [] reverse of safeHead
= safeHeadB ◦ List(f) [] reverse of fmap f []

The second case is the non-empty list (x : xs):

Maybe(f) ◦ safeHeadA (x : xs)
= Maybe(f) (Just x) definition of safeHead
= Just f(x) definition of fmap f Just x
= safeHeadB (f(x) : fmap f xs) reverse of safeHead
= safeHeadB ◦ List(f) (x : xs) reverse of fmap f (x : xs)

Summarize both cases, hence proved that safeHead : List → Maybe is a natural
transformation.

From the two examples, we summarize that, for any object A of the category (For set
category, it is a set A; in programming, it is a type A), functor F sends it to another
object FA (For set category, FA is another set; in programming, FA is another type),
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while the other functor G sends the object to GA. Natural transformation ϕ indexed by
A (For set category, it is a map; in programming, it’s a function)20 is in the form:

ϕA : FA→ GA

Not only for A, when abstract all objects, we obtain a family of arrows (in program-
ming, it is a polymorphic function21):

ϕ : ∀A · FA→ GA

In some programming environments, natural transformation can be written as22:
phi :: forall a ◦ F a → G a

When we needn’t explicitly call out forall a, natural transformation can be simplified
as:
phi : F a → G a

For the two examples above, the type of inits and safeHead are:
in its :: [a] → [[a]]

safeHead :: [a] → Maybe a

It only substitutes the name phi to their names respectively, and replace F and G to
their own functors.

4.4.2 Natural isomorphism
Natural transformation was developed to compare functors. Similar to the isomorphism
concept in abstract algebra, we need define when two functors are considered ‘equal’.

Definition 4.4.2. A natural isomorphism between two functors F and G is a natural
transformation:

F ϕ−−→ G

such that for each source arrow A, the selected arrow

FA ϕA−−→ GA

is an isomorphism in the target category.

Two functors that are naturally isomorphic are also said to be naturally equivalent.
The simplest natural isomorphism example is swap. For the product of any two objects

A×B, swap turns it into B ×A:

swap : A×B → B ×A
swap (a, b) = (b, a)

swap is a natural transformation. It transforms one bifunctor to another. Both
bifunctors happen to be product functors: F = G = ×.

20also called as the component at A
21Think about the polymorphic function in object oriented programming, and the template function in

generic programming.
22There is an ExplicitForAll option in Haskell, we’ll see it again in the next chapter about build/foldr

fusion law.
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Since they are bifunctors, for every two arrows A f−−→ C and B
g−−→ D, we need the

following natural condition so that the diagram commutes:

(g × f) ◦ swapA×B = swapC×D ◦ (f × g)

B D

A A×B B ×A

C C ×D D × C

f

g

swapA×B

swapC×D

f × g g × f

It’s easy to prove this. We can chose any two products (a, b) and (c, d), substitute
them into both sides of the natural condition. We leave the proof as an exercise of this
section.

Although both are product functors, let’s take some time to prove they are natural
isomorphic. For the product of any two objects A×B, as:

swapA×B ◦ swapB×A = id

It tells us that swap is an one to one mapping. It is isomorphic in the target category,
hence proved the natural isomorphism.

All the above three examples inits, safeHead, and swap are both polymorphic func-
tions and natural transformations. This is not a coincidence. In fact, all polymorphic
functions are natural transformations in functional programming[44].

Exercise 4.4

1. Prove that swap satisfies the natural transformation condition (g × f) ◦ swap =
swap ◦ (f × g)

2. Prove that the polymorphic function length is a natural transformation. It is
defined as the following:

length : [A]→ Int
length [] = 0
length (x : xs) = 1 + length xs

3. Natural transformation is composable. Consider two natural transformations F ϕ−−→

G and G ψ−−→ H. For any arrow A
f−−→ B, draw the diagram for their composition,

and list the commutative condition.

4.5 Data types
With the basic concepts like categories, functors, and natural transformation, we can
realize complex data types.
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4.5.1 Initial object and terminal object
We start from the two simplest data types, initial object and final object. They are
symmetric like the left and right hands. They are simple, but not easy.
Definition 4.5.1. In category CCC, if there is a special object S, such that for every object
A, there is a unique arrow

S −→ A A −→ S

In other words, S has a unique arrow that

points to every other object pointed from every other object

We call this special object S

initial object final object

Sometimes, a final object is said to be terminal.
Traditionally, people use 0 to represent initial object, and use 1 for final object. We

can also write that, for every object A, there is a unique arrow:

0 −→ A A −→ 1

Why are the initial and final objects symmetric? Suppose S is the initial object of
category CCC, by reversing the direction for all the arrows, then S becomes the final object
of category CCCop. There may or may not be initial or final object in a category. A category
can have one without the other, or have both. If it has both then these objects may or
may not be the same. Any two initial objects (or final objects) of a category are uniquely
isomorphic.

We only prove the isomorphic uniqueness for initial objects, the proof for final objects
can be obtained through the symmetry.

Proof. Beside the initial object 0, suppose there is another initial object 0’. For the initial
object 0, there must exist an arrow f from 0 to 0’ according to the definition of initial
object; on the other hand, for the initial object 0’, there must also exist an arrow g from
0’ to 0. According to the category axiom, there must be an identity arrow id0 self-pointed
to 0 (also called endo-arrow), and also an identity arrow id0′ self-pointed to 0’. Since the
identity arrow is unique, we have:

id0 = f ◦ g and id0′ = g ◦ f

This relation is illustrated in the below diagram.

0 0′
f

g
id0

id0′

Thus proved 0 is isomorphic to 0’. In other words, the initial object is isomorphic
unique.

This is the reason we usually use the word the initial object rather than an initial
object. In the same way that two final objects are uniquely isomorphic, and we usually
use the word the final object.

Specially, if the initial object is also the final object, we call it zero object or null object.
A category may not necessarily have the zero object.

We’ll next use some examples to understand what data types the initial and final
objects correspond to.
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Example 4.5.1. Consider a partial order set. The arrow is the ordering relation. If
there is a minimum element, then it is the initial object. Similarly, if there is a maximum
element, then it is the final object. Use finite figures in the duck family for example,
in poset {Huey, Thelma Duck, Quackmore Duck, Grandma Duck}, with the ancestral
ordering, Donald’s nephew Huey is the initial object, and Grandma Duck is the final
object. While for the Fibonacci numbers {1, 1, 2, 3, 5, 8, ...}, the ordering is less than or
equal. 1 is the minimum number, hence it is the initial object; but there is no final object.
Note that, there are two 1s in Fibonacci numbers, however, they are isomorphic under the
less than or equal ordering. Consider the poset of real numbers R. The ordering is still
less than or equal. There is neither the minimum nor the maximum number, hence there
is not initial or final object. Consider the poset of all the figures in the duck family tree
shown in figure 4.6, again, with the ancestral ordering. As there is no common ancestor,
so it has not initial or final object.

Example 4.5.2. Consider the category of all groups GrpGrpGrp. The trivial group {e} only
contains the identity element (see the previous chapter). The arrow is the morphism of
groups. Any morphism sends the identity element in one group to the identity element in
another group. Hence from {e} to any group G, e 7→ eG holds, where eG is the identity
element of G. There is a unique arrow from {e} to any group.

{e} −→ G

On the other hand, from any group G, there exists a unique morphism, that sends
every element to e, i.e. ∀x ∈ G, x 7→ e. Hence there is a unique arrow from any group G
to {e}.

G −→ {e}

Since {e} is both initial and final object, it is the zero object. Particularly, observe
the below arrow composition:

G −→ {e} −→ G′

The composition results a zero arrow, it connects the three groups G, {e}, and G′

together. All elements in G are sent to element e, then next sent to eG′ , as shown in
below figure. This is where the name ‘zero’ object comes from.

Figure 4.12: Zero object

It does not matter what we call the only element in the trivial group. It can be
e, can be 1 (the trivial subgroup of the multiplicative integer group for example), can
be 0 (the trivial subgroup of the additive integer group for example), can be I (the
identity matrix of the multiplicative square matrix group for example), can be (1) (the
identity transformation of the permutation group for example), can be id ... They are all
isomorphic equivalent.
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Example 4.5.3. Let’s see a little bit more difficult example, the category of all sets SetSetSet,
with the total functions as arrows. It’s easy to find the final object, which is the singleton
set (the set that contains only one object) {⋆}. Similar to the example of groups, for any
set S, we can send all elements to the only element in the singleton set: ∀x ∈ S, x 7→ ⋆.
Obviously, the arrow is unique.

S −→ {⋆}

However, here comes the problem: How to map the empty set ∅ to {⋆}? In fact, the
empty set23 is the initial object in the category of set. As for any set S, we can define
arrow

∅
f−−→ S

Please take a while to think about this point. Let’s consider the identity arrow id

of the empty set, ∅
id∅−−−→ ∅. According to the category axiom, every object has id

arrow. The empty set is the object that has unique arrow to every set (include the empty
set itself). The only special thing is that, the total function as the arrow has not any
arguments. It can not be written as f(x) : x 7→ y.

To answer the above question, since there is unique arrow from the empty set to any
set, there is also unique arrow from empty set to {⋆}. Hence there is unique arrow from
every set (includes the empty set) to {⋆}. Therefore, {⋆} is the final object in the
category of set.

Why can’t we let the singleton set {⋆} be the initial object like what we do for groups?
The reason is because the arrow from {⋆} to set S may not be unique. Consider a set
S = {x, y, z, ...}, we can define the arrow (total function) {⋆} x⃗−−→ S, that sends the only

element to x; we can also define the arrow {⋆} y⃗−−→ S or {⋆} z⃗−−→ S to send it to other
elements.

We intend to choose the symbol {⋆} to emphasize that, it does not matter what
the element is, as far as it is a singleton set. Because all singleton sets are isomorphic
equivalent.

The arrow from the final object {⋆} to a set S

{⋆} −→ S

also has particular meaning. It means we can select an element from the set S, like
the arrow x⃗ we defined above. It selects x from S. For this reason, we call it selection
arrow.

Example 4.5.4. The type system in programming environment is the category of set
SetSetSet essentially. A data type is a set. For example, Int type is the set of all integers;
Boolean type is the set with two elements {True, False}. We know that the final object
is {⋆} in the category of sets. What data type is corresponding to the final object? Since
the final object is isomorphic unique, therefore, any data type with only one value is the
final object in programming.

We can define a dedicated data type, named as “()”, with only one element, also
named as “()”.

data () = ()

23The great french mathematician in the 20th Centry, André Weil said he was responsible for the null
set symbol ∅, and that it came from the Norwegian alphabet, which he alone among the Bourbaki group
was familiar with.
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It is isomorphic equivalent to any singleton set, hence {⋆} = {()}. We will see the
advantage of choosing the “()” symbol later. We can define the arrow (total function)
from any data type (set) to this final object as below:

unit :: a → ()
unit _ = ()

We can also define the final object with any singleton data type, since it is isomorphic
equivalent to ()24.

data Singleton = S

proj :: a → Singleton
proj _ = S

It looks like a constant function, which maps any value to a constant. However, not
all constant functions point to the final object. For example the following two constant
functions:

yes :: a → Bool
yes _ = True

no :: a → Bool
no _ = False

As the Bool data type contains two values, any other data type has two arrows yes,
and no point to Bool, hence it does not satisfy the uniqueness condition for the arrow to
the final object.

In the category of sets, the initial object is the empty set ∅. What is the corresponded
data type in programming? Since the data type is essentially set, the empty set means a
data type without any values. In programming, it means we declare a data type without
defining it.

For example, we can declare a data type Void, but leave it without any values:

data Void

Thus Void represents an empty set. However, the initial object must have a unique
arrow to any other object. It requires us to define a function from Void to all other data
types.

absurd :: Void → a
absurd _ = undefined

The implementation does not matters here, because there does not exist a real argu-
ment to call this function. It is quite OK to implement it as this:

absurd :: Void → a
absurd a = case a of {}

We can also define the initial object by other means as far as they are isomorphic
equivalent. The method is to only declare the type without define any values. For
example:

data Empty

f :: Empty → a

24Many programming environments, like C++, Java, Scala, etc. support defining singleton object. We
can also treat the force type casting as an arrow, then it also forms the final object.
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f _ = undefined

iso :: Void → Empty
iso _ = undefined

iso' :: Empty → Void
iso' _ = undefined

Here we explicitly define iso and iso′ to form the isomorphism between Empty and
Void. It is easy to verify that iso · iso′ = id.

In the category of sets, we define the arrow from the final object to any set as the
selection arrow. What does it mean in programming? Set corresponds to type. It means
we can select a specific value from any type. The below example selects 0 and 1 from Int
type respectively:
zero :: () → Int
zero () = 0

one :: () → Int
one () = 1

We see the advantage of choosing the “()” symbol. When call the function, it looks
like we pass null argument to it: zero () returns 0, and one () returns 1.

Exercise 4.5
1. In the poset example, we say if there exists the minimum (or the maximum)

element, then the minimum (or the maximum) is the initial object (or the final
object). Consider the category of all posets PosetPosetPoset, if there exists the initial object,
what is it? If there exists the final object, what is it?

2. In the Peano category PnoPnoPno (see exercise 2 in section 1), what is the initial object
in form (A, f, z)? What is the final object?

4.5.2 Exponentials
The initial and final objects are similar to 0 and 1, the product and coproduct are similar
to × and +, if we can find something similar to exponentials, then we will be empowered
with the basic arithmetic in the abstract category world. Further, we can even develop
something ‘isomorphic’ to polynomials.

Observe a binary function f(x, y) = z defined for natural numbers, for example
f(x, y) = x2 +2y+1. Its type is f : N ×N → N . It’s natural to think about writing the
type as:

f : N2 → N

For function f , can we take N2 as a whole object, but not two arguments? i.e. treat
it as f (x, y) but not f(x, y). If we consider the argument as a ‘hole’, then the former is
f •, then put a pair (x, y) into that hole; while the latter is f(•, •), then we put x and
y to the two holes respectively. On the other hand, we introduced Currying in chapter
2. We can consider f as f : N → (N → N). After passing x to it, f x returns another
function. This new function sends one natural number to another number. It seems we
can’t get the exponential concept with Currying directly. However, what if we consider
the Curried result, which is N → N , as a whole thing? we can name it as the ‘function
object’. It’s still a bit complex since N is a infinite set. Let’s go back a step and restart
with a simpler example, the Bool set with only two elements:



138 CHAPTER 4. CATEGORY

Example 4.5.5. There are infinite many arrows (functions) from Bool to Int. They

form a set {Bool f−−→ Int}. Let us select an element, an example function from it.

ord : Bool→ Int
ord False = 0
ord True = 1

The result is a pair of numbers (0, 1). Similar to this instance, we can write all the
arrows in above set in this way:

f : Bool→ Int
f False = ...
f True = ...

No matter how f varies, the result is always a pair of numbers (a, b). We say the set
of arrow f is isomorphic to the set of integer pair (a, b). That is to say:

{Bool f−−→ Int} = {(a = f False, b = f True)}
= Int× Int
= Int2 = IntBool

The set (type) of arrows 25: Bool → Int, corresponds to an exponential IntBool.
It means Bool → Int = IntBool. Why can we use 2 to substitute Bool in the above
reasoning to convert Int2 to IntBool? The reason is isomorphism. The equal symbol
actually means isomorphic equivalence. Strictly speaking, we should use the “∼=” symbol,
but not “=”. Int2 represents the product of two integers, which is the set of Int pairs.
The set of Int pairs can be considered as a map. The map is from a set named as 2 with
2 elements of index {0, 1} to Int.

{0, 1} f−−→ Int = {(f(0), f(1))} = Int2

And the index set 2 = {0, 1} is isomorphic to Bool (under the function ord for exam-
ple).

Example 4.5.6. Let’s see another example. Consider the set of all the arrows (func-
tions) Char → Bool from characters Char to the Boolean values Bool. There are many
functions in this set. For example isDigit(c) check whether the passed in character is
digit or not. One implementation can be this (not practical but possible):
isDigit : Char → Bool
...
isDigit '0' = True
isDigit '1' = True
...
isDigit '9' = True
isDigit 'a' = False
isDigit 'b' = False
...

Although this is a naive implementation, it reflects such fact: If there are 256 dif-
ferent chars (ASCII code of English for example), then the result of isDigit function is
isomorphic to a 256-tuple, values of (False, ..., True, True, ... True, False, ...), where the

25Strictly speaking, we should remove the pair of curly brackets of the arrow. We add the them only
to make it easy to understand.



4.5. DATA TYPES 139

positions corresponding to digit characters are Ture, the rest are False. Among the varies
of functions of type Char → Bool, like isUpper, isLower, isWhitespace etc. everyone
corresponds to a specific tuple. For example in the tuple corresponding to isUpper, the
positions for the upper case characters are Ture, the rest are False. Although there are
infinite many ways to define a function from Char to Bool, from the result perspective,
there are only 2256 different functions essentially. It means Char → Bool is isomorphic
to BoolChar, which is the set of 256-tuple Boolean values.

Next, we expand the examples to the infinite set. We mentioned the Curried function
f : N → (N → N) maps from the natural numbers N to ‘function objects’. Denote the

function object as (⇒), then the type of f is N f−−→ (⇒). It maps from the index set
{0, 1, ...} to (⇒), which forms a set of infinite long tuples. Every value in the tuple is a
function object. We denote it as (⇒)N .

In general, we denote the set of function f : B → C in exponential form CB . Select
a function f ∈ CB , and an element b ∈ B, then we can use a special apply function that
applies f to b, that gives a value c = f(b) in C. As this26:

apply(f, b) = f(b)

Readers may ask: where is symbol A? We actually need A for other purpose when
taking Currying into account. For the binary function g : A × B → C, when passing
an element a in A, we obtained a Curried function g(a, •) : B → C, which is a function
object belongs CB . Hence for every binary function A×B g−−→ C, there is a unique unary

function A λg−−→ CB sends a ∈ A to g(a, •) : B → C. We call λg the exponential transpose
of g27. And the following equation holds:

apply(λg(a), b) = g(a, b)

That is to say, apply combines a function object λg(a) of type CB and an argument
b of type B together, and gives the result c of type C. Therefore, the type of apply is:

CB ×B apply−−−−→ C

Now we can give the complete definition of exponentials (or exponential objects).
Definition 4.5.2. If a category CCC has final object and supports product, then an expo-
nential object is a pair of object and arrow

(CB , apply)

For any object A and arrow A×B g−−→ C, there is a unique transpose arrow

A
λg−−→ CB

such that the below diagram commutes

A A×B

CB CB ×B C

λg λg × idB
g

apply

26Some materials, like [46] pp. 111 - 112, and [47] use eval to highlight this evaluation process. We
adopt the name in [6] pp. 72 to follow the tradition in Lisp.

27Some materials use ḡ for exponential transpose. From the introduction about λ in chapter 2, especially
the interesting story about Church and his publisher, λg looks vivid. It means a 7→ λ • ·g(a, •).
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That is:

apply ◦ (λg × idB) = g

We didn’t provide the complete definition of Currying in chapter 2. We are able to
define curry with the help of exponentials:

curry : (A×B → C)→ A→ (CB)
curry g = λg

Therefore, curry g is the exponential transpose of g. Substitute this definition into
the above diagram, we have:

apply ◦ (curry g × id) = g

In other words, we obtain such a universal property:

f = curry g ≡ apply ◦ (f × id) = g

And we can also see why the exponential transpose arrow is unique. Suppose there
exists another arrow A

h−−→ CB , such that apply ◦ (h × id) = g. According to the above
universal property, we immediately get h = curry g.

We can also consider the exponentials as a category. Given a category CCC, when fix
object B,C, we can form a category ExpExpExp. In this category, all objects are arrows in the
form of A×B → C, and the arrows are defined as:

A A×B h−−→ C

D D ×B k−−→ C

f j

If there is arrow A
f−−→ D in category CCC, then the arrow in ExpExpExp is h j−−→ k. The

arrows commute if and only if when we combine the C on the right in above diagram:

A A×B

D D ×B C

f f × idB
h

k

The diagram commutes when k◦(f×idB) = h. There exists the final object in category

ExpExpExp, which exactly is CB × B apply−−−−→ C. Let’s verify it. According to the definition of
exponential, from any object A × B g−−→ C, there is apply arrow λg = curry g. On the
other hand, the endo arrow to the final object must be id, hence we obtain the reflection
law:

curry apply = id

Exercise 4.6
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1. Verify that ExpExpExp is a category. What is the id arrow and arrow composition in it?
2. In the reflection law curry apply = id, what is the subscript of the id arrow?

Please prove it with another method.
3. We define the equation

(curry f) ◦ g = curry(f ◦ (g × id))

as the fusion law for Currying. Draw the diagram and prove it.

4.5.3 Cartesian closed and object arithmetic
With the initial object as 0, the final object as 1, coproduct as add, product as multipli-
cation, exponentials as powers, we are capable to do arithmetic or even form polynomials
for categories. But hold on. As we warned at the beginning of chapter 3, we should always
ask ourselves what the applicable scope for the abstraction is, when the abstraction will
be invalid.

Not all categories have the initial or final object, and do not necessary have exponen-
tials. If a category has finite product, for any object A and B, there is AB , it is called
Cartesian closed. A Cartesian closed category must have:

1. A final object (1);

2. Every two objects have product (×);

3. Every two objects have exponential (AB).

We can either consider the final object 1 as the 0th power of an object A0 = 1, or the
product of zero objects. Fortunately, the category of programming, with sets and total
functions, is Cartesian closed. A Cartesian closed category can model the simply typed λ
calculus (see chapter 2), hence serves as the foundation of all the programming languages
with types([45] pp. 148).

If a Cartesian closed category also supports the dual of the final object, which the ini-
tial object; the dual of product, which is the coproduct; and also supports the distribution
law of product over coproduct, then it is Bicartesian closed.

A Bicartesian closed category satisfies the following conditions in additional:

4. The initial object (0);

5. Every two objects have coproduct (+);

6. Product can be distributed from both sides to coproduct:

A× (B + C) = A×B +A× C
(B + C)×A = B ×A+ C ×A

Now we are ready to explain what the basic arithmetic operations mean in program-
ming, which is a Cartesian closed category. It is called equational theory.

0th Power

A0 = 1

0 represents the initial object, 1 represents the final object. The 0th power of A
represents a set of all arrows 0 → A. Since 0 is the initial object, it has the unique
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(only one) arrow to any object. Therefore, set {0 → A} contains only one object. It is
a singleton. While the singleton set {⋆} is exactly the final object 1 in the category of
sets. The equal symbol used in the below reasoning should be thought as isomorphism.

A0 = {0→ A} Definition of exponential
= {⋆} Uniqueness of arrow from initial object
= 1 {⋆} is the final object

Our common sense in number arithmetic that the 0th power of any number is 1 reflects
same in categories.

Powers of 1

1A = 1

1 represents the final object, hence the exponential object 1A represents the set of all
arrows from A to the final object, which is {A→ 1}. According to the definition of final
object, there is unique arrow from any object to the final object, hence there is only one
element in this set of arrow. While the set contains only one element is isomorphic to
{⋆}, which is exactly the final object in the category of set.

1A = {A→ 1} Definition of exponential
= {⋆} Uniqueness of the arrow to the final object
= 1 {⋆} is the final object

First power

A1 = A

This is exactly the ‘selection arrow’ introduced above. 1 is the final object, hence the
exponential A1 represents the set of arrows from the final object to A, which is {1→ A}.
If A is a set, then we can construct a function from the final object to 1 for all element
a ∈ A:

fa : 1→ a

Such function can select an element a from A hence is called selection function. The
set of all such functions from 1 to A is {fa : 1 7→ a|a ∈ A}, which is exactly the set
1→ A. On the other hand, set {fa} has one to one mapping to A = {a}, hence they are
isomorphic.

A1 = {1→ A} Definition of exponential
= {fa : 1 7→ a|a ∈ A} the set of maps from 1 to A
= {a|a ∈ A} = A one to one mapping isomorphic

Exponentials of sums

AB+C = AB ×AC
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The exponential AB+C represents the set of arrows from the coproduct B + C to A,
which is {B+C → A}. Let’s explain it through Either B C we introduced above28. For
any function of type Either B C → A, we can implement it in the form:

f : Either B C → A
f left b = ...
f right c = ...

It means all such functions can be considered as a pair of maps (b 7→ a1, c 7→ a2),
and it is exactly the product of B → A and C → A. Therefore, {B + C → A} = {B →
A} × {C → A}. On the other hand, since the exponential of {B → A} is AB , and the
exponential of {C → A} is AC , it explains the exponentials of sum:

AB+C = {B + C → A} Definition of exponentials
= {(b 7→ a1, c 7→ a2)|a1, a2 ∈ A, b ∈ B, c ∈ C} Pair of arrows from B and C to A
= {B → A} × {C → A} Cartesian product
= AB ×AC Reverse of exponentials

Exponentials of exponentials

(AB)C = AB×C

On the right side of the equation, the exponential AB×C is actually the set of all binary
functions of B ×C g−−→ A. It is obviously a natural isomorphism when swap the product
to C ×B g ◦ swap−−−−−−−→ A (refer to the swap in the section of natural transformation). The
Curried form is {curry(g ◦ swap)} = {C → AB}. Then represent it with exponentials,
and we obtain (AB)C .

AB×C = {B × C g−−→ A} Definition of exponentials
= {C ×B g ◦ swap−−−−−−−→ A} Natural isomorphism

= {C
curry(g ◦ swap)
−−−−−−−−−−−−−→ AB} Currying is isomorphic

= (AB)C Reverse of exponentials

Exponentials over products

(A×B)C = AC ×BC

The exponential (A×B)C is the set of arrows of C → A×B. It is equivalent to the
set of functions that returns a pair of values {c 7→ (a, b)}, where c ∈ C, a ∈ A, b ∈ B. It is
obviously isomorphic to {(c 7→ a, c 7→ b)}, which is exactly the product of arrows C → A
and C → B. We then write the two arrows in exponentials thus obtain the product of
exponentials.

(A×B)C = {C → A×B} Definition of exponential
= {c 7→ (a, b)|a ∈ A, b ∈ B, c ∈ C} Set of arrows
= {(c 7→ a, c 7→ b)} Pair of arrows
= {C → A} × {C → B} Cartesian product
= AC ×BC Reverse of exponentials

28Alternatively, we can reason it with tags:
f : B + C → A
f(b, 0) = ...
f(c, 1) = ...
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4.5.4 Polynomial functors
The arithmetic we introduced applies to objects in Cartesian closed categories. What if
we take functors into consideration? As functors apply to both objects and arrows, it
leads to the concept of polynomial functors. A polynomial functor is built from constant
functors (refer to The ‘black hole’ functor example), product functors, and coproduct
functors recursively.

• The identity functor id, and constant functor KA are polynomial functors;

• if functor F and G are polynomial functors, then their composition FG, sum F+G,
and productF ×G are also polynomial functors. Where the sum and product are
defined as below:

(F + G)h = Fh+ Gh
(F×G)h = Fh×Gh

For example, if functor F is defined as below for objects and arrows:{
Object: FX = A+X ×A
Arrows: Fh = idA + h× idA

Where A is some fixed object. Then functor F is a polynomial functor. It can be
represented as a polynomial:

F = KA + (id×KA)

4.5.5 F-algebra
In order to construct complex algebraic data types that support recursive structure, we
need the last corner stone, the F-algebra. Think about the concepts in abstract algebra,
like monoid, group, ring, field, etc., they are not only abstract objects, but also have
structures. It is the relation among the structures, makes them different from the tra-
ditional concrete things, like numbers, points, lines, and planes. When we understand
the structures and their relations well, we actually understand all the things of the same
structure and relations. Not only for numbers, points, lines, and planes, but also for
‘tables, chairs, and beer mugs’ as Hilbert said.

Example 4.5.7. Start from the simple example of monoid, we introduce the F-algebra
step by step. A monoid is a set M , defined with the identity element and the associative
binary operation.

Denote the binary operation as ⊕, the identity element as 1M , we can list the two
monoid axioms as the following:{

Associativity: (x⊕ y)⊕ z = x⊕ (y ⊕ z),∀x, y, z ∈M
Identity element: x⊕ 1M = 1M ⊕ x = x, ∀x ∈M

In the first step, we represent the binary operation ⊕ as a binary function, represent
1M as a selection function. Define:{

m(x, y) = x⊕ y
e() = 1M

The types of these two arrows are:
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binary operation: M ×M →M MM×M

selection: 1→M M1

The first arrow means, applying the binary operation to any two elements in the
monoid, the result is still an element of the monoid, hence the binary operation is closed;
the second arrow is the selection function. 1 is the final object29.

Now we can substitute the monoid axioms with function m and e:{
Associativity: m(m(x, y), z) = m(x,m(y, z)),∀x, y, z ∈M
Identity element: m(x, e()) = m(e(), x) = x, ∀x ∈M

In the second step, we remove all the concrete elements like x, y, z, and object M .
Then we obtain the monoid axioms purely in function (arrow) form:{

Associativity: m ◦ (m, id) = m ◦ (id,m)

Identity element:� m ◦ (id, e) = m ◦ (e, id) = id

These two axioms indicate the following two diagrams commute.

M ×M ×M M ×M

M ×M M

(m, id)

(id,m) m

m

(a) Associativity

1×M

M ×M M

M × 1

id(∼=)
(e, id)

m

(id, e)
id(∼=)

(b) Identity element

Figure 4.13: The diagrams for monoid axioms

Therefore, any monoid can be represented with a tuple (M,m, e), where M is the set,
m is the binary operation function, and e is the identity element selection function.

We come to the third step. (M,m, e) does not only specify the set of the monoid, but
also specifies the binary operation and identity element on top of this set. It completely
defines the algebraic structure of monoid. All the possible combinations of arrow m and
e that form the monoid are products of two exponentials:

MM×M ×M1 =MM×M+1

Next, we turn the right side exponentials to the arrow form. For all the monoids
defined on top of set M , the algebraic operations must be one of the following:

α : 1 +M ×M −→ M sum (coproduct)
1 7−→ 1 identity element

(x, y) 7−→ x⊕ y binary operation

This relation can be represented as the sum through coproduct α = e +m, which is
the polynomial functor FM = 1 +M ×M .

In summary, for the monoid example, the algebraic structure is consist of three parts:
29We intend to use ‘()’ for the final object, as 1 = {⋆} = {()} in terms of isomorphism. The advantage

is that, e() looks like a function call without any arguments, in fact, it accepts the singleton element of
the final object as the argument.
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1. Object M is the set that carries the algebraic structure for the monoid. It is called
carrier object;

2. Functor F defines the algebraic operations. It is a polynomial functor FM = 1 +
M ×M ;

3. Arrow FM α−−→M . It is the sum (coproduct) of the identity arrow e and the binary
operation arrow m, i.e. α = e+m.

We say it defines the F -algebra (M,α) of the monoid.
For programming, we can define the type of the F-algebra arrow:

type Algebra f a = f a → a

It gives an alias to the arrow FA → A essentially, named as Algebra F, A. For the
monoid, we also need define a functor30:
data MonoidF a = MEmptyF | MAppendF a a

When a is string for example, we can implement the arrow of the F-algebra (String,
evals) as below:
evals :: Algebra MonoidF String
evals MEmpty = e ()
evals (MAppendF s1 s2) = m s1 s2

e :: () → String
e () = ””

m :: String → String → String
m = (++)

We can further simplify it by embedding e and m in evals:
evals :: Algebra MonoidF String
evals MEmpty = ””
evals (MAppendF s1 s2) = s1 ++ s2

evals is one implementation to the arrow α : FA→ A, where F is MonoidF, and A is
String. There can be other implementations as far as they satisfy the monoid axioms.

Example 4.5.8. Compare to monoid, group need an additional inverse element axiom.
Similar to the previous example, we will develop the F-algebra for groups step by step.
First, we list the three axioms for group G. Denote the identity element as 1G, use the
point symbol for binary operator, and use ()−1 for the inverse element:

Associativity: (x · y) · z = x · (y · z),∀x, y, z ∈ G
Identity element: x · 1G = 1G · x = x,∀x ∈ G
Inverse element: x · x−1 = x−1 · x = 1G,∀x ∈ G

In the first step, we represent the binary operation, the identity element, and the
reverse operation as functions. Define:

m(x, y) = x · y
e() = 1G

i(x) = x−1

30There is a definition of monoid in Haskell standard library (see the appendix of this chapter). However,
it is the definition of the monoid algebraic structure, but not the definition of the monoid functor
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The corresponding function type and exponentials are: binary operation: G×G→ G GG×G

selection: 1→ G G1

reverse: G×G GG

The first two arrows are same as monoid. The third one tells that the reverse element
still belongs to the group. Next we substitute the 1G, the point, and the reverse symbols
in the group axioms with e, m, and i.

Associativity: m(m(x, y), z) = m(x,m(y, z)),∀x, y, z ∈ G
Identity element: m(x, e()) = m(e(), x) = x, ∀x ∈ G
Reverse element: m(x, i(x)) = m(i(x), x) = e(),∀x ∈ G

In the second step, we remove the concrete elements x, y, z, and set G to represent
the group axioms purely in arrows:

Associativity: m ◦ (m, id) = m ◦ (id,m)

Identity element: m ◦ (id, e) = m ◦ (e, id) = id

Reverse element: m ◦ (id, i) = m ◦ (i, id) = e

It means every group can be represented in a tuple (G,m, e, i). In the third step, we
use the coproduct of m, e, i for the sum α = e + m + i, then through the polynomial
functor FA = 1 +A+A×A, and let A = G to describe the algebraic operations on G.

α : 1 +A+A×A −→ A sum (coproduct)
1 7−→ 1 identity element
x 7−→ x−1 reverse element

(x, y) 7−→ x · y binary operation

Therefore, the algebraic structure of group is consist of three parts:

1. The carrier object G, which is the set furnished with the algebraic structure;

2. Polynomial functor FA = 1+A+A×A, which defined the algebraic operations on
the group;

3. Arrow FA α = e+m+ i−−−−−−−−−−−→ A. It is the sum of the identity element arrow e, the
binary operation arrow m, and the reverse element arrow i.

We say it defines the F-algebra (G,α) for group.

It’s ready to give the definition of F-algebra. There are many dual concepts appear
in pairs. We benefit from them like buy one, get one. When define F-algebra, we obtain
F-coalgebra at the same time. We will post-pone the examples of F-coalgebra in chapter
6 when introduce about the infinity.

Definition 4.5.3. Let CCC be a category, CCC F−−→ CCC is an endo-functor of category CCC. For
the object A and morphism α in this category, arrow:

FA α−−→ A A
α−−→ FA

forms a pair (A,α). It is called

F-algebra F-coalgebra
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Where A is the carrier object.

We can treat

F-algebra (A,α) F-coalgebra (A,α)

as object. When the context is clear, we denote the object as a pair (A,α). The
arrows between such objects are defined as the following:

Definition 4.5.4. F-morphism is the arrow between F-algebra or F-coalgebra objects:

(A,α) −→ (B, β)

If the arrow A
f−−→ B between the carrier objects make the below diagram commutes:

FA A A FA

FB B B FB

α

F(f) f

β

α

f F(f)

β

Which means:

f ◦ α = β ◦ F(f) β ◦ f = F(f) ◦ α

F-algebra and F-morphism, F-coalgebra and F-morphism form

F-algebra category AlgAlgAlg(F) F-coalgebra category CoAlgCoAlgCoAlg(F)

respectively.

Exercise 4.7
1. Draw the diagram to illustrate the reverse element axiom for group.
2. Let p be a prime. Use the F-algebra to define the α arrow for the multiplicative

group for integers modulo p (refer to the previous chapter for the definition of this
group).

3. Define F-algebra for ring (refer to the previous chapter for definition of ring).
4. What is the id arrow for F-algebra category? What is the arrow composition?

Recursion and fixed point

We introduced Peano axioms for natural numbers and things that are isomorphic to
natural numbers in chapter 1. In fact, we can use F-algebra to describe all natural
number like things.

Consider a set A furnished with algebraic structure. Use the Fibonacci numbers
introduced in chapter 1 for instance, where A is the set of pairs (Int, Int), the initial pair
is (1, 1), the successor function is h(m,n) = (n,m+ n).

In order to model this kind of algebraic structure in F-algebra, we need three things:
functor, carrier object, and the α arrow. From the Peano axiom, natural number functor
should be defined as below:
data NatF A = ZeroF | SuccF A
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This is a polynomial functor NatFA = 1 + A. Here is an interesting question: let
A′ = NatFA, substitute it into functor NatF, then what will the NatFA′ look like? It
will look like applying the functor twice NatF(NatFA). We can repeat this process to
apply the functor three times as NatF(NatF(NatFA)). Actually, we can repeat infinite
many times, and name the type NatF(NatF(...)) as Nat.

data Nat = NatF(NatF(...)) Infinite many times
= ZeroF | SuccF (SuccF (...)) Infinite many times of SuccF
= ZeroF | SuccF Nat Infinite many times of SuccF , named as Nat
= Zero | Succ Nat Rename

It is exactly the type of natural numbers we defined in chapter 1. Let us list Nat and
NatF A together:
data Nat = Zero | Succ Nat

data NatF A = ZeroF | SuccF A

This is a recursive functor. We’ve already met the similar concept in chapter 2.
Applying the endo-functor to itself infinite many times gives the fixed point:

Fix F = F (Fix F)

The fixed point of endo-functor F is Fix F. When applying F to the fixed point, still
gives the fixed point. Hence Nat is the fixed point of the functor NatF. Which means
Nat = Fix NatF.

Exercise 4.8
1. Someone write the natural number like functor as the below recursive form. What

do you think about it?
data NatF A = ZeroF | SuccF (NatF A)

2. We can define an α arrow for NatFInt→ Int, named eval:

eval : NatFInt→ Int
eval ZeroF = 0
eval (SuccF n) = n+ 1

We can recursively substitute A′ = NatFA to functor NatF by n times. We
denote the functor obtained as NatFnA. Can we define the following α arrow?

eval : NatFnInt→ Int

Initial algebra and catamorphism

If there exists initial object in the category of F-algebra AlgAlgAlg(F ), what are the properties
for it? There must be unique arrow from the initial object to other objects, what kind of
relationship does it represent? All the objects of the F-algebra category can be written as
pair (A,α). Using the F-algebra for natural number like things for example, in category
AlgAlgAlg(NatF), all objects can be written as (A,α), where NatF is defined as above section;
A is the carrier object, NatFA α−−→ A is the arrow.

Fibonacci numbers (Int× Int, fib) form a F-algebra object. Where the carrier object

is the product of integers, the arrow NatF(Int× Int) fib−−−→ (Int× Int) is defined as:
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fib : NatF(Int× Int)→ (Int× Int)
fib ZeroF = (1, 1)
fib (SuccF (m,n)) = (n,m+ n)

This definition is concise. We can also write it in the form of sum (coproduct) fib =
[start, next], where start always returns (1, 1), and next(m,n) = (n,m+ n).

We denote the initial object 0 of category NatFNatFNatF as a pair (I, i). There is unique arrow

from the initial object to any object (A,α). It means there exists arrow I
f−−→ A, such

that the below diagram commutes31.

NatFA A

NatFI I

α

NatF(f) f

i

Since there is unique arrow from the initial object to every object, hence for the object
formed by recursively applying the functor NatF(NatFI), there must be the unique
arrow as well. The recursive F-algebra is furnished with three properties:

1. The common functor NatF�

2. The carrier object NatFI�

3. Arrow NatF(NatFI)→ NatFI. Because functor applies to both object and arrow,
by using functor NatF, we can ‘lift’ the arrow i in the initial object. Hence the
arrow for this recursive F-algebra is NatF(i).

With the above three properties, we can denote the recursive F-algebra as (NatFI,NatF(i)).

Since there is unique arrow from the initial object to it, there exists an arrow I
j−−→ NatFI,

such that the below diagram commutes:

NatF(NatFI) NatFI

NatFI I

NatF(i)

NatF(j) j

i

Observe the two arrows along the path of the recursive functor NatF

NatF(NatFI)
NatF(i)
−−−−−−−→ NatFI i−−→ I

To make it obvious, we draw the second section in top-down direction:

NatF(NatFI) NatFI

I

NatF(i)

i

31For (I, i), We use the upper case first character in word initial for the set, and the lower case i for
the arrow of the initial object.
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Compare with the above diagram, we find the directions of i and j are reversed.
Composite the two together, we obtain an endo-arrow from I to itself. As the only
endo-arrow of the initial object is id, therefore:

i ◦ j = id

We can use the similar analysis for NatFI. Since the arrow from the initial object to
the recursive object is unique, the arrow i from NatFI to I, connected with the arrow j
back to NatFI must also be id

j ◦ i = idNatFI

It means NatFI is isomorphic to I.

NatFI = I

This is exactly the concept of fixed point introduced above. From the previous section,
we know that the fixed point of NatF is Nat, hence

NatF Nat = Nat

This result is as same as the arithmetic axioms given by Peano in 1889. For any alge-
braic structure (A, [c, f ]) that satisfies Peano axioms, there exists a unique isomorphism
from natural numbers (N, [zero, succ]), which sends number n to fn(c) = f(f(...f(c))..).
We can give the definition of initial algebra now:
Definition 4.5.5. If there exists the initial object in the category of F-algebra AlgAlgAlg(F ),
then the initial object is called the initial algebra.

In the category of set furnished with total functions, many functors, including poly-
morphic functors have the initial algebra. We skipped the proof for existence of initial
algebra, readers can refer to [48]. Given a functor F, we can obtain the initial object of
the F-algebra through its fixed point.

Joachim Lambek, 1922 - 2014

Lambek, in 1968, pointed out i is an isomorphism, and named the initial algebra (I, i)
the fixed point of functor F. This result is called Lambek theorem nowadays[49].

If there exists the initial algebra (I, i) in F-algebra, then there is unique morphism
to any other algebra (A, f). Denote the morphism from I to A as LfM, which makes the
below diagram commute:

FI I

FA A

i

FLfM LfM
f
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h = LfM, if and only if h ◦ i = f ◦ F(h)

We call the arrow LfM the catamorphism. It comes from Greek word κακα, means
downward. The brackets ‘LM’ look like a pair of bananas, therefore, people call them
‘banana brackets’.

Catamorphism is powerful, it can convert the function f on a non-recursive structure,
to LfM for recursive structure. Hence build the complex recursive computation. Let us
see how it works with the example of natural numbers.

The natural number functor NatF is not recursive, while the initial algebra for natural
number Nat is recursive:

data NatF A = ZeroF | SuccF A

data Nat = Zero | Succ Nat

Although the arrow NatFA f−−→ A is not recursive, the catamorphism cata builds the
arrow Nat → A from f , which can apply computation to the recursive Nat. The type
of cata is as below:

(NatFA f−−→ A)
cata−−−→ (Nat→ A)

The Curried cata(f) should be able to apply to the both values of Nat, Zero and
Succ n. We can define cata from this fact:

cata f Zero = f ZeroF
cata f (Succ n) = f(SuccF (cata f n))

The first clause handles the edge condition for the recursion. For the Zero value of
Nat, it applies f to it; for the recursive case, which is Succ n, it first recursively evaluates
cata f n to get a value a of type A; then uses SuccF a to convert it to a value of type
NatFA; finally applies f on top of it. This natural number catamorphism is generic as it
is applicable to any carrier object A. Let’s further see two concrete examples. The first
one converts any value of Nat back to Int.

toInt :: Nat → Int
toInt = cata eval where

eval :: NatF Int → Int
eval ZeroF = 0
eval (SuccF x) = x + 1

With this definition, toInt Zero gives 0, and toInt (Succ (Succ (Succ Zero))) gives
3. We can define a helper function to make the verification easy:

fromInt :: Int → Nat
fromInt 0 = Zero
fromInt n = Succ (fromInt (n-1))

For any integer n, n = (toInt ◦ fromInt) n holds. This example looks trivial. Let us
see the second example about Fibonacci numbers.

toFib :: Nat → (Integer , Integer)
toFib = cata fibAlg where

fibAlg :: NatF (Integer , Integer) → (Integer , Integer)
fibAlg ZeroF = (1, 1)
fibAlg (SuccF (m, n)) = (n, m + n)
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We intentionally rename the previous function from fib to fibAlg to call out our
purpose. From the algebraic relation of Fibonacci numbers (non-recursive), we make it
capable to recursively calculate the Fibonacci sequence with catamorphism. toF ib Zero
gives pair (1, 1), and toF ib (Succ (Succ (Succ Zero))) gives pair (3, 5). The following
helper function calculates the n-th Fibonacci number.

fibAt = fst ◦ toF ib ◦ fromInt

In fact, for any natural number like algebraic structure (A, c+ f) that satisfies Peano
axioms, we can use the catamorphism and the initial algebra (Nat, zero+ succ) to build
the recursive computation tool Lc+fM32. Let’s prove this fact. Observe the below diagram.

NatFNat Nat

NatFA A

[zero, succ]

NatF(h) h

[c, f ]

The catamorphism make this diagram commute.

h ◦ [zero, succ] = [c, f ] ◦NatF(h) Commute
⇒ h ◦ [zero, succ] = [c, f ] ◦ (id+ h) Polynomial functor
⇒ h ◦ [zero, succ] = [c ◦ id, f ◦ h] Absorption law for coproduct on the right
⇒ [h ◦ zero, h ◦ succ] = [c, f ◦ h] Fusion law of coproduct on the left

⇒

{
h ◦ zero = c

h ◦ succ = f ◦ h

⇒

{
h Zero = c

h (Succ n) = f(h(n))

⇒

{
h(0) = c

h(n+ 1) = f(h(n))

This is exactly the folding definition of natural numbers:

h = foldn(c, f)

It tells us, the catamorphism of natural numbers Lc+ fM = foldn(c, f). For Fibonacci
numbers, we can use

LfibAlgM = Lstart+ nextM = foldn(start, next)

to calculate. It seems we go back to the first chapter after a long journey. It’s
actually a spiral of understanding. In chapter 1, we obtained this result from induction
and abstraction; Here we reach to a higher level, by applying the abstract pattern to the
concrete problem, we obtain the same result.

32We simplified to symbol Lc+ fM because there are too many levels of brackets in L[c, f ]M.
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Algebraic data type

We can define more algebraic data types with initial F-algebra, like list and binary tree.

Example 4.5.9. The definition of list given in chapter 1 is as below.
data List A = Nil | Cons A (List A)

The corresponding non-recursive functor is:
data ListF A B = NilF | ConsF A B

Actually, List is the fixed point of functor ListF. To verify it, let B′ = ListF A B,
then recursively apply to itself infinite many times. Denote the result of it as Fix (ListFA).

Fix (ListF A) = ListF A(Fix (ListF A)) Definition of fixed point
= ListF A (ListF A (...)) Expand
= NilF | ConsF A (ListF A (...)) Definition of ListF A
= NilF | ConsF A (Fix (ListF A)) Reverse of fixed point

Compare with the definition of List A, we have:

List A = Fix (ListF A)

Fixing A in functor ListF, for any carrier object B, define arrow

ListF A B
f−−→ B

It forms F-algebra for list. We know that the initial algebra is (List, [nil, cons]), hence
the catamorphism is:

ListF A (List A) (List A)

ListF A B B

[nil, cons]

(ListF A)(h) h

[c, f ]

Given a non-recursive computation f , we can build from it through the catamorphism
that can be applied to recursive list.
cata :: (ListF a b → b) → (List a → b)
cata f Nil = f NilF
cata f (Cons x xs) = f (ConsF x (cata f xs))

For example, we define the algebraic rules to calculate the length of list:
len :: (List a) → Int
len = cata lenAlg where

lenAlg :: ListF a Int → Int
lenAlg NilF = 0
lenAlg (ConsF _ n) = n + 1

Hence len Zero gives 0, and len (Cons 1 (Cons 1 Zero)) gives 2. We can define a
helper function to convert the list in bracket symbol to List.
fromList :: [a] → List a
fromList [] = Nil
fromList (x:xs) = Cons x (fromList xs)
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We can chain them together, for example as len(fromList[1, 1, 2, 3, 5, 8]) to calculate
the length of a list.

Different algebraic rule f gives different computation on list. Below example sums up
the elements in a list:

sum :: (Num a) ⇒ (List a) → a
sum = cata sumAlg where

sumAlg :: (Num a) ⇒ ListF a a → a
sumAlg NilF = 0
sumAlg (ConsF x y) = x + y

Next we use list diagram to prove, the catamorphism on list is the folding computation
foldr essentially. List functor is a polynomial functor. When fix A, for carrier object B,
it sends to ListF A B = 1+A×B; for arrow h, it sends to (ListF A)(h) = id+(id×h).
As the diagram commutes, we have:

h ◦ [nil, cons] = [c, f ] ◦ (ListF A)(h) Commute
⇒ h ◦ [nil, cons] = [c, f ] ◦ (id+ (id× h)) Polynomial functor
⇒ h ◦ [nil, cons] = [c ◦ id, f ◦ (id× h)] Absorption law of coproduct on the right
⇒ [h ◦ nil, h ◦ cons] = [c, f ◦ (id× h)] Fusion law of coproduct on the left

⇒

{
h ◦ nil = c

h ◦ cons = f ◦ (id× h)

⇒

{
h Nil = c

h (Cons a x) = f(a, h(x))

This is exactly the definition of list folding:

h = foldr(c, f)

It tells us, the catamorphism of list F-algebra Lc+fM = foldr(c, f). Hence foldr(0, (a, b) 7→
b+ 1) computes the length of a list, and foldr(0,+) sums up the elements of a list.

Example 4.5.10. In chapter 2, we defined binary tree as below:
data Tree A = Nil | Br A (Tree A) (Tree A)

All the binary tree like structure can be described with F-algebra. First, we need
define the binary tree functor:
data TreeF A B = NilF | BrF A B B

B is the carrier object, the initial algebra is (Tree A, [nil, branch]). We leave the
proof of this fact as exercise of this section. Below diagram illustrates the catamorphism
of binary tree:

TreeF A (Tree A) (Tree A)

TreeF A B B

[nil, branch]

(TreeF A)(h) h

[c, f ]

The catamorphism of binary tree accepts an arrow of F-algebra TreeF A B
f−−→ B,

and returns a function of Tree A→ B:
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cata : (TreeF A B → B)→ (Tree A→ B)
cata f Nil = f NilF
cata f (Br k l r) = f (BrF k (cata f l) (cata f r))

Below example defines the algebra to sum the elements in the binary tree, then it
applies the catamorphism to recursively sum along any binary tree:

sum : Tree A→ A
sum = cata ◦ sumAlg

���


sumAlg : TreeF A B → B

sumAlg NilF = 0B

sumAlg (Br k l r) = k + l + r

Next, we prove the catamorphism is the essentially the folding operation foldt for
binary tree. Fix object A, the binary tree functor TreeF A B is a polynomial functor.
For a given carrier object B, it sends to TreeF A B = 1 + (A× B × B); for arrow h, it
sends to (TreeF A)(h) = id+ (idA × h× h).

Since the diagram commutes, we have:

h ◦ [nil, branch] = [c, f ] ◦ (TreeF A)(h) Commute
⇒ h ◦ [nil, branch] = [c, f ] ◦ (id+ (idA × h× h)) Polynomial functor
⇒ h ◦ [nil, branch] = [c ◦ id, f ◦ (idA × h× h)] Absorption law of coproduct on the right
⇒ [h ◦ nil, h ◦ branch] = [c, f ◦ (idA × h× h)] Fusion law of coproduct on the left

⇒

{
h ◦ nil = c

h ◦ branch = f ◦ (idA × h× h)

⇒

{
h Nil = c

h (Br k l r) = f(k, h(l), h(r))

It is exactly the definition of folding on binary tree h = foldt(c, f), where:{
foldt c h Nil = c

foldt c h (Br k l r) = h(k, foldt c h l, foldt c h r)

Therefore, the computation to sum all the elements in a binary tree can be represented
by folding as foldt(0B , (•+ •+ •)).

Exercise 4.9
1. For the binary tree functor TreeF A B, fix A, use the fixed point to prove that

(Tree A, [nil, branch]) is the initial algebra

4.6 Summary
In this chapter, we introduced the basic concepts in category theory, including category,
functor, natural transformation, product and coproduct, initial object and final object,
exponentials, and F-algebra. They can construct complex algebraic structures. Before
the end of this chapter, let us see how the generic folding operation is realized in the
language of category theory[50]:

foldr f z t = appEndo (foldMap (Endo ◦ f) t) z
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The reason why it is defined like this is abstraction, to make foldr not only limit
to list, but also expand to any foldable structures. It’s common to define the folding
operation for list as below:
foldr :: (a → b → b) → b → [a] → b
foldr f z [] = z
foldr f z (x:xs) = f x ( foldr f z xs)

Where f is a binary operation, we can denote it as ⊕, and explicitly denote z as the
identity element e. According to this definition, foldr (⊕) e [a, b, c] can be expanded as:

a⊕ (b⊕ (c⊕ e))

It reminds us monoid, foldr essentially repeats the binary operation on top of monoid.
In the monoid definition, besides the identity element and binary operation, we can add
an additional operation to ‘sum up’ a list of elements with the ⊕ and e symbols:

concatM : [M ]→M
concatM = foldr (⊕) e

It is named as mconcat in some programming environment. For any monoid M ,
function concat processes a list of elements of M , fold them together through the binary
operation and the identity element. For example, string is an instance of monoid, the
identity element is the empty string, and the binary operation is string concatenation.
Hence concatM ["Hello", "String" "Monoid"] gives the following result.

"Hello" ++ ("String" ++ ("Monoid" ++ "")) = "HelloStringMonoid"

We are able to sum up any monoid elements. Can we make it more generic? Consider
there is a list of elements that don’t belong to monoid. We can still sum them if there is
a way to convert them to monoid elements. List functor behaves exactly as we expect,
to convert a list of some types to a list of monoids. In other words, we can use the list
functor to ‘lift’ the arrow A

g−−→M to List(g) for sum.

[A] [M ] M

A M

fmap g

g
List List

concat

foldMap : (A→M)→ [A]→M
foldMap g = concatM ◦ fmap g

However, there is still limitation. For the binary operation f : A → B → B passed
to foldr, if B is not monoid, we can’t do folding. To solve it, consider the Curried f
of f : A → (B → B). When we treat the arrow B → B as object, they can form a
monoid. Where the identity element is the id arrow, and the binary operation is arrow
composition. To make it clear, we wrap the B → B arrow as a type (set) through a
functor:
newtype Endo B = Endo (B → B)

We name it as ‘endo’ functor as it point to B from B itself. Besides, we also define a
function of EndoB appEndo−−−−−−−→ B:

appEndo(Endo a) = a

Now we can declare Endo is a monoid, with id arrow as the identity element, and
function composition as the binary operation.
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instance Monoid Endo where
mempty = Endo id
Endo f `mappend` Endo g = Endo (f ◦ g)

Given any binary function f , we can use foldMap to fold on Endo monoid:

foldCompose : (A→ (B → B))→ [A]→ EndoB
foldCompose f = foldMap (Endo ◦ f)

When compute foldCompose f [a, b, c], it will be expanded as the following:

Endo(f a)⊕ (Endo(f b)⊕ (Endo(f c)⊕ Endo(id)))
= Endo(f a⊕ (f b⊕ (f c⊕ id))

Here is a more concrete example

foldCompose (+) [1, 2, 3]
⇒ foldMap (Endo ◦ (+)) [1, 2, 3]
⇒ concatM (fmap (Endo ◦ (+))) [1, 2, 3]
⇒ concatM (fmap Endo [(+1), (+2), (+3)])
⇒ concatM [Endo (+1), Endo (+2), Endo (+3)]
⇒ Endo ((+1) ◦ (+2) ◦ (+3))
⇒ Endo (+6)

As the last step, we need extract the result from the Endo object. For this example,
we use appEndo to extract (+6), then apply it to the initial value z passed to foldr:

foldr f z xs = appEndo (foldCompose f xs) z
= appEndo (foldMap (Endo ◦ f) xs) z

This is the complete definition of foldr in the language of categories. We can further
define a dedicated type Foldable, such that for any data structure, user can either realize
foldMap or foldr. See the appendix of this chapter for detail.

4.7 Further reading
We can not introduce the category theory in depth just in one chapter. We only scratch
the surface of the iceberg. The key idea is abstraction in category theory. The dual
concepts like initial and final objects, product and coproduct, can be further abstracted
to the higher level dual things, limits and colimits. We did not introduce the junctions,
nor Yoneda lemma. We did not explain about the increasingly popular monad concept in
programming. We hope this chapter could help the reader to find the door to the category
world. Here are some good materials for further reading: Mac Lane, who developed cat-
egory theory, wrote a classic textbook[51] targeted to working mathematicians. It’s a bit
hard for the new comers. An introduction to category theory by Simons[42] and Category
Theory - A Gentle Introduction by Smith are more suitable at the begining. For readers
with programming background, Category Theory for Programmers by Milewski[45] is a
good book with many example programs in Haskell, and their corresponding implemen-
tations in C++. However, this book limits to the set category on total functions (the
Hask category to be accurate). Algebra of programming by Bird[6] introduced category
framework for programming in depth.
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4.8 Appendix - example programs
Definition of functors:

class Functor f where
fmap :: (a → b) → f a → f b

The Maybe functor:

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)

Look up in binary search tree with Maybe functor, and convert the result to binary
format:

lookup Nil _ = Nothing
lookup (Node l k r) x | x < k = lookup l x

| x > k = lookup r x
| otherwise = Just k

lookupBin = (fmap binary) ◦ lookup

Definition of bifunctor:

class Bifunctor f where
bimap :: (a → c) → (b → d) → f a b → f c d

Definition of product and coproduct functors:

instance Bifunctor (,) where
bimap f g (x, y) = (f x, g y)

instance Bifunctor Either where
bimap f _ (Left a) = Left (f a)
bimap _ g (Right b) = Right (g b)

Definition of curry and its reverse uncurry:

curry :: ((a, b) → c) → a → b → c
curry f x y = f (x, y)

uncurry :: (a → b → c) → ((a, b) → c)
uncurry f (x, y) = f x y

Definition of monoid:

class Semigroup a ⇒ Monoid a where
mempty :: a

mappend :: a → a → a
mappend = (<>)

mconcat :: [a] → a
mconcat = foldr mappend mempty

Definition of foldable:
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newtype Endo a = Endo { appEndo :: a → a }

class Foldable t where
foldr :: (a → b → b) → b → t a → b
foldr f z t = appEndo (foldMap (Endo ◦ f) t) z

foldMap :: Monoid m ⇒ (a → m) → t a → m
foldMap f = foldr (mappend ◦ f) mempty



Chapter 5

Fusion

... mathematical knowledge ... is, in
fact, merely verbal knowledge. “3”
means “2+1”, and “4” means “3+1”.
Hence it follows (though the proof is
long) that “4” means the same as
“2+2”. Thus mathematical knowledge
ceases to be mysterious.

– Bertrand Russell

Penrose triangle

I still remember the mathematics class in high
school. My teacher often wrote down a complex for-
mula with many alphabetic symbols in the black-
board, then asked us to simplify it. Some student
stood up, volunteered to do it in front of the class.
Combining like terms, factorization, ... all means
were attempted. It liked a magic process often led
to unbelievable simple result. Of course sometimes
the guy was stuck or trapped in loops, and finally
saved by our teacher.

Chalk and blackboard, Such experience was un-
forgettable, just like happened yesterday. I was so
impressed to the mythical power of reasoning. I
always wanted to know more formulas, that could
help me to deduce the result.

The magic is that, we even needn’t care about the concrete meanings when doing the
deduction. It likes building bricks, from different parts, we finally build an interesting
toy. These formulas and theorems can also be combined together, and finally build an
interesting result. When meet a2 + 2ab + b2, then turn it into (a + b)2, just like mating
two bricks. We needn’t force ourselves to remind the geometric meanings for this formula
when deducing it.

We use two examples in this chapter to demonstrate how to do deduction in program-
ming. For every example, we’ll both explain the intuitive concrete meanings, and give
the purely formal deduction process. Just like the (a + b)2 case, on one hand, we can
explain it as the total area from two different squares and two equal rectangles; on the
other hand, we can also deduce the same result step by step.

161
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a2

b2

a ab

bab

a+ b

Figure 5.2: Geometric illustration for (a+ b)2 = a2 + 2ab+ b2

(a+ b)2 = (a+ b)(a+ b) Definition of square
= a(a+ b) + b(a+ b) Distribution law for multiplication
= a2 + ab+ ba+ b2 Distribution law again
= a2 + 2ab+ b2 Combined ab and ba

5.1 foldr/build fusion
The first example is the foldr/build fusion law. In 2015, a main stream programming
language Java adopted lambda expression and a set of functional tools in its 1.8 version.
However, some programmer soon found the chained function calls brought elegance and
expressiveness at the penalty of performance if using carelessly. One reason is the chained
functions may generate excessive intermediate results. While these intermediate results
are not necessary simple values, but the complete list, container, or collection of complex
structures. They are thrown away after consumed by the next functions. However, the
same level of new result will be generated step by step. Such pattern that produce,
one time consume, thrown away, then produce again, happens along the function chain
repeatedly, which causes computation overhead.

For example, we can define below function to examine if every element in a list satisfies
a given prediction[52].

all(p, xs) = and(map(p, xs))

Such that all(prime, [2, 3, 5, 7, 11, 13, 17, 19, ...]) tells if all numbers in the list are
primes. However, the performance of this realization is poor. Firstly, map(prime, xs)
generates a list of the same length as xs, every element is a Boolean value [True, True,
...], indicating the corresponding number is prime or not. Then the list of Boolean values
is passed to and function, examine if there exists False value. Finally, both xs and the
Boolean list are thrown away, only one Boolean value is returned as the result.

Below is an alternative definition. It can avoid generating the intermediate Boolean
list.

all(p, xs) = h(xs){
h([]) = True

h(x : xs) = p(x) ∧ h(xs)

Although this realization does not generate intermediate result, it is neither intuitive
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nor elegant compare to and(map(p, xs). Are there any way that has the advantage of
both methods? We found some transformations satisfy such requirement, for example:

map sqrt (map abs xs) = map (sqrt ◦ abs) xs

First generate a list of absolute values, then evaluate square root for every number. It
is equivalent to take absolute value first, then evaluate the square root for every number
in that list. Hence we have the following rule:

map f (map g xs) = map (f ◦ g) xs (5.1)

However, there are too many rules. We can’t list them all. It’s not practical to apply
them on a complex program. Gill, Launchbury, and Peyton Jones developed a method
in 1993, starting from the basic build and folding operation, they found the pattern to
optimize the chained function.

5.1.1 Folding from right for list
We defined the fold from right operation for list in chapter 1 as below:

foldr ⊕ z [] = z
foldr ⊕ z (x : xs) = x ⊕ (foldr ⊕ z xs)

It can be expanded as:

foldr ⊕ z [x1, x2, ..., xn] = x1 ⊕ (x2 ⊕ (...(xn ⊕ z))...) (5.2)

Many list operations can be realized by folding, for example:

1. Sum:

sum = foldr + 0

2. The and function, that applies logic and for all Boolean values in a list:

and = foldr ∧ True

This is because:

and [x1, x2, ..., xn] = x1 ∧ (x2 ∧ (...(xn ∧ True))...)

3. Test if a given element belongs to a list:

elem x xs = foldr (a b 7→ (a = x) ∨ b) False xs

4. Map:

map f xs = foldr (x ys 7→ f(x) : ys) [] xs
= foldr ((:) ◦ f) [] xs

5. Filter the elements with a given prediction:

filter f xs = foldr (x ys 7→

{
f(x) : x : ys

otherwise : ys
) [] xs
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6. Concatenate two lists:

xs++ ys = foldr (:) ys xs (5.3)

This is because:

[x1, x2, ..., xn] ++ ys = x1 : (x2 : (...(xn : ys))...)

7. Concatenate multiple lists:

concat xss = foldr ++ [] xss

Actually all list operations can be realized by folding (We proved it in the F-algebra
section in previous chapter), if we can simplify folding, we then can simplify all list
operations.

5.1.2 foldr/build fusion law
Let’s consider, what if fold from right by the cons operation (:) starting from an empty
list []?

foldr (:) [] [x1, x2, ..., xn] = x1 : (x2 : (...(xn : []))...) (5.4)

We end up with the list itself. You may remind the fixed point introduced in previous
chapter, we’ll return to this topic later. In other words, if we have an operation g, from
a starting value, for example [], and a binary operation, from example “:”, it generates a
list. We define such list construction process as build:

build(g) = g((:), []) (5.5)

Next, if we fold the list with another start value z and binary operation f , the result
is equivalent to call g by replacing [] with z, and replacing “(:)” with f .

foldrfoldrfoldr(f, z, buildbuildbuild(g)) = g(f, z) (5.6)

Written in pointless format (without parentheses and named arguments) is:

foldrfoldrfoldr f z (buildbuildbuild g) = g f z (5.7)

We named this formula foldr/build fusion law.
Let us start from an example. Consider how to sum up all the integers from a to b,

which is sum([a, a + 1, ..., b − 1, b]). First, we need generate all the integers from a to b.
Below definition enumerates a, a+ 1, a+ 2, ..., b− 1, b.

range(a, b) =

{
a > b : []

otherwise : a : range(a+ 1, b)

Such that range(1, 5) builds the list [1, 2, 3, 4, 5]. Sum up the enumerated list gives
the answer.

sum(range(a, b))

Next, we extract the start value [] and the binary operation (:) out as parameters:
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range′(a, b,⊕, z) =

{
a > b : z

otherwise : a⊕ range′(a+ 1, b,⊕, z)

We can further Curry the last two arguments of range′.

range′ a b = f c 7→

{
a > b : c

otherwise : f a (range′(a+ 1) b f c)

Now we can redefine range with range′ and build:

range(a, b) = build(range′(a, b))

Next, we simplify the sum with the fusion law.

sum(range(a, b)) = sum(build(range′(a, b))) substitute
= foldrfoldrfoldr (+) 0 (buildbuildbuild (range′ a b)) define sum with foldr
= range′ a b (+) 0 fusion law

It gives the simplified result, which avoid generating the intermediate list, hence op-
timize the algorithm. Let’s see how this result expands:

range′ a b (+) 0 =

{
a > b : 0

otherwise : a+ range′(a+ 1, b, (+), 0)

5.1.3 build forms for list
To leverage fusion law conveniently, we can rewrite the common functions that generate
list in the form of build...foldr. Such that when composite with folding, we can simplify
foldrfoldrfoldr...(buildbuildbuild...foldr) with fusion law.

1. The simplest one generates an empty list.

[] = build (f z 7→ z)

We can substitute it with the definition (5.5) of build to prove this result.

Proof.
build (f z 7→ z) = (f z 7→ z) (:) [] definition of build

= (:) [] 7→ [] β − reduction, see chapter 2
= []

2. The next one is cons operation, which links an element to a list.

x : xs = build (f z 7→ f x (foldr f z xs))

Let us verify it.

Proof.
build (f z 7→ f x (foldr f z xs))

= (f z 7→ f x (foldr f z xs)) (:) [] definition of build
= x : (foldr (:) [] xs) β − reduction
= x : xs By (5.4), the fixed point of folding
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3. List concatenation:

xs++ ys = build (f z 7→ foldr f (foldr f z ys) xs)

Proof.
build (f z 7→ foldr f (foldr f z ys)xs)

= (f z 7→ foldr f (foldr f z ys) xs) (:) [] Definition of build
= foldr (:) (foldr (:) [] ys) xs β − reduction
= foldr (:) ys xs Fixed point for inner part
= xs++ ys By (5.3), list concatenation

For the rest examples, we only give the final result and leave the proof as exercises.

4. Concatenate multiple lists.

concat xss = build (f z 7→ foldr (xs x 7→ foldr f xxs) xss)

5. Map.

map f xs = build (⊕ z 7→ foldr (y ys 7→ (f y)⊕ ys) z xs)

6. Filter.

filter f xs = build (⊕ z 7→ foldr (x xs′ 7→

{
f(x) : x⊕ xs′

otherwise : xs′
) z xs)

7. Generate an infinite long list of the same element.

repeat x = build (⊕ z 7→ let r = x⊕ r in r)

5.1.4 Reduction with the fusion law
Empowered by the fusion law, we are ready to simplify varies of computation. The first
example is all(p, xs) = and(map(p, xs)), which was mentioned at the begining of this
chapter.

Example 5.1.1. First, we express and in folding form, then turn map into its build form,
and apply fusion law to do the reduction.

all(p, xs) = and(map(p, xs)) definition
= foldr ∧ True map(p, xs) folding form of and
= foldrfoldrfoldr ∧ True buildbuildbuild (⊕ z 7→

foldr (x ys 7→ p(x)⊕ ys) z xs) build form of map
= (⊕ z 7→ foldr (x ys 7→ p(x)⊕ ys) z xs) ∧ True fusion law
= foldr (x ys 7→ p(x) ∧ ys) True xs β − reduction

We can define a helper function first, which applies a given function f to the first
element of a pair.

(first f) x y = f(x) y

Then we can further simplify all to:

all p = foldr (∧) ◦ (first p) True
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Example 5.1.2. The second example is to concatenate multiple words together and
interpolate them with spaces, such that they form a sentence. This text manipulation
process is often called join. For illustration purpose, we add an additional space at the
end of the sentence. A typical definition is as below:

join(ws) = concat(map(w 7→ w ++ [′ ′], ws))

This definition is straightforward. It first uses map to append a space to every word,
and output a new list of words; then concatenates the list to a string. However, its
performance is poor. Appending at the end of a word is an expensive operation. It need
move from the head to the tail of every word first, then do the string concatenation. How
many words there are, how long the new list will be. This intermediate words list is
thrown away finally. Let’s optimize it with the fusion law.

join(ws)
{definition}

= concat(map(w 7→ w ++ [′ ′], ws))
{build form of concat}

= build (f z 7→
foldr (x y 7→ foldr f y x) z map(w 7→ w ++ [′ ′], ws))
{build form of map}

= build (f z 7→
foldrfoldrfoldr (x y 7→ foldr f y x) z (buildbuildbuild (f ′ z′ 7→
foldr (w b 7→ f ′ (w 7→ w ++ [′ ′]) b) z′ ws)))

{fusion law}
= build (f z 7→

foldr (w b 7→ (x y 7→ foldr f y x) (w ++ [′ ′]) b) z ws)
{β − reduction x, y}

= build (f z 7→
foldr (w b 7→ foldr f b (w ++ [′ ′])) z ws)
{build form of ++}

= build (f z 7→
foldr (w b 7→
foldrfoldrfoldr f b (buildbuildbuild (f ′ z′ 7→
foldr f ′ (foldr f ′ z′ [′ ′]) w))) z ws)

{fusion law}
= build (f z 7→

foldr (w b 7→
foldr (foldr f b [′ ′]) w) z ws)

{substitute (:) and [] in the definition of build}
= foldr (w b 7→ foldr (:) (foldr (:) b [′ ′])(foldr (:) b [′ ′])(foldr (:) b [′ ′]) w) [] ws
{evaluate the bold part}

= foldr (w b 7→ foldr (:) (′ ′ : b) w) [] ws

The final reduced result is:

join(ws) = foldr (w b 7→ foldr (:) (′ ′ : b) w) [] ws

We can further expand the folding operation to obtain a definition with both good
readability and performance.{

join [] = []

join (w : ws) = h w

where :

{
h [] =′ ′ : join ws

h (x : xs) = x : h xs
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Because concat ◦map(f) is very common, many programming environments provide
it in the optimized way as we deduced1.

Although the second example demonstrates the power of fusion law, it also exposes
a problem. The reduction process is complex and error prone, with plenty of repeated
similar steps. It is exactly a typical case that machine performs better than human beings.
Some programming environments have the fusion law built in the compiler[52]. What
we need is to define the common list operations in the build...foldr form, then the rest
boring work can be handled by machine. The compiler will help us reducing to optimized
program, that avoid thrown away intermediate results and redundant recursions2. As
time goes on, more and more compilers will support this optimization tool.

5.1.5 Type constraint
Whenever we develop an abstraction tool, we should consider its application scope, un-
derstand when it will be invalid. For the fusion law, consider the below contradict results:

foldrfoldrfoldr f z (buildbuildbuild (c n 7→ [0]))
= (c n 7→ [0]) f z fusion law
= [0] β − reduction

On the other hand:

foldr f z (build (c n 7→ [0]))
= foldr f z ((c n 7→ [0]) (:) []) definition of build
= foldr f z [0] β − reduction
= f(0, z) expand foldr

Obviously that f(0, z) is not identical to [0], even their types are not same3. The
reason that leads to this contradiction is because (c n 7→ [0]) is not a function that builds
result of c and n. It tells us, the fusion law foldr f z (build g) = g f z, has type constraint
for g. Its first argument can be c or f . Actually, it accepts a polymorphic binary operation
∀A.∀B. A×B → B; The second argument is the start value of a polymorphic type B, the
result type is also B. Write the binary operation in Curried form, we obtain the following
type constraint for g.

g : ∀A.(∀B.(A→ B → B)→ B → B)

In the above example that causes contradict results, the type is ∀A.(∀B.(A → B →
B) → B → [Int]). It does not satisfy the constraint. The corresponding type constraint
for build is:

build : ∀A.(∀B.(A→ B → B)→ B → B)→ List A

Because there are two polymorphic types A and B, it is called rank-2 type polymor-
phic.

5.1.6 Fusion law in category theory
foldr/build fusion law can be deduced and extended from the category theory. Foldr/build
is one of the fusion laws in category theory. They are named as shortcut fusion nowadays,

1For example, concatMap in Haskell, and flatMap in Java and Scala.
2Haskell standard library for example, provides most list functions in build...foldr form.
3Unless the extreme case that f = (:), z = [].
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which play important roles in compiler and program optimization. We can’t cover all of
them in a chapter. Readers can refer to [54] to understand shortcut fusion theory and its
practice in depth.

We introduced F-algebra, initial algebra, and catamorphism in previous chapter. Be-
cause initial algebra is the initial object, it has unique arrow to every other algebra, as
shown in below diagram.

FI I

FA A

i

FLaM LaM
a

The arrow from the initial algebra (I, i) to algebra (A, a) can be defined with cata-
morphism LaM. If there exists another F-algebra (B, b), and there is arrow from A to B
as A h−−→ B, then we can also draw (B, b) at the bottom:

FI I

FA A

FB B

i

FLaM LaM
a

b

F(h) h

Since (I, i) is the initial algebra, it must have the unique arrow to (B, b). Hence there
must be arrow from I to B, which can be represented as catamorphism LbM, as shown in
below diagram.

FI I

FA A LbM
FB B

i

FLaM LaM
a

b

F(h) h

From this diagram we can find that, if and only if there is h, such that the square at
the bottom commutes, then the path from I through A to B and the path directly from
I to B also commutes. It is called the fusion law of initial algebra, denote as:

A
h−−→ B ⇒ h ◦ LaM = LbM ⇐⇒ h ◦ a = b ◦ F(h) (5.8)

What does the fusion law for initial algebra mean? In previous chapter, we explained
that catamorphism can turn the non-recursive computation to folding on recursive struc-
tures. For example, when the functor F is ListFA, where A is a given object, the arrow
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a = f + z (coproduct of f and z), the initial arrow is i = (:) + [], and the catamorphism
is LaM = foldr(f, z). If denote b = c+ n, then the fusion law can be written as:

h ◦ foldr(f, z) = foldr(c, n)

It means the transformation after folding can be simplified to only folding. Takano and
Meijer in 1995 further abstracted the catamorphism LaM to build some abstract algebra
structure g a from a, such that the fusion law can be extended to[55]:

A
h−−→ B ⇒ h ◦ g a = g b (5.9)

This extended fusion law is called acid rain law4. On the other hand, from the initial

algebra I to A, there exits arrow I
LaM
−−→ A, hence substitute h on the left hand of acid

rain law with LaM, substitute a with i, and substitute b with a, we obtain:

I
LaM
−−→ A ⇒ LaM ◦ g i = g a (5.10)

For the list example, the catamorphism LaM is foldr(f, z); the initial algebra i for list
is (:) + []; define build(g) = g (:) [], and substitute it into the left side of acid rain law, we
obtain the foldr/build fusion law:

LaM ◦ g i = g a acid rain law
⇒ foldr f z (g i) = g a foldr is catamorphism for list
⇒ foldr f z (g (:) []) = g a the initial algebra i for list is (:), []
⇒ foldr f z (g (:) []) = g f z substitute a with f, z
⇒ foldrfoldrfoldr f z (buildbuildbuild g) = g f z reverse of build

Hence we proved foldr/build fusion law for list with category theory[54].

Exercise 5.1
1. Verify that folding from left can also be defined with foldr:

foldl f z xs = foldr (b g a 7→ g (f a b)) id xs z

2. Prove the below build...foldr forms hold:
concat xss = build (f z 7→ foldr (xs x 7→ foldr f x xs) z xss)
map f xs = build (⊕ z 7→ foldr (y ys 7→ (f y)⊕ ys) z xs)

filter f xs = build (⊕ z 7→ foldr (x xs′ 7→

{
f(x) : x⊕ xs′

otherwise : xs′
) z xs)

repeat x = build (⊕ z 7→ let r = x⊕ r in r)

3. Simplify the quick sort algorithm.{
qsort [] = []

qsort (x : xs) = qsort [a|a ∈ xs, a ≤ x] ++ [x] ++ qsort [a|a ∈ xs, x < a]

Hint: turn the ZF-expression5 into filter.
4. Verify the type constraint of fusion law with category theory. Hint: consider the

type of the catamorphism.
4Because fusion law can help to eliminate intermediate results, it was named as deforestation before.
5Known as Zermelo-Fraenkel expression in set theory. In the form {f(x)|x ∈ X, p(x), q(x), ...} to build

set. We’ll meet it again in the next chapter about infinity and set theory.
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5.2 Make a Century
Our second example is from Bird’s Pearls of Functional Algorithm Design ([53], chapter
6). Knuth leaves an exercise in his The Art of Computer Programming ([56], Vol 4).
Write down 1 2 3 4 5 6 7 8 9 in a row, only allow to insert + and × symbol between these
numbers, parentheses are not allowed. How to make the final calculation result be 100?

For instance:

12 + 34 + 5× 6 + 7 + 8 + 9 = 100

It looks like a mathematics puzzle for primary school students. It is also a good
programming exercise if requests to find all the possible solutions. The straightforward
way is to brute-force exhaustive search with machine. For every position between two
digits, there are 3 possible options: (1) insert nothing; (2) insert +; or (3) insert ×. Since
there are 8 spaces among 9 digits, there are 38 = 6561 possible options in total. It’s a
piece of cake for modern computer to calculate these 6561 results, and figure out which
are 100.

5.2.1 Exhaustive search
Let’s first model the expression consist of digits, +, and ×. Consider the example:

12 + 34 + 5× 6 + 7 + 8 + 9

As multiplication is prior to addition, we can treat it as a list of sub-expressions
separated by +. Hence the above example is identical to:

sum[12, 34, 5× 6, 7, 8, 9]

In summary, we define an expression as one or multiple sub-expressions separated by
+ in the form of t1 + t2 + ...+ tn, or in the list form of expr = [t1, t2, ..., tn]. The formal
definition is:
type Expr = [Term]

For every sub-expression, we treat it as one or multiple factors separated by ×. For
example, 5× 6 = product[5, 6]. This definition is also applicable for a single number, like
34. It can be treated as 34 = product[34]. Hence we can define sub-expression as the
product of factors f1 × f2 × ...× fm, or in the list form: term = [f1, f2, ..., fm]:
type Term = [Factor]

Every factor is consist of digits. For example, 34 has two digits, while 5 has only 1.
In summary factor = [d1, d2, ..., dk].
type Factor = [Int]

It’s a folding process to evaluate the decimal value from a list of digits. For example,
[1, 2, 3]⇒ (((1× 10) + 2)× 10) + 3. We can define it as a function.

dec = foldl (n d 7→ n× 10 + d) 0

The exhaustive search need examine every possible expression evaluates to 100 or not.
We need define a function to evaluate a given expression. From the expression definition,
we need define the process to recursively evaluate every sub-expression (term), and sum
them up; further, we also need recursively evaluate every factor, and multiply them up;
in the end, we call dec function to evaluate each factor.
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eval = sum ◦map (product ◦ (map dec))

Obviously, this definition can be optimized with the fusion law. We leave the detailed
deduction as the exercise, and directly give the result here:

eval = foldr (t ts 7→ (foldr ((×) ◦ fork(dec, id)) 1 t) + ts) 0

Where fork(f, g) x = (f x, g x). It applies two functions to a given variable separately,
and forms a pair. From this result, we can write a definition with both good performance
and readability: {

eval [] = 0

eval(t : ts) = product (map dec t) + eval(ts)

According to this definition, the result is 0 if the expression is empty; otherwise, we
take the first sub-expression, evaluate all its factors, and multiply them together. Then
add it to the result of the rest sub-expressions. We repeatedly call eval for all possible
expressions, and filter the candidates unless they evaluate to 100.

filter (e 7→ eval(e) == 100) es

Where es is the set contains all the possible expressions of 1 to 9. How to generate
this set? Starting from empty set, every time, we pick a number from 1 to 9 to expand the
expressions. From the empty set and a given number d, we can only build one expression
[[[d]]]. The inner most is the singleton factor consist of the only digit d, hence fact = [d];
then there is the sub-expression consist of this factor term = [fact] = [[d]]; this only
sub-expression forms the final expression [term] = [[fact]] = [[[d]]]. We define this edge
expression building process as:

expr(d) = [[[d]]]

For the common cases, we start from right, repeatedly pick numbers 9, 8, 7, ... to
expand the expression. On top of a set of expressions [e1, e2, ..., en], how to expand all
possible expressions from the next digit d? We’ve mentioned that there are 3 options
between two numbers: 1) insert nothing; 2) insert +; 3) insert ×. Let’s see what does
each option mean for every expression ei in the set. Write ei as the sum of sub-expressions
ei = t1 + t2 + ..., where the first sub-expression t1 can be further written as product of
factors t1 = f1 × f2 × ....

1. Insert nothing means prepend digit d to the first factor in the first sub-expression
in ei. Hence d : f1 form a new factor. For example, let ei be 8 + 9, and d be 7.
Writing 7 before 8+ 9 without inserting any symbol, gives a new expression 78+ 9;

2. Insert × means to use d form a new factor [d], then prepend it before the first sub-
expression in ei. Hence [d] : t1 gives a new sub-expression. For the same example
of 8 + 9, we write 7 before it, and insert a × symbol between 7 and 8. It gives the
new expression 7× 8 + 9;

3. Insert + means to use d form a new sub-expression [[d]], then prepend it to ei to
form a new expression [[d]] : ei. For the same example of 8 + 9, we write 7 before
it, and insert a + between 7 and 8. It gives the new expression 7 + 8 + 9.

Below definition summarizes these three options:
add d ((ds:fs):ts) = [((d:ds):fs):ts,

([d]:ds:fs):ts,
[[d]]:(ds:fs):ts]
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Where ei is written in the form of (ds : fs) : ts. The first sub-expression in ei is
ds : fs, and the first factor in the first sub-expression is ds. From every expression,
we can expand 3 new ones. Given the expression list [e1, e2, ..., en], we can expand for
everyone, then concatenate the results together. It is exactly the concatMap function we
mentioned in the previous section.{

extend d [] = [expr(d)]

extend d es = concatMap (add d) es

Therefore, we obtain the complete definition of the exhaustive search method.

filter (e 7→ eval(e) == 100) (foldr extend [1..9]) (5.11)

5.2.2 Improvement
How can we improve the exhaustive search? Observe the right to left expand process. We
write down 9 first, then expand 3 new expressions with 8. They are: 89, 8× 9 = 72, and
8 + 9 = 17. In the next step when expand with 7, expression 789 exceeds 100 obviously.
We can drop it immediately. Any new expressions expanded to the left of 789 won’t be
100. We can safe to drop them all to avoid unnecessary computation. Similarly, 7 × 89
exceeds 100, hence can be dropped to avoid further expansion on the left. Only 7 + 89 is
the possible expression. Next we expand 78 × 9, it is bigger than 100, hence is dropped
for further expansion...

In summary, we can evaluate the expression during the expanding process. Whenever
exceeds 100, we immediately drop it to avoid further expansion. The whole process looks
like a tree growing. When the expression in a branch exceeds 100, we cut that branch off.

9

89 8× 9 8 + 9

789 7× 89 7 + 89

78× 9 7× 8× 9 7 + 8× 9

78 + 9 7× 8 + 9 7 + 8 + 9

Figure 5.3: The process to expand expressions looks like a tree growing.

In order to evaluate the expression during expansion easily, we separate the value of
the expression into 3 parts: the value of the first factor in the first sub-expression f ;
the product of the rest factors in the first sub-expression vfs; and the sum of the rest
sub-expressions vts. The overall value of the expression can be calculated out of them as
f × vfs + vts.

When expand a new digit d on the left, corresponding to the 3 options, the expression
and value are updated as the following:

1. Insert nothing, prepend d before the first factor as its most significant digit. The
expression value is (d× 10n+1+ f)× vfs+ vts, where n is the number of digits of f .
The 3 parts of the value update to: f ′ = d× 10n+1 + f , vfs and vts are unchanged;

2. Insert ×, put d as the first factor in the first sub-expression. The expression value
is d×f ×vfs+vts. The 3 parts of the value update to: f ′ = d, vfs′ = f ×vfs, while
vts is unchanged;
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3. Insert +, use d as the new first sub-expression. The expression value is d+f×vfs+
vts. The 3 parts of the value update to: f ′ = d, vfs′ = 1, vts′ = f × vfs + vts.

To calculate 10n+1 in the first option easily, we can record the exponent as the fourth
part of the expression value. As such, the value is represented as a 4-tuple (e, f, vfs, vts).
The function to calculate the value is defined as:

value(e, f, vfs, vts) = f × vfs + vts (5.12)

When expand expression, we also update the 4-tuple at the same time:

add d (((ds : fs) : ts), (e, f, vfs, vts)) =
[(((d : ds) : fs) : ts, (10× e, d× e+ f, vfs, vts)),
(([d] : ds : fs) : ts, (10, d, f × vfs, vts)),

([[d]] : (ds : fs) : ts, (10, d, 1, f × vfs + vts))]

(5.13)

For every expression and 4-tuple, we call value function to calculate the value, drop
it if exceeds 100. Then concatenate the candidate expressions and the 4-tuples to a list.
According to this idea, we re-define the previous extend function as below:{

expand d [] = [(expr(d), (10, d, 1, 0))]

expand d evs = concatMap ((filter ((≤ 100) ◦ value ◦ snd)) ◦ (add d)) evs
(5.14)

We are ready to fold on expand, generate all candidate expressions and 4-tuples that
do not exceed 100. Finally, we calculate the result from the 4-tuples, and leave only those
equal to 100.

map fst ◦ filter ((= 100) ◦ value ◦ snd) (foldr expand [] [1, 2, ..., 9]) (5.15)

The complete program based on this definition is given in the appendix of this chapter.
There are total 7 expressions evaluate to 100.

1 : 1× 2× 3 + 4 + 5 + 6 + 7 + 8× 9
2 : 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8× 9
3 : 1× 2× 3× 4 + 5 + 6 + 7× 8 + 9
4 : 12 + 3× 4 + 5 + 6 + 7× 8 + 9
5 : 1 + 2× 3 + 4 + 5 + 67 + 8 + 9
6 : 1× 2 + 34 + 5 + 6× 7 + 8 + 9
7 : 12 + 34 + 5× 6 + 7 + 8 + 9

Exercise 5.2
1. Use the fusion law to optimize the expression evaluation function:

eval = sum ◦map (product ◦ (map dec))

2. How to expand all expressions from left?
3. The following definition converts expression to string:

str = (join “+”) ◦ (map ((join “× ”) ◦ (map (show ◦ dec))))

Where show converts number to string. Function join(c, s) concatenates multiple
strings s with delimiter c. For example: join(“#”, [“abc”, “def”]) =“abc#def”.
Use the fusion law to optimize str.
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5.3 Further reading
Program deduction is a special mathematical deduction. With this tool, we can start from
intuitive, raw, and unoptimized definition, through a formalized methods and theorems,
step by step convert it to elegant and optimized result. Bird gives many such examples
in his Pearls of Functional Algorithm Design[53].

The correctness of program deduction is based on mathematics. Instead of relying
on human intuition, we need a dedicated theory, that can formalize varies of programs
into strict mathematical form. The foldr/build fusion law is such an example. In the
1993 paper[52], people developed a tool to simplify program systematically. As the cat-
egory theory being widely adopted in programming, a series of fusion laws have been
developed[54], and applied to program deduction and optimization.

5.4 Appendix - example source code
The build and concatMap definition in Haskell.
build :: forall a. (forall b. (a −> b −> b) −> b −> b) −> [a]
build g = g (:) []

concatMap f xs = build (\c n −> foldr (\x b −> foldr c b (f x)) n xs)

Exhaustive search solution for ‘Making a Century’ puzzle:
type Expr = [Term] −− | T1 + T2 + ... Tn
type Term = [Factor] −− | F1 * F2 * ... Fm
type Factor = [Int] −− | d1d2...dk

dec :: Factor −> Int
dec = foldl (\n d −> n * 10 + d) 0

expr d = [[[d]]] −− | single digit expr

eval [] = 0
eval (t:ts) = product (map dec t) + eval ts

extend :: Int −> [Expr] −> [Expr]
extend d [] = [expr d]
extend d es = concatMap (add d) es where

add :: Int −> Expr −> [Expr]
add d ((ds:fs):ts) = [((d:ds):fs):ts,

([d]:ds:fs):ts,
[[d]]:(ds:fs):ts]

sol = filter ((==100) . eval) . foldr extend []

The improved exhaustive search solution:
value (_, f, fs, ts) = f * fs + ts

expand d [] = [(expr d, (10, d, 1, 0))]
expand d evs = concatMap ((filter ((<= 100) . value . snd)) . (add d)) evs
where

add d (((ds:fs):ts), (e, f, vfs, vts)) =
[(((d:ds):fs):ts, (10 * e, d * e + f, vfs, vts)),
(([d]:ds:fs):ts, (10, d, f * vfs, vts)),
([[d]]:(ds:fs):ts, (10, d, 1, f * vfs + vts))]

sol = map fst . filter ((==100) . value . snd) . foldr expand []
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Chapter 6

Infinity

I see it, but I don’t believe it.

—— Georg Cantor, in a letter to
Dedekind in 1877

Escher, Circle limit IV (Heaven and Hell),
1960

Long time ago, our ancestor looked up
at the starry sky, facing the vast galaxy,
and asked, how big is the world we live
in? As the intelligence being, our mind
exceeds ourselves, exceeds our planet and
universe. We keep thinking about the con-
cept of infinity. People first abstracted
numbers from concrete things. From three
goats hunted, three fruits collected, three
jars made, abstracted number three to rep-
resent any three things. At early time,
the numbers were not big. They were
enough to satisfy everyday life, hunting,
and work. As civilization evolved, peo-
ple started trading things. Varies number-
ing systems were developed to support the
bigger and bigger numbers. At some time
point, we came up with the question: what
is the biggest number? There were two dif-
ferent opinions to it. Some people didn’t
think the question make sense. It’s already big enough for numbers like thousands or
millions in ancient time in everyday work and life. We needn’t trouble ourselves with big
numbers that would never being used. It’s safe to consider for example, the number of
sand-grains in the world is infinity. In ancient Greece, people thought ten thousands was a
very big number, and named it ‘murias’. It finally changed to ‘myriad’, means infinity[57].
In Buddhism, people also use ‘the sand in Ganges River’ to indicate the numbers that
are too large to count. In the Mahayana Buddhist classic work The Diamond Sutra, it
said: “If a virtuous man or woman filled a number of universes, as great as the number of
sand-grains in all these rivers, with the seven treasures, and gave them all away in alms
(dana), would his or her merit be great?” Other people had different opinion. Ancient
Greek mathematician, Archimedes believed, even the sands-grains that filled the whole
universe, can be represented with a definite number. In his book, The Sand-Reckoner,
Archimedes said:

177
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THERE are some, King Gelon, who think that the number of the sand
is infinite in multitude; and I mean by the sand not only that which exists
about Syracuse and the rest of Sicily but also that which is found in every
region whether inhabited or uninhabited. Again there are some who, without
regarding it as infinite, yet think that no number has been named which is
great enough to exceed its multitude. And it is clear that they who hold this
view, if they imagined a mass made up of sand in other respects as large as
the mass of the Earth, including in it all the seas and the hollows of the Earth
filled up to a height equal to that of the highest of the mountains, would be
many times further still from recognising that any number could be expressed
which exceeded the multitude of the sand so taken. But I will try to show you
by means of geometrical proofs, which you will be able to follow, that, of the
numbers named by me and given in the work which I sent to Zeuxippus, some
exceed not only the number of the mass of sand equal in magnitude to the Earth
filled up in the way described, but also that of a mass equal in magnitude to
the universe.

The cover of The Sand-Recokoner. Archimedes Thoughtful by Domenico Fetti (1620)

Archimedes thought it only need 1063 sand-grains to fill the universe. The universe
he meant was the sphere of the fixed star, which was about twenty thousands times the
radius of the Earth. We know the observable universe is about 46.5 billion light-years
nowadays, consist of around 3×1074 atoms1. Archimedes was definitely genius in ancient
Greek time, he demonstrated how to quantify the ‘infinite big’ things. There are many
words in different languages serve as the unit for big numbers. The following table list
these words in Chinese, they increase for every 104([58], pp31).

1Also said to have 1080 to 1087 elementary particles.
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京 1016 载 1044

垓(gāi) 1020 极 1048

秭(zǐ) 1024 恒河沙 1052

穰(ráng) 1028 阿僧祗(zhī) 1056

沟 1032 那由他 1060

涧 1036 不可思议 1064

正 1040 无量大数 1068

Many such words come from Buddhism, like ‘恒河沙’, means the sand-grain in Ganges
River. It has 52 zeros after 1. Below table lists the unit words in English. Starting from
one, there is a unit for every 1000 magnitude. Compare to 10000 magnitude step in
Chinese, we can see the culture difference.

thousand 103 quattuordecillion 1045 octovigintillion 1087

million 106 quindecillion 1048 novemvigintillion 1090

billion 109 sexdecillion 1051 trigintillion 1093

trillion 1012 septdecillion 1054 untrigintillion 1096

quadrillion 1015 octodecillion 1057 duotrigintillion 1099

quintillion 1018 novemdecillion 1060 googol 10100

sexillion 1021 vigintillion 1063

septillion 1024 unvigintillion 1066

octillion 1027 duovigintillion 1069

noniliion 1030 trevigintillion 1072

decillion 1033 quattuorvigintillion 1075

undecillion 1036 quinvigintillion 1078

duodecillion 1039 sexvigintillion 1081

tredecillion 1042 seprvigintillion 1084

The last unit, googol, was coined in 1920 by 9-year-old Milton Sirotta, nephew of U.S.
mathematician Edward Kasner. It is written as the digit 1 followed by one hundred zeros.
The internet company Google’s name came from this word[59].

6.1 The infinity concept
Whether there exists infinity that beyond all concrete numbers? It is not only a mathe-
matical problem, but also a philosophical problem. Infinity also leads to the concept of
infinitesimal (infinitely small). Ancient Greek philosopher, Zeno of Elea thought of a set
of problems about infinity. Some of them are preserved in Aristotle’s Physics. Among
them, four paradoxes are most famous.

The first one is the most popular, named Achilles and the tortoise paradox. Achilles
In Greek mythology, was a hero of the Trojan War He is the greatest of all the Greek
warriors, and is the central character of Homer’s Iliad. In this paradox, Achilles is in
a footrace with the tortoise. Achilles allows the tortoise ahead start, for example 100
meters. Supposing that each racer starts running at some constant speed, one faster than
the other. After some finite time, Achilles will have run 100 meters, bringing him to the
tortoise’s starting point. During this time, the tortoise has run a much shorter distance,
say 2 meters. It will then take Achilles some further time to run that distance, by which
time the tortoise will have advanced farther; and then more time still to reach this third
point, while the tortoise moves ahead. Thus, whenever Achilles arrives somewhere the
tortoise has been, he still has some distance to go before he can even reach the tortoise. as
shown in figure 6.3. Although it contradicts our common sense in real life, the argument
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Figure 6.3: Achilles and the tortoise

is so convincing. This paradox attracted many great minds for thousands of years. Lewis
Carrol, and Douglas Hofstadter even took Achilles and the tortoise as figures in their
literary works.

Figure 6.4: Dichotomy paradox

The second one is called Dichotomy paradox. Atalanta is a character in Greek mythol-
ogy, a virgin huntress. Suppose Atalanta wishes to walk to the end of a path. Before she
can get there, she must get halfway there. Before she can get halfway there, she must get
a quarter of the way there. Before traveling a quarter, she must travel one-eighth; before
an eighth, one-sixteenth; and so on. This description requires one to complete an infinite
number of tasks, which Zeno maintains is an impossibility. The paradoxical conclusion
then would be that travel over any finite distance can neither be completed nor begun,
and so all motion must be an illusion.

The third one is called arrow paradox. Zeno states that for motion to occur, an object
must change the position which it occupies. He gives an example of an arrow in flight. In
any one (duration-less) instant of time, the arrow is neither moving to where it is, nor to
where it is not. It cannot move to where it is not, because no time elapses for it to move
there; it cannot move to where it is, because it is already there. In other words, at every
instant of time there is no motion occurring. If everything is motionless at every instant,
and time is entirely composed of instants, then motion is impossible. Whereas the first
two paradoxes divide space, this paradox starts by dividing time—and not into segments,
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but into points.

Figure 6.5: Arrow paradox

The fourth one is called the moving rows paradox, or stadium paradox. It’s also
about dividing time into atomic points. As shown in figure 6.6, there are three rows in
the stadium. Each row being composed of an equal number of bodies. At the beginning,
they are all aligned. At the smallest time duration, row A stays, row B moves to the right
one space unit, while row Γ moves to the left one space unit. To row B, row Γ actually
moves two space units. It means, there should be time duration that Γ moves one space
unit relative to B. And it is the half time of the smallest duration. Since the smallest
duration is atomic, it involves the conclusion that half a given time is equal to that time.

Figure 6.6: Moving rows paradox

Zeno’s paradoxes are easy to understand. However, the conclusion is surprising. In
our common sense, motion and time are so real. Achilles must be able to catch up the
tortoise. However, it is hard to solve Zeno’s paradox. From Aristotle to Bertrand Russel,
from Archimedes to Herman Weyl, all proposed varies of solutions to Zeno’s paradoxes[60].

Zeno was ancient Greek philosopher. He was born in Elea, which was a Greek colony
located in present-day southern Italy. Little is known for certain about Zeno’s life. In
the dialogue of Parmenides, Plato describes a visit to Athens by Zeno and Parmenides,
at a time when Parmenides is “about 65”, Zeno is “nearly 40”, and Socrates is “a very
young man”. Assuming an age for Socrates of around 20 and taking the date of Socrates’
birth as 469 BC gives an approximate date of birth for Zeno of 490 BC. Some less reliable
details of Zeno’s life are given by Diogenes Laërtius in his Lives and Opinions of Eminent
Philosophers. It said Zeno was the adopted son of Parmenides. He was skilled to argue
both sides of any question, the universal critic. And that he was arrested and perhaps
killed at the hands of a tyrant of Elea[8].

Zeno was the primary member of the Eleatics, which were a pre-Socratic school of
philosophy founded by Parmenides in the early fifth century BC in the ancient town of
Elea. It’s another important school after Pythagoras. The Eleatics rejected the episte-
mological validity of sense experience, and instead took logical standards of clarity and
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necessity to be the criteria of truth. Of the members, Parmenides and Melissus built
arguments starting from sound premises. Zeno, on the other hand, primarily employed
the reductio ad absurdum, attempting to destroy the arguments of others by showing
that their premises led to contradictions. Zeno is best known for his paradoxes, which
Bertrand Russell described as “immeasurably subtle and profound”.

Zeno of Elea, About 490BC - 425BC

Ancient Chinese philosophers developed equivalents to some of Zeno’s paradoxes.
From the surviving Mohist School of Names book of logic which states, in the archaic
ancient Chinese script, “a one-foot stick, every day take away half of it, in a myriad ages
it will not be exhausted.”

Zeno’s paradoxes caused deep confusion to the ancient Greeks. The views about
time, space, infinity, continuity, and movement are critical to the later philosophers and
mathematicians even today. How to understand infinity, became a problem that must be
solved by ancient Greek philosophers.

6.1.1 Potential infinity and actual infinity
Aristotle studied Zeno’s paradoxes deeply. One of the most important contributions
that Aristotle had made to to study of infinity is identifying a dichotomy between what
Aristotle calls the potential infinite and the actual infinite. This work fundamentally
influenced the later development of mathematics[8]. Potential infinity is a process that
never stops. It can be a group of “things” that continues without terminating, going on
or repeating itself over and over again with no recognizable ending point. The obvious
example is the group of natural numbers. No matter where you are while listing or
counting out natural numbers, there always exists another number to proceed. Also, in
Euclid geometry, a line with a starting point could extend on without end, but could still
be potentially infinite because one can add on more length to a finite length to allow it
to extend2. The actual infinite involves never-ending sets or “things” within a space that
has a beginning and end; it is a series that is technically “completed” but consists of an
infinite number of members. According to Aristotle, actual infinities cannot exist because
they are paradoxical. It is impossible to say that you can always “take another step” or
“add another member” in a completed set with a beginning and end, unlike a potential
infinite. It is ultimately Aristotle’s rejection of the actual infinite that allowed him to
refute Zeno’s paradox.

Although Aristotle did disprove the existence of the actual infinite finally, and tended
to reject a lot of major concepts in mathematics, the importance of mathematics was
still never belittled in Aristotle’s eyes. Aristotle argued that actual infinity as it is not

2Euclid avoided to use the term ‘infinitely extend’ in his work. instead he said a line can be extended
any long as needed. This is a common treatment in ancient Greece.
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applicable to geometry and the universal, is not relevant to mathematics, making potential
infinity all that actually is important.

Aristotle’s viewpoint to infinity is typical in ancient Greece. The dichotomy and
controversy about potential infinity and actual infinity have been influential till today.
Despite of these arguments, the ancient Greek mathematicians achieved amazing result
with the potential infinity concept. One success story was that Euclid proved there are
infinitely many prime numbers. It is considered one of the most beautiful proofs in history.

Proposition 6.1.1 (Euclid’s Elements, Book IX, Proposition 20). Prime numbers are
more than any assigned multitude of prime numbers[11].

Euclid indented to avoid using term like ‘infinitely many’ when stated this proposition.
Such treatment is very common in Elements. It’s famous that Euclid uses reduction to
absurdity in his proof. We explain it in modern language.

Proof. Suppose there are finite prime numbers p1, p2, ..., pn. Euclid makes a new number:

p1p2...pn + 1

Which is the product of the n prime numbers plus one. It is either prime or not.

• If it is prime, definitely, it does not equal to any one from p1 to pn, hence it’s a new
prime not in the list;

• If it is not prime, then it must have a prime factor p. However, no one from p1 to
pn divides this number. It means p is different from any one from p1 to pn, hence
it’s a new prime beyond those in the list.

In both cases, we obtain a new prime number. It contradicts the assumption that
there are finite prime numbers. Therefore, there are infinitely many prime numbers.

From today’s view point, Euclid obtained a kind of indirect ‘proof of existence’. By
using proof by contradiction, he proved there are infinitely many prime numbers, but did
not give a way to list them. It is quite natural in mathematical proofs now. However, it
led to hotly debating about the fundamentals of mathematics in the late 19th and early
20th Century. We’ll return to this topic in next chapter.

Aristotle, 384BC - 322BC

Aristotle was a great philosopher and polymath in ancient Greece. Along with his
teacher Plato, he has been called the ‘Father of Western Philosophy’. Little is known
about his life. Aristotle was born in the city of Stagira in Northern Greece in 384BC.
His father died when Aristotle was a child, and he was brought up by a guardian. At the
age of seventeen or eighteen, he joined Plato’s Academy in Athens and remained there
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for 20 years until Plato died. This period of study in Plato’s Academy deeply influenced
Aristotle’s life. Socrates was Plato’s teacher, and Aristotle was taught by Plato. He soon
became an outstanding scholar, and Plato called him “the Spirit of the Academy”. But
Aristotle is not a man who only admires authority without his own opinions. He studied
hard, and even established a library for himself.

Shortly after Plato died around 347BC, Aristotle left Athens. The traditional story
about his departure records that he was disappointed with the Academy’s direction after
control passed to Plato’s nephew. After that, he traveled around. In 343 BC, Aristotle
was invited by Philip II of Macedon to become the tutor to his 13 years old son Alexander.
Aristotle was appointed as the head of the royal academy of Macedon. During Aristotle’s
time in the Macedonian court, he gave lessons not only to Alexander, but also to two
other future kings: Ptolemy and Cassander. It was under the influence of Aristotle that
Alexander the Great cared about science and respected knowledge.

In 335BC, Philip II died. Aristotle returned to Athens, establishing his own school
there known as the Lyceum. Aristotle conducted courses at the school for the next twelve
years. In this period in Athens, between 335 and 323 BC, Aristotle composed many of his
works. He studied and made significant contributions to logic, metaphysics, mathematics,
physics, biology, botany, ethics, politics, agriculture, medicine, dance and theatre. There
was legend that Aristotle had a habit of walking while lecturing along the walkways
covered with colonnades. It was for this reason that his school was named “Peripatetic”
(an ancient Greek word, which means “of walking” or “given to walking about”). Aristotle
used the language that was much more obscure than Plato’s Dialogue. Many of his works
are based on lecture notes, and some are even the notes of his students. Aristotle was
considered as the first author of textbooks in the western world.

Following Alexander’s death, anti-Macedonian sentiment in Athens was rekindled. In
322 BC, his enemies reportedly denounced Aristotle for impiety, prompting him to flee
to his mother’s family estate in Euboea. He said: “I will not allow the Athenians to sin
twice against philosophy” – a reference to Athens’s trial and execution of Socrates. He
died on Euboea of natural causes later that same year, at the age of 63.

More than 2300 years after his death, Aristotle remains one of the most influential
people who ever lived. He contributed to almost every field of human knowledge in
ancient time, and he was the founder of many new fields. Among countless achievements,
Aristotle was the founder of formal logic, pioneered the study of zoology, and left every
future scientist and philosopher in his debt through his contributions to the scientific
method.

6.1.2 Method of exhaustion and calculus
Some other ancient Greek mathematicians took the practical approach about infinity.
They developed the method of exhaustion and made surprising achievements.

The idea of exhaustion originated in the late 5th Century BC with Antiphon (About
480BC - 410BC), when he tried to solve one of the three classic geometric problems,
square the circle3. To approximate the area of a circle, Antiphon started from an inscribed
square, then repeatedly double the number of the sides to obtain octagons, hexagons...
As the area of the circle gradually “exhausts”, the side length of inscribed polygons gets
smaller and smaller. Antiphon thought the polygon would eventually coincide with the
circle. This is the idea of exhaustion. The method was made rigorous a few decades later
by Eudoxus of Cnidus, who used it to calculate areas and volumes. The correctness of

3The other two are trisecting the angle, and doubling the cube. Given a circle, ancient Greeks at-
tempted to seek the solution to draw a square that has the same area with only straightedge and compass.
Many mathematicians attempted to solve this problem, but all failed until Galois developed theory to
prove they were all impossible in 19th Century.
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this method relies on the famous axiom of Eudoxus-Archimedes (or simply called axiom
of Archimedes).

Axiom 6.1.1. Axiom of Archimedes Given two magnitudes a and b, there exists some
natural number n, such that a ≤ nb.

Axiom of Archimedes is fundamental. We introduced Euclid algorithm to compute the
greatest common measurement in chapter 2, however, we did not show if this algorithm
always terminates. With axiom of Archimedes, we can prove that Euclid algorithm always
terminates. Eudoxus stated “Given two different magnitudes, for the larger one, subtract
a magnitude larger than its half, then for the remaining, subtract another magnitude
larger than its half, repeat this process, there must be some remaining less than the
smaller one.” This is the logic behind the method of exhaustion.

By using the method of exhaustion, Eudoxus proved that: the volume of a pyramid
is one-third the volume of a prism with the same base and altitude, and the volume of a
cone is one-third that of the corresponding cylinder. These statements are summarized
as propositions in the book 12 of Euclid’s Elements[8].

Archimedes greatly developed the method of exhaustion, and achieved the highest
level amazing result. He calculated π, proved the formulas of circular area, surface area
and volume of sphere, cone, and even found the method to calculate the area under the
parabola curve. He was said to be the god of the mathematics in ancient Greece.

The Fields Medal carries a portrait
of Archimedes.

Archimedes (287BC - 212 BC) was a Greek
mathematician, physicist, engineer, inventor, and
astronomer. He was born in the seaport city of
Syracuse, at that time a self-governing colony in
Magna Graecia. Archimedes might have studied in
Alexandria, Egypt in his youth. During his lifetime,
Archimedes made his work known through corre-
spondence with the mathematicians in Alexandria.
Although few details of his life are known, he is
considered the greatest mathematician of antiquity
and one of the greatest of all time. various popular
stories about him are widely circulated.

The most widely known anecdote about
Archimedes tells of how he uncovered a fraud in
the manufacture of a golden crown commissioned
by King Hiero II of Syracuse. The king had supplied the pure gold to be used, and
Archimedes was asked to determine whether some silver had been substituted by the
dishonest goldsmith. Archimedes had to solve the problem without damaging the crown,
so he could not melt it down into a regularly shaped body in order to calculate its den-
sity. While taking a bath, he noticed that the level of the water in the tub rose as he
got in, and realized that this effect could be used to determine the volume of the crown.
Archimedes then took to the streets naked, so excited by his discovery that he had for-
gotten to dress, yelling “Eureka!” (Greek word meaning “I have found [it]!”). The test
was conducted successfully, proving that silver had indeed been mixed in. His discovery
is the “Archimedes’ Principle” that every middle school student must learn. Eureka was
later used to describe the moment when inspiration was found.

In 214BC, the Second Punic War Broke out. Legend has it that Archimedes created
a giant parabolic mirror to deflect the powerful Mediterranean sun onto the ship’s sails,
setting fire to them. Archimedes also created a huge crane operated hook – the Claw of
Archimedes – that was used to lift the enemy ships out of the sea before dropping them
to their doom. After two-year-long siege, In 212 BC, the Romans captured Syracuse.
The Roman force commander, Marcellus had ordered that Archimedes, the well-known
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mathematician should not be killed. Archimedes, who was now around 78 years of age,
continued his studies after the breach by the Romans and while at home, his work was
disturbed by a Roman soldier. The last words attributed to Archimedes are “Do not
disturb my circles!” The soldier killed Archimedes despite orders that Archimedes should
not be harmed. 137 years after his death, the Roman orator Cicero described visiting the
tomb of Archimedes. It was surmounted by a sphere and a cylinder, which Archimedes
had requested be placed on his tomb to represent his mathematical discoveries4.

As an example, let us see how Archimedes calculated π with the method of exhaustion
around 250BC. Symbol π represents the ratio of a circle’s circumference to its diameter,
sometimes it’s referred to as Archimedes’ constant.

As shown in figure 6.10, Archimedes drew two regular polygons inside and outside
a circle with diameter of 1. For a side of the inscribed polygon and the corresponding
arc, the length of the arc is greater than the side because the straight line is the shortest
between two points. Hence the circumference of the circle is greater than the inscribed
polygon. Similarly, we can reason that the circumference of the circle is less than the
circumscribed polygon. Since the diameter is 1, the circle’s circumference equals to π.
Hence the below relation holds:

Ci < π < Co

Figure 6.10: π can be estimated by computing the perimeters of circumscribed and in-
scribed polygons.

Where Ci and Co are the circumferences of the inscribed and circumscribed polygons
respectively. Successively increasing the number of sides approximates the range of π.
Archimedes calculated the 96-sided regular polygon, he proved that 223

71
< π <

22

7
(that

is 3.1408 < π < 3.1429). This upper bound of 22

7
is widely used in western. The Chinese

mathematician Zu Chongzhi, around 480AD, calculated that 3.1415926 < π < 3.1415927

and suggested the approximations π ≈ 355

113
= 3.14159292035... by applying to a 12,288-

sided polygon. This value remained the most accurate approximation of π for the next
800 years.

The method of exhaustion, developed in ancient time has limitation. Although rigor-
ous, it demands specific approach for different problems. As a precursor to the methods
of calculus, it’s complex. Partially because ancient Greeks rejected irrational numbers,
they had to make difference between geometric magnitudes and numbers. Another reason
was because they attempted to avoid using infinity and infinitesimal.

Ptolemy, the ancient Greek mathematician, astronomer, and geographer also made
great achievement with the method of exhaustion. He developed a geocentric model to
calculate the celestial motions. It was almost universally accepted until the scientific

4A sphere has 2/3 the volume and surface area of its circumscribing cylinder including its bases.
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revolution. His Planetary Hypotheses presented a physical realization of the universe as
a set of nested spheres, in which he used the epicycles of his planetary model to compute
the dimensions of the universe. He estimated the Sun was at an average distance of 1,210
Earth radii, while the radius of the sphere of the fixed stars was 20,000 times the radius
of the Earth.

After Hellenistic period, the Greek civilization was destroyed by several forces. The
Romans conquered Greece, Egypt, and the Near East. In 47BC, the Romans set fire to the
Egyptian ships in the harbor of Alexandria; the fire spread and burned the library – the
most expensive ancient libraries. The emperor Theodosius (ruled 379 - 396) proscribed
the pagan religions and in 392 ordered that their temples be destroyed, including the
temple of Serapis in Alexandria, which housed the only remaining sizable collection of
Greek works. Thousands of Greek books were burned by the Romans. Many other works
written on parchment were expunged to rewrite Christianity works.

The final blow to the Greek civilization was the conquest of Egypt by the uprising
Arab empire in 640. The remaining books were destroyed on the ground that as Omar,
the conqueror, put it, “Either the books contain what we also have, in which case we
don’t have to read them, or they contain the opposite of what we believe, in which case
we must not read them.” And so for six months the baths of Alexandria were heated by
burning rolls of parchment[4].

When read about such history, it always makes people sad and sigh. The tragedy of
burning books in South America, in the Qin Empire, has been performed ever since ancient
times. After capture of Egypt, the majority of the scholars migrated to Constantinople,
which had become the capital of the Eastern Roman Empire. The Arabs absorbed the
Greek works, translated and commented extensively to Greek knowledge. The ‘House of
Wisdom’ in Baghdad gradually became the academy centre in the world. After Medieval,
Europeans translated the ancient Greek works from Arabic to Latin. Along with the
Renaissance in Europe, not only arts and culture, but also mathematics and philosophy
recovered and were greatly developed.

German astronomer Johannes Kepler took the next important step after Archimedes
atop method of exhaustion. When Nicolaus Copernicus began to think astronomy, the
Ptolemaic theory had become somewhat more complicated. To explain the variations
in speed and direction of the apparent motions, Ptolemy added epicycles, and other
complex geometric tricks in his model. In Copernicus’ time, the theory required a total
of 78 circles to describe the motion of Sun, Moon, and the five planets. By moving the
Sun to the centre, Copernicus was able to reduce the total number of circles (differents
and epicycles) to 34. It was greatly simplified from the geocentric model. Kepler made
more remarkable achievement. He inherited valuable observation data from the famous
astronomer Tycho Brahe. He spent 8 years to analyze the observed data and false trails.
Kepler’s most famous and important results are known today as Kepler’s three laws of
planetary motion. According to his first law, Kepler broke with the tradition of two
thousand years that circle or sphere must be used to describe celestial motions. It states
that each planet moves on an ellipse and that the sun is at one (common) focus of each
of these elliptical paths. The other radical step Kepler made was he discovered that the
planet does not move at a constant velocity. A line segment joining a planet and the Sun
sweeps out equal areas during equal intervals of time. This is his second law. It explains
that why a planet some times moves fast (close to the Sun) while some times moves slowly
(far from the Sun). The third law states that, the square of the orbital period of a planet is
directly proportional to the cube of the semi-major axis of its orbit. Such complex models
required more powerful mathematical tool, the method of exhaustion is not convenient.
Kepler then made simplification, and he used the new method on measuring the volume
of containers such as wine barrels.

The next important step was made by Descartes and Fermat. Through analytical
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geometry, numbers and geometry were bridged, and finally evolved to calculus by Issac
Newton and Gottfried Whilhelm Leibniz. Infinitesimal is the central concept in calculus,
and the integration involved sum of infinitely many such quantities. As a side word, John
Wallis, the important contributor to calculus, introduced ∞ symbol for infinity in 1665.

Although the logic foundation of calculus caused hotly debating, this new tool, repre-
senting the modern spirit of the western, broke the waves in its sail in the 18th Century.
This was an era of heroes. The Bernoulli family, Euler, and Lagrange greatly developed
calculus and infinite series, solved many hard problems in astronomy, mechanics, and
fluid that people never imagined before.

6.2 Potential infinity and programming
Mathematicians came back to consider actual infinity when debating about how to make
calculus rigorous. Before this topic, let us see how the idea of infinity is realized in
programming. Computers can only use limited resources. Numbers are represented in
binary forms suitable for computer. There are finite many binary bits, hence the numbers
represented in computer are also bounded. A binary number of m bits can represent
numbers at maximum of 2m − 1, which is 11...1 of length m. The biggest 16 bits number
is 216−1 = 65535. For this reason, if the number of elements in a set is also represented in
binary, then the set can only contain finite many elements. In early days of programming,
arrays were often used to hold multiple elements. To effectively use computer memories,
the size of array need be determined before using. For example below statement in C
programming language, declares an array that can hold 10 integers:

int a[10];

There are two different concepts of numbers, ordinal number and cardinal number. In
short, ordinal number is used to describe a way to arrange a collection of objects in order,
one after another; while cardinal numbers, are used to measure the size of collections.
We’ll provide the formal definitions for them later. Both ordinals and cardinals are finite
in traditional programming. They can’t represent infinity directly. It was reasonable in
the early days of computer science. The computer devices were very expensive, people
never thought to deal with practice problems with infinity. As time goes on, the cost
of computation resources keep decreasing. We are not satisfied with the way to predict
the size of the collection before using it in programming. New tools, like dynamic array,
were developed in some programming environments. They were known as containers,
the size can be easily adjusted on-demand. However, even for dynamic containers, the
elements are still finite many. It can not exceed the number representation limit. People
developed the linked-list, as explained in chapter 1, elements are stored in node, and
chained together. The last element points to a special empty node indicating the end.
Given such a linked-list, we can start from its head, move to any node in it without need
of knowing its cardinal. As far as the storage allows, a linked-list can be arbitrary long.
It brings the chance to represent potential infinity.

However, there is eventually a gap between linked-list and potential infinity. We
consider natural numbers as potential infinity without terminating or ‘end point’. But
when use linked-list to represent natural numbers, no matter how long the list is, for
instance n, we have to store all numbers from 0 to n in it. It only represents sequence of
0, 1, ..., n, but not the natural numbers, 0, 1, ..., n, ...

To model the potential infinity, people introduced concept of lazy evaluation. Instead
of evaluate the value of an expression or variable, this evaluation strategy delays it until
the value is needed. For the natural number example, any number n has a successor n+1
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according to Peano’s axiom introduced in chapter 1, and the first natural number is 0.
Hence we can define natural numbers as below:

N = iterate(n 7→ n+ 1, 0)

Where iterate is defined as:

iterate(f, x) = x : iterate(f, f(x))

Let us see the first several steps when generate natural numbers. To make it simple,
denote succ(n) = n 7→ n+ 1

iterate(succ, 0) = 0 : iterate(succ, succ(0)) definition of iterate
= 0 : iterate(succ, 1) succ(0) = 0 + 1 = 1
= 0 : 1 : iterate(succ, succ(1))
= 0 : 1 : iterate(succ, 2)
= 0 : 1 : 2 : iterate(succ, 3)
= ...

Without lazy evaluation, this process will repeat endlessly forever. It can not used
to solve practical problems. We must change the link operation to lazy evaluation. One
method is to leverage the λ calculus introduced in chapter 2.

x : xs = cons(x, () 7→ xs)

We often call the expression () 7→ exp as delay(exp). It builds a function without
argument, when evaluates (the function), gives the result exp.

Figure 6.11: The next node pointed is a λ expression. It will create a new node when
force evaluation.

Therefore, when link x and xs together, the value of xs won’t be evaluated, but xs
itself will be wrapped in a λ expression, and the evaluation is delayed to future time.
With this modification, generation of natural numbers changes to:

iterate(succ, 0) = 0 : iterate(succ, succ(0)) definition of iterate
= cons(0, () 7→ iterate(succ, succ(0))) lazy link

The computation stops here. It won’t go on. The result is a list. The first element is
0, while the next element is a λ expression. If we want to obtain the successive element,
we have to force the list evaluation.

next(cons(x, e)) = e()

When apply next to cons(0, () 7→ iterate(succ, succ(0))), we obtain:

next(cons(0, () 7→ iterate(succ, succ(0))))
= iterate(succ, succ(0)) definition of next
= iterate(succ, 1) definition of succ
= 1 : iterate(succ, succ(1)) definition of iterate
= cons(1, () 7→ iterate(succ, succ(1))) lazy link
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The computation stops again. By repeatedly applying next to N , we generate natural
numbers one by one. People call this kind of model stream, and use it to represent
potential infinity. We can easily define a function to fetch the first m natural numbers
from this potential infinite stream.

take 0 _ = []
take n cons(x, e) = cons(x, take(n− 1, e()))

For example, take 8 N = [0, 1, 2, 3, 4, 5, 6, 7]. There are examples in the appendix
of this chapter about how to define natural numbers with potential infinity in different
programming languages.

Exercise 6.1
1. In chapter 1, we realized Fibonacci numbers by folding. How to define Fibonacci

numbers as potential infinity with iterate?
2. Define iterate by folding.

6.2.1 Coalgebra and infinite stream⋆
To model the stream of potential infinity, we need the coalgebra concept in category
theory introduced in chapter 4. Readers are safe to skip this section in the following 2
pages, and directly read from the next section Explore the actual infinity. Let us first
revisit coalgebra and F-morphism.

Definition 6.2.1. Let CCC be a category, CCC F−−→ CCC is an endo-functor of category CCC. For
the object A and morphism α in this category, arrow:

A
α−−→ FA

forms a pair (A,α). It is called F-coalgebra, where A is the carrier object.

We can treat F-coalgebra as object. When the context is clear, we denote the object
as a pair (A,α). The arrows between such objects are defined as the following:

Definition 6.2.2. F-morphism is the arrow between F-coalgebra objects:

(A,α) −→ (B, β)

If the arrow A
f−−→ B between the carrier objects make the below diagram commutes:

A FA

B FB

α

f F(f)

β

Which means β ◦ f = F(f) ◦ α

F-coalgebra and F-morphism form F-coalgebra category CoAlgCoAlgCoAlg(F). For F-algebra,
we care about the initial algebra; symmetrically, for F-coalgebra, we care about the final
coalgebra. Where the final coalgebra is the final object in F-coalgebra category, denoted
as (T, µ). For any other algebra (A, f), there exists unique morphism m, such that the
below diagram commutes:
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FT FA

T A

F(m)

µ f

m

From Lambek theorem, the final coalgebra is the fixed point for functor. The mor-
phism T

µ−−→ FT is an isomorphism, such that FT is isomorphic to T . The final coalgebra
can be used to build infinite data structures.

We use catamorphism to evaluate the initial algebra. Symmetrically, we use anamor-
phism (prefix ana- means upward) to coevaluate the final coalgebra. For any coalgebra
(A, f), the unique arrow to the final coalgebra (T, µ) can be represented with the anamor-
phism as (f). The brackets do not look like bananas any more, but like a pair of lenses
in optics. They are known as lens brackets. As shown in below diagram:

T FT

A FA

µ

(f) F (f)

f

m = (f), if and only if µ ◦m = F(m) ◦ f

Let us see how anamorphism builds infinite stream. Anamorphism takes a coalgebra

A
f−−→ FA and a carrier object A, it generates the fixed point of functor F, which is

Fix F. This fixed point is the final coalgebra. It has the form of infinite stream.

(f) = Fix ◦ F (f) ◦ f

We can also define the anamorphism as the function that returns the fixed point:

(A→ FA) ana−−−→ (A→ Fix F)
ana f = Fix ◦ fmap (ana f) ◦ f

As a concrete example, functor F is defined as:
data StreamF E A = StreamF E A

Its fixed point is:
data Stream E = Stream E (Stream E)

StreamF E is a normal functor, we intend to give it name of ‘stream’. The coalgebra
of this functor is such a function, it transforms a ‘seed’ a of type A to a pair, containing
a, and the next seed.

Coalgebra can generates varies of infinite streams. Here are two examples. The first
example is Fibonacci numbers. We use (0, 1) as the starting seed. To generate the next
seed, we take the second value 1 in the pair as the first value in the new pair, and use
0 + 1 as the second value in the new pair to form the new seed (1, 0 + 1). Repeat this
process, for seed (m,n), we generate the next seed (n,m + n). Written in coalgebra, we
have the following definition:
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(Int, Int)
fib−−−→ StreamF Int (Int, Int)

fib(m,n) = StreamF m (n,m+ n)

In this definition, the carrier object A is a pair of integers. With coalgebra, we can
feed it into anamorphism to build the infinite stream of Fibonacci numbers. For functor
StreamF E, the type of the anamorphism is:

(A→ StreamF E A)
ana−−−→ (A→ Stream E)

We can realize it as:

ana f = fix ◦ f
where: fix (StreamF e a) = Stream e (ana f a)

Apply the anamorphism to coalgebra fib and the start pair (0, 1) gives infinite stream
that generates Fibonacci numbers:

ana fib (0, 1)

We can define a auxiliary function to take the first n elements from the infinite stream:

take 0 _ = []
take n (Stream e s) = e : take (n − 1) s

The next example demonstrates how to generate infinite stream of prime numbers
with the sieve of Eratosthenes method. The start seed is ‘all’ the natural numbers with
1 being removed: 2, 3, 4, ... From this seed, we remove all the multiples of 2 to obtain
the next seed, which is an infinite list start from 3 as 3, 5, 7, ... Next, we remove all the
multiples of 3, and repeated this process. This method is defined as below coalgebra:

[Int]
era−−−→ StreamF Int [Int]

era(p : ns) = StreamF p {n | p ∤ n, n ∈ ns}

Then feed it to anamorphism, we obtain the infinite stream that generates all prime
numbers:

primes = ana era [2...]

For list particularly, anamorphism is called unfold. Anamorphism and catamorphism
are mutually inverse. We can turn the infinite stream back to list through catamorphism.

Exercise 6.2

1. Use the definition of the fixed point in chapter 4, prove Stream is the fixed point
of StreamF .

2. Define unfold.
3. The fundamental theorem of arithmetic states that, any integer greater than 1 can

be unique represented as the product of prime numbers. Given a text T , and a
string W , does any permutation of W exist in T? Solve this programming puzzle
with the fundamental theorem and the stream of prime numbers.
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6.3 Explore the actual infinity
Aristotle’s influence was profound. For more than two thousand years, mathematicians
and philosophers had been thinking about concept of infinity. Most of them accepted the
potential infinity. However, there were discordant views about actual infinity. For a long
time, people believed the actual infinity was God, or only God mastered actual infinity.
Many attempts to reason the actual infinity led to confusion and contradict result. Let
all the natural numbers be actual infinity for example. Because natural numbers are
separated by even numbers and odd numbers. They alternate in turns. It’s natural to
think that all even numbers are half of all natural numbers. However, doubling every
natural number gives an even number; and dividing every even number by 2 gives a
natural number vise versa. There is one to one correspondence between all the natural
numbers and even numbers. Are these two actual infinities same? If not, which one has
more? natural numbers or even numbers?

Father of the modern science, Galileo Galilei made a similar paradox in his final
scientific work Two New Sciences in 1636. Some numbers are squares, while others are
not; therefore, all the numbers, including both squares and non-squares, must be more
numerous than just the squares. And yet, for every number there is exactly one square,
which forms the sequence 1, 4, 9, 16, 25, ... hence, there cannot be more of one than of
the other. This paradox is known as Galileo’s paradox.

Not only numbers, people found similar paradox in Geometry. As shown in figure
6.12, For two circles with the same centre, every radius connects two points in each circle
respectively, hence, there is one to one correspondence between the points in the bigger
circle and the smaller circle. It indicates there are same many points in each circle.
However, our common sense tells there must be more points in the bigger one.

Figure 6.12: Every point in the big circle is corresponding to a point in the small circle.

Because of these paradoxes, people accepted Aristotle’s approach to avoid using actual
infinity. Galileo concluded that the ideas of less, equal, and greater couldn’t apply to
infinite sets like natural numbers. People rejected terms of actual infinity, like “all the
natural numbers”.

About two hundred years after Galileo, German mathematician Cantor led people
broke into the Kingdom of infinity. From these paradoxes, Cantor thought the key prob-
lem was our common sense assumption, that the whole must be larger than the part. Is
it necessarily right? The development of modern science taught us our common view to
things could be incomplete or wrong. The theory of relativity challenges our understand-
ing to space and time – the space we are living in is not necessarily the Euclidean space;
Quantum mechanics challenges our common sense that the world is causal – randomness
rules the quantum world. When think out of the box, it will open up a new world we’ve
never seen, resulting in fundamental development. This was exactly what Cantor did. If
we accept the counter-intuitive result, that ‘the part can equal to the whole’, then the
door to the infinity is open. He established the importance of one-to-one correspondence
between the members of two sets, and defined (actual) infinite sets.



194 CHAPTER 6. INFINITY

Georg Cantor, 1845-1918

To compare two sets, Cantor defines if there is
one to one correspondence between them, that ev-
ery element in set M has the unique corresponding
element in set N , then the two sets are equinumer-
ous. They have the same size or have the same
number of elements5, denoting M ∼= N . For finite
sets, it is true obviously; when extends to infinite
sets, it means there are same infinite many even
numbers as the natural numbers! there are same
infinite many square numbers as natural numbers;
the points in smaller circle and the bigger circle
of the same centre are equinumerous... Cantor’s
friend, Richard Dedekind even gave such a defini-
tion6 of infinite set in 1888: if some proper subset of
a set is equinumerous to this set, then it is a infinite
set.

6.3.1 Paradise of infinite kingdom
Let us have a glance view of the garden in infinite kingdom. David Hilbert told an
interesting story in a lecture in 1924 (published in 2013) to help people understanding
Cantor’s infinite sets. It was popularized through George Gamow’s 1947 book One Two
Three... Infinity.

In this story, there is a Grand hotel with infinite many rooms. It is fully occupied
during the hot season. One evening, a tired driver has passed many “No vacany” hotels
before reaching to this one. He goes to see if there might nonetheless be a room for him.
The clerk, Hilbert said: “No problem, we can make a room for you.” He moved the guest
in room 1 to room 2, then moved the guest in room 2 to room 3, and moved the guest
in room 3 to room 4, ... He moved every one from current room to the next room. That
freed up the first room for this new guest.

The story goes on. On the second day, there comes a tour group of infinite many
guests. Hilbert said: “No problem, we can make rooms for every one.” He moved the new
guest who was in room 1 last night to room 2, then moved the guest in room 2 to room 4,
and moved the guest in room 3 to room 6, ... He moved every one in room i to room 2i.
Since the hotel has infinite many rooms, after moving, room 2, 4, 6, ... these even number
rooms are occupied with the guests accommodated yesterday, while the room 1, 3, 5, ...
these odd number rooms are freed up. There are infinite many odd numbers rooms that
can accommodate every member in the tour group.

The story does not end. On the third day, there comes infinite many tour groups of
infinite many guests each. Can the magic Hilbert’s hotel accommodate them all? Before
seeing the answer, let us first revisit the story on the first two days.

Figure 6.14: First day of Hilbert’s Grand hotel

5Remind the ‘isomorphic’ concept introduced in chapter 3.
6known as Dedekind infinite set.
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As shown in figure 6.14, on the first day, we move every guest to the next room to free
up room 1. Essentially, we establish a 1-to-1 correspondence for shadowed circles between
the two rows as n ↔ n + 1. It reveals a counterintuitive fact that infinity plus one is
infinity again. Hilbert’s grand hotel can accommodate not only this one more guest, but
also finite many k new guests by repeating this arrangement k times. It means:

∞+ 1 =∞
∞+ k =∞

Figure 6.15: Second day of Hilbert’s Grand hotel

The solution for the second day is shown in figure 6.15. We essentially establish a
1-to-1 correspondence between natural numbers and even numbers, hence free up infinite
many odd number rooms. Then we establish another 1-to-1 correspondence between these
empty rooms and the infinite many guests in the tour group, which is exactly the 1-to-1
correspondence between odd numbers and natural numbers. The second day story tells
us, infinity plus infinity is infinity again.

∞+∞ =∞

It’s natural to ask, although the symbols are same, does the infinity on the left hand
equal to the infinity on the right hand? Can we compare between infinities for size?
We’ll see later, it was exactly this question, led Cantor to study infinity in depth. In
Hilbert’s Grand hotel story, we can establish 1-to-1 correspondence between all these
infinities, hence they are all equinumerous. Such infinity that has 1-to-1 correspondence
with natural numbers are called ‘countable infinity’.

To solve the problem on the third day of Hilbert’s Grand hotel, we need think about
how to establish the 1-to-1 correspondence between the infinite many tour groups of
infinity many guests and the infinity many rooms. One may come to the idea to arrange
the guests in the first tour group to room 1, 2, 3, ... then arrange the guests in the
second group to room ∞+ 1, ∞+ 2, ... However, this method does not work. We don’t
know which one are more numerous, the rooms or the guests before the arrangement.
Consider how this process executes. The first guest in the second group will never know
when the first group finishes accommodating, this guest has no way to determine which
room should move to. Compare with the first day story, the new guest could immediately
move to room 1 when the original guest moved to room 2, although the whole infinity
accommodating process is endless. Same situation happened on the second day. When
the original guest in room 1 moved to room 2, the first guest in the tour group could
move to the freed up room 1 immediately. Next the original guest in room 2 moved to
room 4, and the guest in room 3 moved to room 6, at this time, the second guest in the
tour group could move to room 3...

Figure 6.16 gives a numbering solution. For convenient purpose, we label the first
guest 0, the second guest 1, the third guest 2, ... We label the guests already lived in the
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Figure 6.16: One solution to number the infinity of infinity

hotel as group 0, the first tour group 1, the second group 2, ... In this figure, every guest
corresponds to a grid point. We also label the hotel rooms from 0.

Now we arrange rooms in this order: assign the guest 0 in group 0 to room 0, the guest
1 in group 0 to room 1, the guest 0 in group 1 to room 2, the guest 0 in group 2 to room
3, the guest 1 in group 1 to room 4, ... Along the zig-zag path, we can assign room one
by one, without missing any guests. Hence we establish a 1-to-1 correspondence between
every guest in these infinite many groups and the infinity many rooms. Hilbert’s Grand
hotel surprisingly holds ‘two-dimensional’ infinity7.

Exercise 6.3
1. We establish the 1-to-1 correspondence between the rooms and guests with the

numbering scheme shown in 6.16. For guest i in group j, which room number
should be assigned? Which guest in which group will live in room k?

2. For Hilbert’s Grand hotel, there are multiple solutions for the problem on the third
day. Figure 6.17 is the cover page of the book Proof without word. Can you give
a numbering scheme based on this figure?

Figure 6.17: From cover page of Proof without word
7The traditional solution uses the Euclid’s theorem, that there are infinite many prime numbers.

Empty the odd numbered rooms by sending the guest in room i to room 2i, then put the first group’s
guests in rooms 3n, the second group’s guests in rooms 5n, ... put the k-th group’s guests in rooms pn,
where p is the k-th prime number. This solution leaves certain rooms empty, specifically, all odd numbers
that are not prime powers, such as 15 or 847, will no longer be occupied.
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6.3.2 One-to-one correspondence and infinite set
From Hilbert’s Grand hotel story, we see the importance of the 1-to-1 correspondence
in studying infinity. If there exists 1-to-1 correspondence between two sets, then they
have the same cardinality. We can further use 1-to-1 correspondence to classify sets. As

explained in chapter 3, for two sets A and B, we establish a map A
f−−→ B, such that

every element x in A is corresponding to an element y in B through x 7→ y = f(x). For
sets, we call f function. y is the image of x, and x is preimage. If there is exactly one
preimage, such map is called injective function; if every element y in B has a preimage,
then the map is called surjective or onto. If a map is both injective and surjective, it is
called bijective or one-to-one correspondence. Figure 6.18 illustrates a bijection between
two sets.

Figure 6.18: 1-to-1 correspondence between two sets.

Hilbert’s Grand hotel gives surprising, counterintuitive properties of infinity. The set
of natural numbers is equinumerous with its proper subsets like even and odd numbers.
And the one dimensional natural number n and two dimensional pair (m,n) are also
equinumerous. Starting from natural numbers, Cantor extended a series of infinite sets
through 1-to-1 correspondence. for example:

1. Integers. We can establish the following 1-to-1 correspondence:
0 1 -1 2 -2 ... n −n ...
l l l l l l l
0 1 2 3 4 ... 2n− 1 2n ...

Hence extend natural numbers to integers. From another view point, we essentially
correspond odd numbers to positive integers, and even numbers to negative integers
and zero. It tells that the integers and natural numbers are equinumerous.

2. Rationals. A rational number can be expressed as the quotient or fraction p/q of
two integers, a numerator p and a non-zero denominator q. On the third day of
Hilbert’s Grand hotel story, we established 1-to-1 correspondence between a pair
(p, q) and a natural number. We can adjust it a bit for rational number p/q. Put
negative numbers aside for now, we skip whenever the second number q is zero, or
p/q is reducible fraction (with common divisor). Then we re-use the method for
integers, to cover the negative rational numbers as well. In this way, we construct
rational numbers from natural numbers. Below table illustrates how the first several
natural numbers correspond to rational numbers:

0 1 2 3 4 5 6 7 8 ...
l l l l l l l l l
0 1 1

2
−1

2
-1 -2 −2

3
−1

3

1

3
...

It tells us natural numbers and rational numbers are equinumerous.
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3. Algebraic numbers. An algebraic number is a root of a non-zero polynomial in
one variable with rational coefficients. Equivalently, by clearing denominators, we
can loose the coefficients to integers. For example,

√
2 and 1 ±

√
3i are algebraic

numbers, while π and e are not.
Given an algebraic equation

a0x
n + a1x

n−1 + ...+ an = 0

Where a0, a1, ...an are integers, and a0 6= 0. All its roots are algebraic numbers.
Define a positive integer:

h = n+ |a0|+ |a1|+ ...+ |an|

Which is the sum of the degree and coefficients of the equation. We name it as the
height h of the equation. For any algebraic equation, h is a unique natural number.
On the other hand, given a height h, there could be multiple equations. For example,
the height of equations x−3 = 0, x3+1 = 0, x3−1 = 0, x2+x+1 = 0, x2−x+1 = 0
are all 4. However, there are finite many equations for every h. Therefore, we can
enumerate all algebraic equations: first list all equations of height h = 1, then list
the equations of height h = 2, ... and repeated this process. The equations of the
same heights can be list in arbitrary order. According to the fundamental theorem
of algebra proved by Gauss, the number of roots equals to the equation degree
n. Taking the multiplicity into consideration, the number of different roots is not
greater than n. Hence there are finite many roots for equation of height h. Now we
can enumerate all algebraic numbers.
First, we enumerate all roots for equations of height h = 1 (only one such equation
x = 0), which is 0; then enumerate all roots for equations of height 2. Because
different equations may have some same roots, we need skip any root if it has been
enumerated before. In this way, we establish the 1-to-1 correspondence between
algebraic numbers and natural numbers. Hence they are equinumerous. In other
words, we can extend to all algebraic numbers from natural numbers.

We’ll meet a problem next. Can we extend natural numbers to real numbers? not
only for normal irrationals, but also cover transcendental numbers like π and e? Cantor
and Dedekind made great breakthrough when studied this problem.

Cantor and Dedekind

Georg Cantor was a German mathematician, He created set theory, which has became a
fundamental theory in mathematics. Cantor was born in 1845 in the western merchant
colony of Saint Petersburg, Russia, and brought up in the city until he was eleven. His
father was a successful merchant, and member of the Saint Petersburg stock exchange;
his mother came from a family well-known of music. When his father became ill, the
family moved to Germany Frankfurt in 1856. Cantor demonstrated exceptional skill
in mathematics in school. But his father wanted Cantor to became “a shining star in
the engineering firmament.” However, at the age of 17, Cantor had sought his father’s
permission to study mathematics at university and he was overjoyed when eventually his
father consented[8].

He entered the Polytechnic of Zürich in 1862, then moved to the University of Berlin in
1863. He attended lectures by Leopold Kronecker, Karl Weierstrass and Ernst Kummer.
He spent the summer of 1866 at the University of Göttingen. Cantor was a good student,
and he received his doctorate degree in 1867 with the dissertation on number theory.
Cantor later took up a position at the University of Halle, where he spent his entire
career.
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Cantor, around 1870

At that time, many mathematicians were trying
to rebuild the rigorous logical foundation of analysis
led by Weierstrass. Cantor was also influenced by
this movement. He soon realized the importance to
study real numbers as the basis of calculus, which
became the beginning of set theory research.

In 1872, he met and began a friendship with the
young mathematician Richard Dedekind while on
holiday in Switzerland. Even in Cantor’s honey-
moon in Harz mountains, Cantor spent much time
in mathematical discussions with Dedekind. They
started a long time correspondence between each
other.

In 1874, Cantor published his first revolutionary
paper about set theory at the age of 29. It marked
as the beginning of set theory as a branch of math-
ematics. With the extraordinary ingenuity, Cantor
established set theory in the following ten years almost alone, leading the revolution of
infinity in mathematics. However, he was not well recognized during his most creative
period. He desired, but was not able to obtain a professor chair at the University of
Berlin. He spent his career at the University of Halle, which was a infamous university
with a meager salary. Cantor’s theory was originally regarded as so counterintuitive –
even shocking. People found paradoxes hidden in infinity sets (we’ll introduce Russell’s
paradox in next chapter). Cantor’s work encountered resistance from mathematical con-
temporaries. Among them, some were famous mathematicians, including his teacher, the
leading mathematician in Berlin, Leopold Kronecker. He had a famous saying: “God
made the integers, all else is the work of man.” He objected to Cantor’s theory about in-
finity and transfinite numbers, said it was not mathematics but mysticism. Mathematics
was headed for the madhouse under Cantor. Henri Poincaré, the famous French mathe-
matician, known as “The Last Universalist”, referred to Cantor’s work as a “disease” from
which mathematics would eventually be cured. Poincaré said, “There is no actual infinite;
the Cantorians have forgotten this, and that is why they have fallen into contradiction.”
Later Hermann Weyl, the great German mathematician criticized Cantor’s hierarchy of
infinities as “fog on fog.” Hermann Schwartz was originally a friend of Cantor, but he
stopped the correspondence with Cantor as opposition to Cantor’s ideas continued to
grow. Mathematicians split to schools of empiricism, intuitionism, and constructivism in
different ways, and fell into the controversy about the foundations of mathematics against
Cantor.

The tragedy was not the set theory, but Cantor went to the madhouse. Cantor suffered
his first known bout of depression in May 1884. During the rest of his life, the depression
recurred several times with different intensity, driving him from the community into the
mental hospital refuge. In 1904 he was agitated by a paper presented by Julius König at
the Third International Congress of Mathematicians. The paper was read in front of his
daughters and colleagues. Cantor was shaken, and sent to hospital again. Cantor retired
in 1913, living in poverty. In June 1917, he entered the sanatorium for the last time and
continually wrote to his wife asking to be allowed to go home. Cantor died on January
6, 1918, in the sanatorium where he had spent the last year of his life.

Cantor’s set theory was publicly acknowledged and praised at the first International
Congress of Mathematicians, held in Zurich in 1897. Adolf Hurwitz (1859 - 1919) openly
expressed his great admiration of Cantor and proclaimed him as one by whom the theory
of functions has been enriched. Jacques Hadamard expressed his opinion that the notions
of the theory of sets were known and indispensable instruments. Over time, people
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gradually realized the importance of set theory. David Hilbert praised Cantor’s work
as “the finest product of mathematical genius and one of the supreme achievements of
purely intellectual human activity.” The Continuum hypothesis, introduced by Cantor,
was presented by Hilbert as the first of his twenty-three open problems in his address at
the 1900 International Congress of Mathematicians in Paris. When Brouwer, the founder
of intuitionism criticizing the paradoxes in set theory, Hilbert defended it by declaring,
“No one shall expel us from the paradise that Cantor has created.”

Richard Dedekind, 1831-1916

Richard Dedekind was a German mathemati-
cian. He was born on October 6, 1831 in Brunswick
Germany, where is the hometown of Gauss. His fa-
ther was a professor, his mother was a daughter
of a professor at the same university in Brunswick.
When Dedekind was in school, mathematics was
not his main interest. He studied science, in par-
ticular physics and chemistry. However, they be-
came less than satisfactory to Dedekind with what
he considered an imprecise logical structure and his
attention turned towards mathematics. He entered
the University of Göttingen in the spring of 1850
with a solid grounding in mathematics. He learned
number theory from M A Stern, and physics from
Wilhelm Weber. Gauss was still teaching, although
mostly at an elementary level, and Dedekind be-
came his last student. Dedekind did his doctoral
work in four semesters under Gauss’s supervision
and submitted a thesis on the theory of Eulerian

integrals. He received his doctorate from Göttingen in 1852.
After that, Dedekind went to Berlin for two years of study, where he and Bernhard

Riemann were contemporaries; they were both awarded the habilitation degrees in 1854.
Dedekind was then qualified as a university teacher and he began teaching at Göttingen
giving courses on probability and geometry. He studied for a while with Dirichlet, and
they became good friends. About this time, Dedekind studied the work of Galois and
he was the first to lecture on Galois theory. He also became one of the first people to
understand the importance of the notion of groups for algebra and arithmetic.

Dedekind was humble. Many of his achievements were unknown to the people at the
time. For example, after Dirichlet’s death, Dedekind wrote and published the famous
book Lectures on Number Theory based on his notes from Dirichlet’s lectures. Dedekind
was so modest that he published the book under Dirichlet’s name, even after adding many
additional results of his own in later editions. Unfortunately, Dedekind’s modesty hurt
his career; he failed to get tenure at Göttingen and ended up on the faculty of a minor
technical university([10] pp.140). – Institute of Technology Brunswick in his hometown.

Dedekind remained in Brunswick for the rest of his life, retiring on April 1, 1894. He
lived his life as a professor in Brunswick. “In close association with his brother and sister,
ignoring all possibilities of change or attainment of a higher sphere of activity. The small,
familiar world in which he lived completely satisfied his demands: ... there he found
sufficient leisure and freedom for scientific work in basic mathematical research. He did
not feel pressed to have a more marked effect in the outside world: such confirmation of
himself was unnecessary.”

Dedekind made a number of highly significant contributions to mathematics and his
work would change the style of mathematics into what is familiar to us today. While
teaching calculus for the first time at Brunswick, Dedekind developed the notion now
known as a Dedekind cut, now a standard definition of the real numbers. As well as his
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analysis of the nature of number, his work on mathematical induction, including the def-
inition of finite and infinite sets, and his work in number theory, particularly in algebraic
number fields, is of major importance. He introduced the notion of an ideal which is fun-
damental to ring theory (later introduced and extended by Hilbert and Emmy Noether).
He also proposed an axiomatic foundation for the natural numbers, whose primitive no-
tions were the number one and the successor function. The next year, Giuseppe Peano,
citing Dedekind, formulated an equivalent but simpler set of axioms.

Dedekind died on February 12, 1916. About his death, there was an interesting story.
One day, Dedekind discovered in a “Biography of Mathematicians”, that wrote: Dedekind
died on September 4, 1897. To correct this error, he wrote a letter to the editor of the
biography: “According to my diary, I was very healthy on this day and talking with my
lunch guest, dear friend Cantor, some interesting things, very enjoyable. ”[8]

Even today, there are still different views regarding to Cantor and Dedekind’s work.
Dieudonné still considered Dedekind’s work caused unnecessary confusions in 1980s. Not
to mention the fierce divisions and debates at the beginning of the 20th Century. Most
biographies and comments we see today are often too critical to Kronecker, Brouwer, and
the mathematical philosophy of intuitionism they represented. They sympathize with
Cantor, and enthusiastically praise the revolution of infinite sets and transfinite numbers.
We recommend the rational readers have your own thoughts, but not be completely
influenced by one-sided view or the other. Kronecker had a strong belief in mathematical
philosophy. He emphasized that mathematics should deal only with finite numbers and
with a finite number of operations. He was the first to doubt the significance of non-
constructive existence proofs. We should not think that Kronecker’s views of mathematics
were totally eccentric. Although it was true that most mathematicians of his day would
not agree with those views, and indeed most mathematicians today would not agree with
them, they were not put aside. Kronecker’s ideas were further developed by Poincaré
and Brouwer, who placed particular emphasis upon intuition. Intuitionism stresses that
mathematics has priority over logic, the objects of mathematics are constructed and
operated upon in the mind by the mathematician, and it is impossible to define the
properties of mathematical objects simply by establishing a number of axioms. Poincaré
in his popular book Science and Hypothesis stated that convention plays an important
role in physics. His view came to be known as “conventionalism”. He also believed that
the geometry of physical space is conventional. His idea inspired Einstein when developed
his theory of relativity.

Fibonacci numbers and Hamming numbers

Some programming environments support lazy evaluation by default. With them, we
can perform complex computation directly on infinite streams. Below is a definition of
natural numbers.

N = 0 : map(succ,N)

In this definition, N is a infinite set of natural numbers. The first number is zero,
from the second one, every number is the successor of the previous natural number, as
described in the following table:

N : 0 1 2 ...
map(succ,N): succ(0) succ(1) succ(2) ...

0 : map(succ,N): 0 1 2 3 ...

Based on this idea, below example code firstly defines the infinite set of natural num-
bers, then takes the first 10 numbers:
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nat = 0 : map (+1) nat

take 10 nat
[0,1,2,3,4,5,6,7,8,9]

Similarly, we can define Fibonacci numbers as an infinite set. Let F be the set of all
Fibonacci numbers. The first element is 0, the second is 1, every Fibonacci number after
them are the sum of the previous two. We can make a table with the same method as we
do for natural numbers:

F : 0 1 1 2 3 5 8 ...
F ′: 1 1 2 3 5 8 13 ...

0 1 1 2 3 5 8 13 21 ...

Where the first row lists all Fibonacci numbers; the second row removes the first one,
and lists the rest. We can also consider it is the result by shifting the first row to left
by one cell; in the third row, every cell is the sum of the above two numbers in the same
column. It also lists all Fibonacci numbers except for the first two: 0 and 1. We can
prepend them to the left of the third row to obtain the definition of infinite Fibonacci
numbers:

F = {0, 1} ∪ {x+ y|x ∈ F, y ∈ F ′}

Here is the corresponding example code:
fib = 0 : 1 : zipWith (+) fib (tail fib)

For another example, in mathematics, regular numbers are defined as those numbers
whose only prime divisors are 2, 3, or 5. In computer science, regular numbers are of-
ten called Hamming numbers, after Richard Hamming (American mathematician, ACM
Turning award receiver, 1915-1998), who proposed the problem of finding computer al-
gorithms for generating these numbers in ascending order. Here are the first several
Hamming numbers.

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, ...

It’s not trivial to write a program to generate Hamming numbers. While there exits
an intuitive and efficient method by using infinite stream. Let H be the infinite set of
Hamming numbers. The first Hamming number is 1. For every number x in H, 2x is
still a Hamming number, define H2 = {2x|x ∈ H}. It is also true for factor 3 and 5. Let
us define H3 = {3x|x ∈ H} and H5 = {5x|x ∈ H} respectively. If we merge these three
sets, H2,H3, and H5 together, remove those duplicated numbers, and prepend 1, then we
obtain the set of Hamming numbers again.

H = {1} ∪H2 ∪H3 ∪H5

= {1} ∪ {2x|x ∈ H} ∪ {3x|x ∈ H} ∪ {5x|x ∈ H}

In programming, ∪ means merge two series X = {x1, x2, ...} and Y = {y1, y2, ...} in
order, and drop the duplicated elements.

X ∪ Y =


x1 < y1 : {x1, X ′ ∪ Y }
x1 = y1 : {x1, X ′ ∪ Y ′}
x1 > y1 : {y1, X ∪ Y ′}

Here is an example code that summarizes above definition, and returns the 1,000,000th
Hamming number.
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ham = 1 : map (*2) ham <> map (*3) ham <> map (*5) ham
where xxs@(x:xs) <> yys@(y:ys)

| x==y = x : xs <> ys
| x<y = x : xs <> yys
| x>y = y : xxs <> ys

ham !! 1000000
519312780448388736089589843750000000000000000000000000
000000000000000000000000000000

6.3.3 Countable and uncountable infinity
From natural numbers, we’ve seen how to construct integers, rationals, and the algebraic
numbers (including part of irrational numbers like radicals). We are able to establish 1-
to-1 correspondence between all of them and natural numbers, hence they are all equinu-
merous. A set is called countable infinite set if it has the same cardinality as natural
numbers. Are all infinite set countable? Are there any larger infinities? On November
29, 1873, Cantor wrote to his friend Dedekind a letter([2], pp. 198).

May I ask you a question, which has a certain theoretical interest for me.
but which I can’t answer; may be you can answer it and would be so kind as
to write to me about it. It goes as follows: take the set of all natural numbers
n and denote it N . Further, consider, say, the set of all positive real numbers
x and denote it R. Then the question is simply this: can N be paired with
R in such a way that to every individual of one set corresponds to one and
only one individual of the other? At first glance, one says to oneself, “No,
this is impossible, for N consists of discrete parts and R is a continuum.” But
nothing is proved by this objection. And much as I too feel that N and R do
not permit such a pairing, I still cannot find the reason. And it is this reason
that bothers me; maybe it is very simple.

One week after on December 7, Cantor wrote again to Dedekind.

Recently I had time to follow up a little more fully the conjecture which I
mentioned to you; only today I believe I have finished the matter. Should I
have been deceived, I would not find a more lenient judge than you. I thus
take the liberty of submitting to your judgement what I have written, in all the
incompleteness of a first draft.

Cantor proved it impossible to establish 1-to-1 correspondence between natural num-
bers and real numbers, hence real numbers are uncountable. December 7, 1873 was the
day that set theory born. Cantor had given two proofs. The second one is the popular
Cantor’s diagonal argument.

Cantor used reduction to absurdity method in his proof. Suppose the real numbers in
open interval (0, 1) are countable. There exits 1-to-1 correspondence to natural numbers.
Then we can list all real numbers in this interval as a sequence a0, a1, a2, ..., an, ... in
decimals. For any irrational number, its decimal format is endless non-repeating; For
rational number, its decimal format can be infinitely repeating finite sequence of digits,
for example 1

3
= 0.333...; for decimals with finite digits, we can append infinite many

zeros, for example 1

2
= 0.5000... All the real numbers in interval (0, 1) can be list as

below:
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a0 = 0.a00a01a02a03...
a1 = 0.a10a11a12a13...
a2 = 0.a20a21a22a23...
a3 = 0.a30a31a32a33...
...
an = 0.an0an1an2an3...
...

Here is an important note: a0, a1, a2, ... are not necessarily ordered from small to big.
Next we construct a number b = 0.b0b1b2b3...bn..., where the n-th digit bn 6= ann. To
achieve this, we can simply make a rule, if ann 6= 5, then let bn = 5, else let bn = 6.

bn =

{
5 : ann 6= 5

6 : ann = 5

The constructed number b must not equal to any number we list above. This is because
at least the n-th digit is different. That the diagonal digits are different. We highlight
them in bold font in the table.

a0 = 0.a00a00a00a01a02a03...
a1 = 0.a10a11a11a11a12a13...
a2 = 0.a20a21a22a22a22a23...
a3 = 0.a30a31a32a33a33a33...
...
an = 0.an0an1an2an3...annannann...
...

Because we assume all numbers in interval (0, 1) are enumerated without one missing.
b is obviously in this interval, but it does not equal to any ai. The 1-to-1 correspondence
missed b, hence lead to contradiction. As the result, we are not able to establish 1-to-1
correspondence between real numbers and natural numbers. This proof is called Cantor’s
diagonal argument.

One may argue why can’t add b to the list of a0, a1, a2, ...? Suppose after adding b to
the list, its position is the m-th number, we can construct another new number c, where
its m-th digit does not equal to bm. Hence we get another number not being included.

This proof is simple and easy. It tells a surprising result: the set of real numbers in
interval (0, 1) is uncountable! It is the first infinite set that people found more numerous
than natural numbers8. As the next step, we establish a 1-to-1 correspondence: y =

πx− π
2

. It sends every real number in (0, 1) to interval (−π
2
,
π

2
) without any missing. We

immediately conclude that the real numbers in this new interval are uncountable. As the
final attack, we establish another 1-to-1 correspondence: y = tan(x). It sends every real
number between −π

2
and π

2
to the infinite set of all real numbers without any missing9.

8Courant and Robbins give another intuitive geometric proof in his popular book What is mathematics.
Suppose the points in the unit line segment (0, 1) can be enumerated as a1, a2, a3, ... We cover point a1
with an interval of length 1/10, cover point a2 with an interval of length 1/100, ... cover point an with an
interval of length 1/10n, and so on. Then the unit line segment (0, 1) will be completely covered (there
can be overlaps) by these sub-intervals with lengths 1/10, 1/100, 1/1000, ... However, the total length of
these sub-intervals, which is the sum of a geometric series, is 1/10+ 1/100+ 1/1000+ ... = 1/9 < 1. It is
impossible to cover the line segment of length 1 by an interval of total length 1/9, hence our assumption
cannot hold, the points in the line segment are uncountable[62].

9There is another geometric method to establish the 1-to-1 correspondence between the unit line
segment to all real numbers. We bend the line segment to a semicircle of length 1, then draw an infinite
line L outside the circle. From any point P in L, connect it with the centre of the circle, it must intersect
with the arc at a point Q.
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With this proof, Cantor made his most important result: The set of real numbers is not
countable. It is a higher level of infinity than countable sets. Cantor named it uncountable
set, denoted as C.

It reminds us the point in the line. In Euclid’s Elements, a point is defined as “A
point is that which has no part.”, and line is consist of points. According to Hippasus’s
founding, there are irrational numbers in the line. In other words, rationals can’t fully
cover a line, while real numbers can. We’ll give Dedekind cut in the next section to define
a real number rigorously. The above proof tells us, the points in the unit line segment,
the points in a line segment of any length, and the points in an infinite long line, which
is the number axis, are all equinumerous. They are all uncountable sets. So as the points
in circles of the same centre.

It is also surprised when compare the rationals and irrationals. Given any two ra-
tional numbers, there are infinite many irrational numbers between them; given any
two irrational numbers, there are also infinite many rational numbers between them. It
seems they are equinumerous. While according to Cantor’s finding, rational numbers are
countable, but irrational numbers are uncountable. Irrationals are more numerous than
rationals. Further, we’ve shown that algebraic numbers are countable, but the transcen-
dental numbers like π and e, are uncountable, they are more numerous than algebraic
numbers.

On the third day in Hilbert’s Grand hotel story, we established 1-to-1 correspondence
between one-dimension countable infinite numbers and two-dimension infinite grids, thus
proved rational numbers are countable. Consider the points of real numbers in one-
dimension line segment, and points in two-dimension plane, which are more numerous?
or equinumerous? Cantor raised this question in a letter to Dedekind in January, 1874.
He seemed sure the latter, the two-dimension square had more numerous points than
one-dimension line segment. But was not able to prove it. Four years after that, Cantor
surprised to find he was wrong. He managed to figure out an interesting 1-to-1 correspon-
dence. He sent the proof to Dedekind, asking for review in June, 1877. In that letter,
Cantor said “I see it, but I don’t believe it!”, the famous statement we quoted at the
beginning of this chapter.

Let us see how this 1-to-1 correspondence makes the world in a piece of sand. We are
facing two infinite set of points. One is a unit square:

E = {(x, y)|0 < x < 1, 0 < y < 1}

The other is a unit ling segment (0, 1). Take an arbitrary point (x, y) in the unit
square, represent both x and y in decimals (for finite decimal, like 0.5, write it in 0.4999...
refer to the exercise of this section). Then group the fractional part after the decimal
point, every group ends at the first none zero digits, for example:

x = 0.3 02 4 005 6 ...
y = 0.01 7 06 8 04 ...

Next, we construct a number z = 0.3 01 02 7 4 06 005 8 6 04 ... by taking the group of
digits from x and y in turns. For this example, first write down 0 and decimal point, then
take the first group from x, which is 3, then take the first group from y, which is 01, next
take the second group from x, which is 02, next take the second group from y, which is 7,
... number z definitely belongs to the unit line segment. For every two different points in
the square, their decimals of x and y must have different digits. Hence the corresponding
z are different. It means (x, y) 7→ z is an injection. On the other hand, for any point z in
the unit line segment, we can group the fractional part, then append all the odd groups
after 0 and decimal point to form x, and use all the even groups to form y. Pair (x, y)
is a point in the unit square. It means (x, y) 7→ z is also a surjection, hence a bijection



206 CHAPTER 6. INFINITY

(1-to-1 correspondence). We prove that the points in the unit line and square have the
same cardinality. Both are uncountable.

Similarly, we can next prove that, not only line and plan have equinumerous points,
but also they are equinumerous as the points in the three-dimension space, and even
equinumerous as the points in n-dimension space.

Before Cantor, there were only finite sets and “the infinite”, which was considered a
topic for philosophical, rather than mathematical, discussion. It was Cantor, that first
time told us, there exist infinite sets of different sizes. Cantor did not stopped after
differentiating the countable and uncountable infinities. He went on considering if there
exist more numerous infinities. Along the ‘infinity of infinity’ path, could we reach to
the end point? Before answering these question, let us first see how Dedekind define real
numbers with his genius idea.

Exercise 6.4

1. Let x = 0.9999...., then 10x = 9.9999..., subtract them gives 10x− x = 9. Solving
this equation gives x = 1. Hence 1 = 0.9999.... Is this proof correct?

6.3.4 Dedekind cut
In order to make the foundation of calculus rigorous, mathematicians in the 19th Century
went back to inspect the confusion concepts, like infinitesimal and infinite series, which
were developed and used by Newton, Leibniz, Jacobi, and Euler. Through the work of
Cauchy, Weierstrass and so on, the standard of rigour, including limit and convergence
were setup. However, there was still a critical problem remaining, the concept of real
numbers. The whole calculus is built on top of the continuity of real numbers, while it
was lack of a satisfied definition of real number. People thought rationals could present
line, but later found there were ‘gaps’ between rational numbers. It was not completeness
or continuous. While we demand line be completeness, continuous, without any gaps.
What is the exactly meaning of continuity of line?

When Dedekind was thinking how to teach differential and integral calculus, the idea
of Dedekind cut came to him on November 24, 1858. He kept developing this idea, and
published the result in 1872. Dedekind found although rationals were dense – for any
two rational numbers, no matter how they close to each other, there are other rational
numbers in between – they were not continuous. Consider a continuous number line, let
us use an infinitely thin knife, the knife of thought, to cut the line into two parts([8] pp.
196).

Because the line is continuous without any gaps, no matter how thin the knife, it
must cut at a point, but not pass through a gap. (for the line of rationals, but not real
numbers, then the knife may cut at a point, or may cut through a gap between two
rational numbers, for example, cutting at position

√
2.) Suppose cut at point A, then

A is either on the left, or on the right. It can not be on the both sides, or not be on
neither side. This point can not be divided or disappeared. In other words, since line is
continuous, wherever it is cut into two parts, one must have an end point, while the other
not.

Dedekind defined a cut (A1, A2), A1 is called ‘closed downwards’, and A2 is ‘closed
upwards’. Where all numbers in downwards A1 is less than every number in upwards A2.
Such that A1 represents the left half line of the cut, and A2 represents the right half. For
any such a cut, either A1 has a greatest number, or A2 has a smallest number. There
must be one and only one case.

When apply Dedekind cut to all rational numbers, we can find that rationals are not
continuous. For example, A1 contains all rational numbers less than or equal to 2, and
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Figure 6.21: Define
√
2 with Dedekind cut

A2 contains all rational numbers greater than 2, then this cut defines rational number 2.
However for the negative example: the downwards A1 contains all rational numbers that
are negative, and the non-negative ones, but with their square less than or equal to 2;
The upwards A2 contains the rest rational numbers. We can find in this cut, there is no
greatest number in the downwards, while there is no smallest number in the upwards too.
It means there is a gap in rational numbers. When cut at this point, the knife will pass
through. This cut actually defines a new number

√
2, and it is not a rational number, as

shown in figure 6.21.
Dedekind came to the idea that every real number r divides the rational numbers

into two subsets, namely those greater than r and those less than r. Dedekind’s brilliant
idea was to represent the real numbers by such divisions of the rationals. Every cut of
a rationals defines a real number. The cut through a gap (no greatest in A1, and no
smallest in A2) is an irrational number; the cut at a point (A1 has the greatest, or A2

has the smallest) is a rational number. And real numbers contain both rationals and
irrationals. Hence Dedekind cut defines real numbers. Every point in the number line is
a real number. It also gives the foundation of the continuity of real numbers.

From Hippasus found the irrational number, till Dedekind finally defined real num-
bers, It takes people two thousands years10. In the method of Dedekind cut, we always
divide numbers into two finalized infinite parts, which are two infinite sets. This is the
development and practice of actual infinity concept.

6.3.5 Transfinite numbers and continuum hypothesis
On the way to find more numerous infinity, Cantor firstly considered power set. For a
given set A, power set is the set of all possible subsets of A. For example A = {a, b}, then
its power set contains {ϕ, {a}, {b}, {a, b}}, total four elements. For a set of 3 elements, its
power set contains 8 subsets. Generally, for a set of n elements, because every element
can be select or skip when building a subset, the size of its power set is 2n. It’s obvious
that power set has a greater cardinality than the original finite set.

Cantor proved in 1891, that even for any infinite set, the power set has a strict greater
10In the same year of 1872, Weierstrass defined irrational numbers as limits of convergent series; Cantor

also defined irrational numbers as convergent sequences of rational numbers. The theory of real numbers
hence were established through these different paths.
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cardinality than the original set. This result is called Cantor’s theorem nowadays. The
proof is not hard, we put it in the appendix of this chapter. This theorem is the key
to open the door to infinite of infinite world. Cantor introduced notation ℵ0 for the
cardinality of countable infinite set, like natural numbers. ℵ is the first Hebrew letter.
The cardinality of the power set for countable infinite set is 2ℵ0 . According to Cantor’s
theorem, ℵ0 < 2ℵ0 , on top of that, we can repeatedly use power set to generate greater
and greater infinities.

ℵ0, 2ℵ0 , 22
ℵ0
, ... (6.1)

Transfinite numbers

Cantor named the series of leveled infinite cardinal numbers as transfinite cardinal num-
bers. The story of Hilbert Grand hotel, actually demonstrates the arithmetic rules of
transfinite numbers like ℵ0 + 1 = ℵ0, ℵ0 + k = ℵ0, ℵ0 + ℵ0 = ℵ0, ...

Besides power set, Cantor found another method to generate greater infinities. To
understand this method, we need introduce the concept of ordinal number. It is defined
recursively as below:

1. 0 is an ordinal number;

2. If a is an ordinal number, then a∪ {a} is also an ordinal number, denoted a+1. It
is called the successor of a;

3. If S is a set of ordinals (its elements are all ordinal numbers), then ∪S is an ordinal
number;

4. Any ordinal number is obtained from the above 3 steps.

From this definition, we can list the first several ordinal numbers from 0 as the fol-
lowing:

0
1 = 0 ∪ {0}
2 = 1 ∪ {1} = 0 ∪ {0} ∪ {0 ∪ {0}}
3 = 2 ∪ {2} = 1 ∪ {1} ∪ {1 ∪ {1}} = ...
...

Where ∪S is the union of all its elements, sometimes called as infinitary union. Ac-
cording to the first two items in the definition of ordinals, the natural numbers 0, 1, 2,
3, ..., n, ... are all ordinals. Let ω be the set of natural numbers, because all natural
numbers are ordinals, hence ω is a set of ordinals. Consider its infinitary union:

∪ω = {0, 1, 2, ...} = ω

According to the third item in ordinal definition, ω is also an ordinal. It is a limit
ordinal11, and is the smallest infinite ordinal. We can append it to the end of natural
numbers to form a new series:

0, 1, 2, ..., ω

Start from ω, repeatedly applying the second item in ordinal definition, gives a new
ordinal series:

11A nonzero ordinal that is not a successor is called a limit ordinal.
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ω + 1, ω + 2, ω + 3, ..., ω + n, ...

Combine the above two series into one set, denoted as ω · 2. Its infinitary union is
∪ω · 2 = ω · 2, hence ω · 2 is also an ordinal, and it is a limit ordinal. From ω · 2, repeat
the above process, we obtain an infinite of infinite ordinal series:

0, 1, 2, ..., n, ...
ω, ω + 1, ω + 2, ..., ω + n, ...
ω · 2, ω · 2 + 1, ω · 2 + 2, ..., ω · 2 + n, ...
...
ω · k, ω · k + 1, ω · k + 2, ..., ω · k + n, ...
...
ω2, ω2 + 1, ω2 + 2, ..., ω2 + n, ...
...
ω3, ω3 + 1, ω3 + 2, ..., ω3 + n, ...
...
ωω, ωω + 1, ωω + 2, ..., ωω + n, ...
...

(6.2)

Except the first row is natural numbers, all the others are infinite ordinals, and the
first one in every row is the limit ordinal. For the ordinals obtained by this method, they
are far from what people could imagined before. It extends the natural numbers to a
kingdom of infinite ordinals. What’s more surprising, these ordinals are all countable!
As a set, it has 1-to-1 correspondence with natural numbers. We’ll soon see, there exist
uncountable ordinals, further, there exit greater and greater infinite ordinal series one by
one.

Figure 6.22: Infinite ordinals

Among these infinite ordinals, which one is the best as the cardinal number for infinite
countable set? It’s natural to select the smallest limit ordinal ω. Let’s give the formal
definition for cardinal number:
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Definition 6.3.1. An ordinal a is a cardinal if there is no ordinal b < a with a ∼= b.

In other words, ordinal a is a cardinal, if for any ordinal b < a, the cardinality of
b is less than the cardinality of a. This definition tell us every natural numbers n is a
cardinal, and ω is also a cardinal. When use the ordinal ω as cardinal, we write it as ℵ0,
hence ℵ0 = ω. We’ve shown to use ℵ0 as the cardinal for all infinite countable sets.

Except ω, although all rest ordinals in series 6.2 are greater than ω, their cardinals
are same as ω (all equal to countable infinity). Hence they are not cardinals.

In order to obtain greater cardinals, we form a new set contains all ordinals in series
6.2, denote it as ω1.

ω1 = {a|a is ordinal, and|a| ≤ ℵ0}

Where |a| is the cardinal of a12. We can prove that ω1 is a cardinal, and it is the
first uncountable cardinal. Then, we repeat this method, to expand a new infinite ordinal
series from ω1:

ω1, ω1 + 1, ..., ω1 · 2, ..., ω2
1 , ..., ω

ω
1 , ...

All elements in this series have the same cardinality. The smallest one is ω1, which
also satisfies the cardinal definition. It is the second infinite cardinal ℵ1 = ω1. Using the
similar process to construct ω1, we can form another set:

ω2 = {a|a is ordinal, and |a| ≤ ℵ1}

It gives the third infinite cardinal ℵ2 = ω2. Repeat this method, we can obtain a series
of infinite cardinals. In summary, for any ordinal a, we can define the infinite cardinal
ℵa, then form a set:

ωa+1 = {b|b is ordinal, and|b| ≤ ℵa}

It gives a cardinal greater than ℵa as ℵa+1 = ωa+1. For any ordinal a, there is a
infinite cardinal ℵa. All these cardinals also form a series:

ℵ0,ℵ1,ℵ2, ...,ℵn, ...,ℵω, ... (6.3)

From left to right, these cardinals become greater and greater, and there are not any
other infinite cardinals between any two next ℵs. The infinite ordinals and infinite cardi-
nals are also called transfinite ordinals and transfinite cardinals, or transfinite numbers as
a whole. Where will these more and more numerous transfinite numbers lead to? Cantor
thought it must be god.

People were surprised at transfinite numbers. Some praised Cantor’s amazing in-
novation opened up a new world we’ve never seen before; Others criticized transfinite
numbers were “fog on fog”, Cantor was building a disease of mathematics need to be
cured. Although there was hotly debating, transfinite number was one of the most amaz-
ing achievement of thought in the 19th Century.

Continuum hypothesis

Cantor found two types of infinite cardinal series, one is power sets, the other is transfinite
cardinals:

ℵ0, 2ℵ0 , 22
ℵ0
, ...

12To be accurate, we should use other notation for the cardinal of A, like A, or #A, card(A), n(A) etc.
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and

ℵ0,ℵ1,ℵ2, ...

ℵ0 is the cardinal of the infinite countable set. In previous section, we reasoned that,
ℵ1 is the next transfinite cardinals next to ℵ0. However, according to Cantor’s theorem
of power set, we only know that 2ℵ0 is more numerous than ℵ0, but we do not know if it
is more or less numerous than ℵ1. Cantor conjectured 2ℵ0 = ℵ1, that there wasn’t any
other transfinite cardinals between ℵ0 and 2ℵ0 . Hence 2ℵ0 is the first transfinite cardinal
more numerous than infinite countable set.

In 1847, Cantor proved 2ℵ0 = C. It means all subsets of natural numbers and real
numbers have the same cardinality. Therefore, Cantor’s conjecture essentially states that,
there exists no set whose cardinality is strictly greater than that of natural numbers ℵ0
and less than that of real numbers C. Because real numbers are often called continuum,
this conjecture is called Continuum Hypothesis, abbreviated as CH.

Continuum Hypothesis can be further extended. For any ordinal a, whether 2ℵa =
ℵa+1 holds. This conjecture is called generalized continuum hypothesis, abbreviated as
GCH.

Cantor raised continuum hypothesis in a paper in 1878. He believed it to be true and
tried for many years to prove it. Sometimes he thought he had proved it false, then the
next day found his mistake. Again he thought he had proved it true only again to quickly
find his error. His inability to prove the continuum hypothesis caused him considerable
anxiety till his death in 1918.

The problem, whether we can prove continuum hypothesis true or false became the
first on David Hilbert’s list of 23 important open questions that was presented at the In-
ternational Congress of Mathematicians in 1900 in Paris. The continuum hypothesis came
from the practical problems from geometry, mechanics, and physics. Hilbert expressed
this view:

But even this creative activity of pure thought is going on, the external
world once again reasserts its validity, and by thrusting new questions upon us
through the phenomena that occur, it opens up new domains of mathematical
knowledge.

Because the continuum hypothesis is the most central open problem at the foundation
of mathematical logic and axiomatic set theory, it has been studied by many great math-
ematicians for over hundred years. Although many significant progresses were made, it is
not completely resolved. Kurt Gödel proved in 1938 that the negation of the continuum
hypothesis, the existence of a set with intermediate cardinality, could not be proved in
standard set theory (also known as Zermelo-Fraenkel axioms for set theory together with
the axiom of choice or AC. Informally, AC says that given any collection of non-empty
bins (even infinite), it is possible to make a selection of exactly one object from each bin.
we’ll introduce the details in next chapter). The second half of the independence of the
continuum hypothesis, unprovability of the nonexistence of an intermediate-sized set, was
proved in 1963 by Paul Cohen with a new powerful technique called forcing. There was
an interesting story said that Cohen, the young US mathematician was not sure about
his proof([8], pp. 280). He came to Princeton and knocked on Gödel’s house. Gödel was
struggling with paranoia at the time. He slightly open the door, such that Cohen could
pass his proof through. Then Cohen was shut out. Two days later, Gödel invited Cohen
came in to drink tea, and finally accept his proof. Cohen was awarded a Fields Medal
the next year.

Gödel and Cohen proved, the continuum hypothesis is undecidable from ZFC set
theory. We’ll explain more about undecidable statement in next chapter. Continuum
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hypothesis is independence from the axioms in ZF system. Similar result also happens
to the axiom of choice. Gödel and Cohen’s result also tells that AC is undecidable from
ZF system. Accepting AC gives the consistent mathematical system; while rejecting AC
gives another consistent mathematical system. With the axiom of choice, accepting or
rejecting continuum hypothesis all gives consistent mathematics respectively. Continuum
hypothesis and the axiom of choice is independent to ZF set theory[61].

6.4 Infinity in art and music

Vincent van Gogh, The Starry Night, Museum of Modern Art, New York

Along with the thought and exploration, infinity also inspired art and music when
people facing the vast galaxy, the sea, and the mystery nature.

Among the countless art about sky, the Starry Night by Dutch post-impressionist
artist, Vincent van Gogh is impressive. In his art work, Van Gogh’s night sky is a field of
roiling energy. Below the exploding stars, the village is a place of quiet order. Connecting
Earth and sky is the flame like cypress, a tree traditionally associated with graveyards
and mourning. Van Gogh said “Looking at the stars always makes me dream.” He painted
in June, 1889, in the mental hospital at Saint-Rémy-de-Provence in France, just before
sunrise, with the addition of an idealized village. Van Gogh stayed there for 108 days.
During this period, he pictured about 150 oil canvas, and hundreds of sketches.

Joseph Mallord William Turner, Snow Storm, 1842, Tate Modern, London UK
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Snow Storm: Steam-Boat off a Harbour’s Mouth is a painting by English Romanticism
artist J.M.W Turner. The picture may recall a particularly bad storm in January, 1842.
In order to feel the power of sea, Turner got the sailors to tie him to the mast to observe.
“I was lashed for four hours. and I did not expect to escape, but I felt bound to record it
if I did.” However, the critical response to the painting was largely negative at the time,
with one critic calling it “soapsuds and whitewash”. Turner said: “I did not paint it to
be understood, but I wished to show what such a scene was like.” As time going, people
finally realized, as John Ruskin, the leading English art critic of the Victorian era said:
“It is one of the very grandest statements of sea-motion, mist and light, that has ever
been put on canvas.”

The thought and study of infinity soon became a problem in philosophy and theology
from the concrete things in nature. In Ptolemy’s model, the universe is realized as a set
of nested spheres, with planets moving along them. The out most boundary is a sphere
of fixed stars. By the medieval, the church had largely accepted this model developed by
Aristotle and Ptolemy. People believed the Earth, created by God, was the centre of the
universe, and the stellar sphere was bounded.

Camille Flammarion, L’Atmosphere: Météorologie Populaire (Paris, 1888), pp. 163.

A woodcut published in Paris in 1888, reflected how people understood the bounded
universe at that time. The original caption bellow the picture translated to: “A medieval
missionary (Bruno) tells that he has found the point where heaven and Earth meet...” If
someone stands at the boundary of stellar sphere, can he raise his stick out to across the
boundary of universe? It’s hard to prevent him from doing that; but if he can, what is
the space out side the physical world? This was the paradox of the universe boundary.
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To solve it, scholars in medieval refactored Aristotle’s theory, and proposed an idea of
progressive boundary. Others believed, if throw a spear outside the world boundary,
it would enlarge the universe. The world of matter is bounded, but the boundary is
surrounded by endless void.

During the Renaissance, artists adopted mathematics and science into their works.
Leonardo da Vinci had wide interest including architecture, anatomy, mathematics, and
engineering. He intended to use perspective disciplines, and experiment different aes-
thetic proportions in his works. German Renaissance artist Albrecht Dürer studied hu-
man proportions and the use of transformations to a coordinate grid to demonstrate facial
variation. His book Four Books on Measurement introduced both painting theory and
research on geometric and perspective principles. Johannes Kepler and Gérard Desargues
independently developed the concept of the “point at infinity” in projective geometry.
Desargues developed an alternative way of constructing perspective drawings by general-
izing the use of vanishing points to include the case when these are infinitely far away.
He made Euclidean geometry, where parallel lines are truly parallel, into a special case
of an all-encompassing geometric system.

It’s the non-Euclidean geometry that brings a new view point to artists about infinity.
Euclidean geometry is named after the ancient Greek mathematician Euclid. It has been
the perfect example of axiom system and rigours reasoning for two thousand years. How-
ever, mathematicians addict to perfection continued questioning Euclid’s fifth postulate.
The first four are intuitive and obvious, for example: to draw a line from any point to any
point; all right angles are equal to one another. However the fifth postulate is disparate
complex. In Euclid’s original formulation: “If a straight line falls on two straight lines
in such a manner that the interior angles on the same side are together less than two
right angles, then the straight lines, if produced indefinitely, meet on that side on which
are the angles less than the two right angles.” This postulate is also known as “parallel
postulate”, because it is essentially equivalent to a simpler statement: for any given line
and a point not on it, there is exactly one line through the point that does not intersect
the line. People doubted if this postulate could be deduced from the first four. Actually,
the fifth postulate hasn’t been used in a large portion in Euclid’s Elements. Many math-
ematicians attempted to prove the fifth postulate in the past two thousand years, but all
failed. Italian mathematician Saccheri then tried to prove by contradiction. He assumed
the fifth postulate is false, but he obtained a series of obscure results. Saccheri believed
they were too strange, and Euclid’s fifth postulate must be true.

In 19th Century, German mathematician Carl Friedrich Gauss, Hungarian mathe-
matician János Bolyai and the Russian mathematician Nikolai Ivanovich Lobachevsky
separately realized it’s not possible to establish such proof. Parallel postulate is inde-
pendent to other postulates. And it can be replaced with other different “parallel pos-
tulate”. Gauss did not published his result, people found his finding after Gauss died
in 1885. Bolyai and Lobachevsky independently published treatises on non-Euclidean
geometry around 1830. In this new geometry (known as hyperbolic geometry nowadays),
Lobachevsky replaced Euclid’s postulate: in a plane, given a line and a point not on it,
there are multiple lines through a point that do not intersect the line. Then he developed
a whole set of consistent results. Many of them are different from Euclidean geometry.
For example, in the new geometry, the inner angle of a triangle is less than two right
angles.

German mathematician Bernhard Riemann, in 1854 constructed another new geom-
etry that was different from both Euclid and Lobachevsky. He founded the field of
Riemannian geometry, and the simplest of these is called elliptic geometry. It’s non-
Euclidean due to its lack of parallel lines. It means every two lines must intersect in a
plane. In elliptic geometry, the inner angle of a triangle is greater than two right angles.

Eugenio Beltrami, in 1868, showed that Euclidean geometry and hyperbolic geometry
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were equiconsistent so that hyperbolic geometry was logically consistent if and only if
Euclidean geometry was. In 1871, Felix Klein defined a metric method to describe the
non-Euclidean geometries. Klein’s influence has led to the current usage of the term
“non-Euclidean geometry” to mean either “hyperbolic” or “elliptic” geometry.

M.C. Escher. Circle limit III, 1959

Non-Euclidean geometry brings us such possibility, that infinite space can be bounded.
Poincaré, in his popular science book Since and Hypothesis, described a interesting world.
The world is encapsulated in a infinite bounded sphere. The temperature at the centre
is very high. Along the distance away from the centre, the temperature decrease in
proportion. When arrive at the sphere surface, it decrease to absolute zero K. Let the
radii of the world sphere be R, for a point with the distance to the centre as r, then the
temperature is proportion to R2 − r2. In this special world, due to thermal expansion,
object size is proportion to the temperature, the closer to the sphere boundary, the smaller.
Because of this, if a citizen moving towards the sphere, the temperature decreases lower
and lower. He also becomes smaller and smaller. The pace keeps slowing down. He
will never reach to the boundary of this world, although this world is bounded. What
Poincaré described is exactly a world ruled by a kind of hyperbolic geometries.

Inspired by Poincaré, the Dutch artist M.C Escher painted a series of woodcuts, called
circle limit to illustrate the bounded, infinite world. The angles, devils, and fishes all
become smaller and smaller when close to the edge of the circle, hence they will never
exceed this bounded, while infinite world.

Not only in art, there are musics about infinity. In May, 1747, Johann Sebastian
Bach visited Sanssouci Palace in Postdam. King Frederick II invited Bach to try out
his new Silbermann pianos. Bach asked the King to give him a subject of Fugue, then
immediately executed it without any preparation to the astonishment of all present. After
his return to Leipzig, he composed the subject, which he had received from the King, in
three and six parts, added several artificial passages in strict canon to it, and had it
engraved, under the title of “Musical Offering”. He sent a copy to the King on July 7.
This collection of music is catalogued as BWV1079 nowadays. Among them there is a
special piece with title “Canon per Tonos”. It is called endlessly rising canon. It pits a
variant of the king’s theme against a two-voice canon at the fifth. However, it modulates
and finishes one whole tone higher than it started out at. It thus has no final cadence.
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Douglas Hofstadter, in his Pulitzer Prize book Gödel, Escher, Bach: An Eternal Golden
Braid, wrote:

Part of the endlessly rising canon

It has three voices. The uppermost voice sings a variant of the Royal Theme, while
underneath it, two voices provide a canonic harmonization based on a second theme. The
lower of this pair sings its theme in C minor (which is the key of the canon as a whole), and
the upper of the pair sings the same theme displaced upwards in pitch by an interval of a
fifth. What makes this canon different from any other, however, is that when it concludes-
or, rather, seems to conclude-it is no longer in the key of C minor, but now is in D minor.
Somehow Bach has contrived to modulate (change keys) right under the listener’s nose.
And it is so constructed that this ”ending” ties smoothly onto the beginning again; thus
one can repeat the process and return in the key of E, only to join again to the beginning.
These successive modulations lead the ear to increasingly remote provinces of tonality, so
that after several of them, one would expect to be hopelessly far away from the starting
key. And yet magically, after exactly six such modulations, the original key of C minor
has been restored! All the voices are exactly one octave higher than they were at the
beginning, and here the piece may be broken off in a musically agreeable way. Such,
one imagines, was Bach’s intention; but Bach indubitably also relished the implication
that this process could go on ad infinitum, which is perhaps why he wrote in the margin
”As the modulation rises, so may the King’s Glory.” To emphasize its potentially infinite
aspect[5].

Exercise 6.5

1. Light a candle between two opposite mirrors, what image can you see? Is it
potential or actual infinity?

6.5 Appendix - Example programs
Define natural numbers with stream, take the first 15 numbers. Example program in Java
1.8
IntStream.iterate(1, i −> i + 1);

IntStream.iterate(1, i −> i + 1)
.limit(15).forEach(System.out::println);

Example in Python 3
def naturals():

yield 0
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for n in naturals():
yield n + 1

Define the infinite set of natural numbers recursively in Haskell.
nat = 1 : (map (+1) nat)

take 15 nat

Define the infinite set of Fibonacci numbers recursively in Haskell, then fetch the
1500th Fibonacci number.
fib = 0 : 1 : zipWith (+) fib (tail fib)

take 15 fib
[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377]

fib !! 1500
13551125668563101951636936867148408377786010712418497242133543153221487310
87352875061225935403571726530037377881434732025769925708235655004534991410
29242495959974839822286992875272419318113250950996424476212422002092544399
20196960465321438498305345893378932585393381539093549479296194800838145996
187122583354898000

Define the infinite stream of prime numbers with coalgebra in Haskell.
data StreamF e a = StreamF e a
data Stream e = Stream e (Stream e)

ana :: (a −> StreamF e a) −> (a −> Stream e)
ana f = fix . f where

fix (StreamF e a) = Stream e (ana f a)

takeStream 0 _ = []
takeStream n (Stream e s) = e : takeStream (n − 1) s

era (p:ns) = StreamF p (filter (p `notdiv`) ns)
where notdiv p n = n `mod` p /= 0

primes = ana era [2..]

takeStream 15 primes
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47]

6.6 Appendix - Proof of Cantor’s theorem
Theorem 6.6.1. Cantor’s theorem: For every set, |S| < |2S | holds. Where |S| is the
cardinality of S; 2S is the power set of S, which contains all subsets of S.

Proof. Our proof has two steps. The first step is to prove |S| ≤ |2S |. For any x, let
f(x) = {x}, which is the singleton set of x. It’s obvious that for different elements
x1 6= x2, the singleton sets are not identical {x1} 6= {x2}, which means f(x1) 6= f(x2).

Hence map S
f−−→ 2S is injective, we have:

|S| ≤ |2S |

The second step is to prove |S| 6= |2S |. Using the reduction to absurdity, suppose they

are equal. Then there exists a 1-to-1 correspondence S ϕ−−→ 2S , such that for every x ∈ S,
its image ϕ(x) ∈ 2S holds. It means ϕ(x) is some subset of S, hence ϕ(x) ⊆ S. Now we
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ask whether x belongs to ϕ(x)? Either x ∈ ϕ(x), or x /∈ ϕ(x). We put all x that not
belonging to ϕ(x) to form a new set S0:

S0 = {x|x ∈ S, andx /∈ ϕ(x)} (6.4)

Obviously, S0 is a subset of S, which means S0 ⊆ S. Hence S0 ∈ 2S . Because ϕ is
bijection, there must exist some x0, such that ϕ(x0) = S0. According to the logical law
of excluded middle, either x0 ∈ S0, or x0 /∈ S0. Both must be one and only one is true.

Let’s see each case next. If x0 ∈ S0 holds, according to the definition of S0 in (6.4),
we have x0 /∈ ϕ(x0). But since ϕ(x0) = S0, hence x0 /∈ S0.

If x0 /∈ S0, because S0 = ϕ(x0), we have x0 /∈ ϕ(x0). But according to the definition
of S0 in (6.4), x0 ∈ S0 should hold.

Hence no matter x0 belongs to S0 or not, both lead to contradiction. There cannot
be 1-to-1 correspondence between S and 2S established. Therefore, |S| 6= |2S |.

Summarize the result in above two steps: |S| ≤ |2S |, and |S| 6= |2S |, we prove the
Cantor’s theorem:

|S| < |2S |

It reminds us the popular Russel’s paradox from the second part of the proof: Let S
be a set containing all sets that each not belong to itself, then does S belong to itself?
We’ll introduce Russel’s paradox and Gödel’s incompleteness theorems in next chapter.

6.7 Appendix - Canon per tonos, The Music Offering
by J.S. Bach
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Chapter 7

Paradox

I know that I know nothing

——Socrates

Escher, Waterfall, 1961

In 1996, the 26th Summer Olympic
game was hold in Atlanta, U.S. More than
10 thousand athletes from 197 nations
challenged human limit of speed, strength,
and team work in 26 sports. At the same
time, there was another interesting match
on-going. An IBM computer, called Deep
Blue challenged the world chess cham-
pion Garry Kasparov in a six-game match.
Deep Blue won the first game, but Kas-
parov won three and drew two, defeating
Deep Blue by a score of 4:2. The next
year, heavily upgraded Deep Blue chal-
lenged again to human world champion
Kasparov. On May 11, computer defected
human: two wins for Deep Blue, one for
the champion, and three draws. Deep
Blue is a super computer of 1270 kilogram
weight, with 32 processors. It can explorer
200 million possible moves in a second.
The design team input 2 million grand-
master games in the past 100 years as the
knowledge base for Deep Blue. The ma-
chine created by human intelligence, de-
fected human at the first time in the field of intelligence. This result led to attention,
fear, and hotly debate among mess media.

Most people believed this was a significant progress in artificial intelligence at that
time. Although computer could defected human for chess, but there was still a big gap
in board game Go. There are 8 rows and 8 columns in chess board, and 32 pieces.
Computer need search among a big game tree containing about 10123 possible moves.
Even Deep Blue could explore 2 million moves per second, it would take about 10107

years to exhaust the tree. The design team optimized the program to narrow down the
search space, such that Deep Blue only need explore 12 moves ahead from current game,
while human grandmasters can only evaluate about 10 moves ahead. However for Go
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game, there are 19 rows and 19 columns, two players can put black and white pieces in
361 grids. The scale of the game tree is about 10360, which is far bigger than chess. For
a long time after Deep Blue, people did not believe computer could defect human in Go.

Deep Blue versus Kasparov. from Scientific American

20 years later in 2016, a computer program ‘AlphaGo’ challenged top human Go mas-
ter. Korean professional 9-dan Go player, Lee Sedol, lost the game in a 1:4 series matches.
One year after, the successor program ‘AlphaGo master’ beat Chinese professional Ke Jie,
the world number one ranked player, in a three-game match. Go had previously been
regarded as a hard problem in artificial intelligence that was expected to be out of reach
for the technology of the time. It was considered the end of an era. Facing the emotionless
machine, Ke Jie was unwilling and burst into tears. As human beings, our feelings are
mixed. Even the programmer community doing intellectual work is feeling the pressure
from machine: will machine replace us eventually?

Traditionally, we thought the areas with culture background, inner emotions, and
human characters, like art, literature, and music could not be dominated by machine. In
2015, three researchers Gatys, Ecker, and Bethge from University of Tübingen, a small
town 30 km south of Stuttgart, Germany, applied machine learning to art style. By using
deep convolutional neural network, they transformed a landscape photo of Tübingen
into art painting of different styles[64]. No matter the exaggerated emotion of the post-
impressionist Van Gogh, or Turner’s romantic turbid light and shadow effect, all vivid
imitated by machine, as if the artists painted by themselves (figure 7.3).

In the following years, artificial intelligence and machine learning conquered varies
of areas in accelerated speed. Machines generated different styles of music, and played
them with moods and rhythms of tension, relaxing, and so on. It is not the monotonous
electronic sound anymore. Machine batch translated news and academic papers, which is
comparable to human professional translators. Machine processed X-ray photos, CT, and
MRI medical images to diagonal diseases, and the accuracy exceeded human doctors. Self-
driven cars, powered by artificial intelligence traveled on streets, successfully overtaking
other vehicles and avoid pedestrians. Automated groceries suddenly appeared on the
street, people can pick the products and walk out without being checked out by a cashier...
As humans we can’t stop asking: Are we eliminating jobs faster than creating? Will
human be replaced by machine completely? Will machine rules people in the future?

All these lead to a critical question: does there exist boundary of computation? if yes,
where is it?
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Figure 7.3: Artworks in different styles generated by machine learning: A, Landscape
photo of Tübingen; B, The Shipwreck of the Minotaur by J.M.W. Turner, 1805; C, The
Starry Night by Vincent van Gogh, 1889; D, Der Schrei by Edvard Munch, 1893; E,
Femme nue assise by Pablo Picasso, 1910; F, Composition VII by Wassily Kandinsky,
1913.
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7.1 Boundary of computation
Gu Sen described the hesitated feelings when facing a long-running program in his popular
book Fun of thinking: Will this program finish? Shall I wait or kill it? Is there a compiler
could tell if my program will run endlessly ([65] pp.228)?

Why not possible? It seems more realistic than time machine. We may see
such a scene in a scientific film: a programmer typed something in the dark
screen, then hit enter. A highlighted, bold warning popped up immediately
“Warn: the program with the given input will run forever. Continue? (Y/N)”
If this became true one day, what fantastic cool things will you do? Do you
believe that I can make big money with it? I’ll firstly use it to prove the
Goldbach’s conjecture. I can write a program, enumerate all even numbers
one by one, examine if it is the sum of two prime numbers. If yes, then check
the next even number, otherwise output the negative example and quit. The
next thing is to compile my program. Can’t the compiler determine my program
terminates or not in advance? If the magic compiler warns me that my program
will run endlessly, haven’t I proved Goldbach’s conjecture? Or if the compiler
tells me the program will terminate, doesn’t it mean Goldbach’s conjecture is
falsehood? Either case, I’ll be the first one that solve the Goldbach’s conjecture,
and leave my name in mathematical history. What’s the next? I will modify
that program to explore the twin primes, then compile it to see if there are
really infinite many twin primes. And next, are there infinite many Mersenne
primes? This is also an open question in number theory for a long time. I can
easily solve it in this way. The 3x+1 conjecture? It’s a piece of cake to write
a “proof program” in a few minutes, then win the 500 dollars prize offered by
Paul Erdős. There are enough mathematical open questions, I’ll never worry
about nothing to do. Martin LaBar in 1984 asked if a 3×3 magic square can be
constructed with nine distinct square numbers. The award has accumulated to
100 dollars, 100 euros, and a bottle of champagne. Search “Unsolved problems
in mathematics” from internet, filter in those about discrete things, and with
award, then write a few programs to solve them all...

In 1936, the pioneer of computer science and artificial intelligence, Alan Turing proved
that, a general algorithm to determine an arbitrary computer program will finish running,
or continue to run forever, cannot exist. A key part of the proof was a mathematical
definition of a computer and program, which became known as a Turing machine. This
problem is called halting problem today.

We can use reduction to absurdity method to prove the Turing’s halting problem.
Suppose there exists a algorithm halts(p), that can determine an arbitrary program p
terminates or not. First, we construct a never halting program:

forever() = forever()

This is a infinitely recursive call. Then define a special program G as below1:

G() =

{
halts(G) = True : forever()

otherwise : halt

In program G, we utilize halts(G) to examine whether G itself will halt or not. If
it halts, then we call forever() to let it run forever. It exactly means G will not halt

1We intend to use G for special meaning. It’s Gödel’s initial letter, exactly the same name for nonde-
terministic proposition in Gödel’s incompleteness theorem.
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in this case, hence halts(G) should be false. However, according to the second clause,
it will halt. Therefore halts(G) should be true. whether halts(G) is true or false, we
obtain conflicted result. Hence our assumption can’t hold. There does not exit a general
algorithm to solve the halting problem for all possible program input.

There is another method to prove the halting problem in two steps([66] pp.268). Most
are same except that G accepts another argument p, it applies p to itself, then passes to
halts:
G(p) = if halts(p(p)) then forever() else 'Halted'

Let’s see what will happen when pass G to itself G(G). If halts(G(G)) returns true,
then it calls forever(), hence G(G) never finishes. While it exactly means halts(G(G))
should returns false, hence the program enters the else branch, and halts. But it again
means halts(G(G)) should return true. Whether halts or not, it leads to absurdity.

The halting problem clearly provides a incomputable problem, breaks the bubble of all
the above magic ideas. It reminds us the proof of Cantor’s theorem in previous chapter,
where we used quite similar method to prove that for all sets, including infinite sets, the
cardinals are strict less than their power sets. Actually, halting problem is closely related
to many interesting logic paradoxes.

7.2 Russel’s paradox
The history of paradox came back to ancient Greece. We’ve introduced Zeno’s paradoxes
about infinity and continuity. Logic paradox is often an interesting problem, with strict
reasoning but deduced to conflicted result. About the fourth Century BC, the ancient
Greek philosopher Eubulides of Miletus raised a proposition: “I am lying.” How to
determine if this declaration is true or false?

If this declaration is false, then what it states (lying) should be true, it conflicts;
however if this declaration is true, since it states I am laying, it should be false and lead
to conflict again. Whether what Eubulides said is true or not, all falls into contradiction.
This confusing problem is called ‘liar paradox’.

There is a variance of liar paradox, appeared as two separated statements:
Achilles: The tortoise is a liar, he always lies. Do not trust him.
Tortoise: Dear Achilles, you are honest, you always speaks truth.
Is it true or false for what the tortoise said? If the tortoise tells the truth, then

what Achilles states is true. However, Achilles claims the tortoise is laying, it leads to
contradiction. On the contrary, if the tortoise lies, then what Achilles says is wrong, hence
the tortoise should be true. We end up with a wired-loop: whether the tortoise speaks
truth or not, all leads to absurdity.

This two-segment liar paradox sometimes appears as a joke. You receive a piece of
note: “The other side is nonsense.” while when you flip to the other side, it writes: “The
other side is true.” Which side is true? In a similar way, it reduces to contradiction.

Such paradox also appears in children’s story. A lion caught a rabbit. He is so happy,
that he promise the rabbit: If you can guess what I am going to do, I’ll let you go;
otherwise I’ll eat you. The clever rabbit then answers: I guess you are going to eat me.

If the lion eats the rabbit, then the rabbit guesses correct, the lion should keep his
promise to let the rabbit go. However, if he let the rabbit go, it means the rabbit guesses
wrong. Hence the lion should eat the rabbit. The lion falls into the dilemma, he should
neither eat the rabbit, nor let the rabbit go. We can imagine the rabbit silently runs away
when the lion keeps deep thinking.

According to the legend, after ancient Greek army defected Persian, the king decided
to do something kind to the captives – let them chose the way to be killed. According to
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what the captive said, if it is true, then cut head off, otherwise hang. A clever captive
said: “I think you are going to hang me.” If the king hangs him, then what the captive
said is true. Hence he should be cut head according to the rule. But if cut his head
off, then it does not follow what the captive said. Hence he spoke falsehood, and should
be hanged. Whether cut head or hang, the king’s rule will not be conducted correctly.
Facing such struggled situation, the king did not only let this clever man go, but also
released all captives.

E. O. Plauen Father and Son, 1930s

In Cervantes’ novel Don Quixote, there
is an interesting paradox in Part II, Chap-
ter 51:

A deep river divides a cer-
tain lord’s estate into two
parts... over this river is a
bridge, and at one end a gal-
lows and a sort of courthouse,
in which four judges sit to ad-
minister the law imposed by the
owner of the river, the bridge
and the estate. It runs like
this: “Before anyone crosses
this bridge, he must first state
on oath where he is going and
for what purpose. If he swears
truly, he may be allowed to
pass; but if he tells a lie, he
shall suffer death by hanging
on the gallows there displayed,
without any hope of mercy.” ...

Now it happened that they once put a man on his oath, and he swore that he
was going to die on the gallows there – and that was all. After due deliberation
the judges pronounced as follows: “If we let this man pass freely he will have
sworn a false oath and, according to the law, he must die; but he swore that
he was going to die on the gallows, and if we hang him that will be the truth,
so by the same law he should go free.”

Besides the liar paradox, the barber paradox is another popular puzzle. It was told
by British mathematician and logician, Bertrand Russel in 1919. In a small village, the
barber sets up a rule for himself: “He only shaves all those, and those only, who do not
shave themselves.” Then the question is, does the barber shave himself? If he shaves
himself, the according to his rule, he should not shave himself; but if he does not, then
he should serve and shave himself. The barber falls into his own trap.

Russel discovered the paradox in set theory early in 1901. He collected and summarized
a series of paradoxes, and formalized them as a fundamental problem in set theory. People
called this kind of paradoxes as Russell’s paradox. In Cantor’s naive set theory, Russell
considered the problem about if any set belongs to itself. Some sets do, while others not.
For example the set of all spoons is obviously not another spoon; while the set of anything
that is not a spoon, is definitely not a spoon. Russell considered the latter, and extended
it to all such cases. He constructed a set R, which contains all sets that are not members
of themselves. Symbolically:

R = {x|x /∈ x}
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Russell next asked, is R a member of R? According to logical law of excluded middle,
an element either belongs to a set, or does not. For a given set, it makes sense to
ask whether the set belongs itself. But this well defined, reasonable question falls into
contradiction.

If R is a member of R, then according to its definition, R only contains the sets that
are not members of themselves, hence R should not belong to R; On the contrary, if R is
not a member of R, again, from its definition, any set does not belong to itself should be
contained, hence R is a member of R. Whether it is a member or not, gives contradiction.
Formalized as:

R ∈ R ⇐⇒ R /∈ R

Russell explicitly gave the paradox in Cantor’s set theory.

Bertrand Russell, 1872 -
1970

Bertrand Russell was born in 1872 in Monmouthshire
into a family of the British aristocracy. Both his parents died
before he was three, and his grandfather died in 1878. His
grandmother, the countess was the dominant family figure
for the rest of Russell’s childhood and youth. Her favourite
Bible verse, “Thou shalt not follow a multitude to do evil”,
became his motto.

Russell was educated at home by a series of tutors. When
Russell was eleven years old, his brother Frank introduced
him to the work of Euclid, which he described in his auto-
biography as “one of the great events of my life, as dazzling
as first love.” During these years, he read about the po-
ems of Percy Bysshe Shelley, and thought about religious
and philosophy. In 1890, Russell won a scholarship to read
for the Mathematical Tripos at Trinity College, Cambridge,
where he became acquainted with Alfred North Whitehead.
He quickly distinguished himself in mathematics and philos-
ophy, graduating as seventh Wrangler in the former in 1893 and becoming a fellow in the
latter in 1895.

Russell started an intensive study of the foundations of mathematics. He discovered
Russell’s paradox. In 1903 he published The Principles of Mathematics, a work on foun-
dations of mathematics. It advanced a thesis of logicism, that mathematics and logic are
one and the same. The three-volume Principia Mathematica, written with Whitehead,
was published between 1910 and 1913. This, along with the earlier The Principles of
Mathematics, soon made Russell world-famous in his field.

After the 1950s, Russell turned from mathematics and philosophy to international
politics. He opposed nuclear war. The Russell–Einstein Manifesto was a document calling
for nuclear disarmament and was signed by eleven of the most prominent nuclear physicists
and intellectuals of the time. Russell was arrested and imprisoned twice. The second time
he was in jail was at the age of 89, for “breach of peace” after taking part in an anti-nuclear
demonstration in London. The magistrate offered to exempt him from jail if he pledged
himself to “good behaviour”, to which Russell replied: “No, I won’t.” In 1950 Russell won
the Nobel Prize for Literature. The committee described him as “in recognition of his
varied and significant writings in which he champions humanitarian ideals and freedom
of thought.”

Russell died of influenza on February 2nd, 1970 at his home in Penrhyndeudraeth. In
accordance with his will, there was no religious ceremony; his ashes were scattered over
the Welsh mountains later that year.
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7.2.1 Impact of Russell’s paradox
Russell was sad after discovering the paradox in the central of set theory. “What makes
it vital, what makes it fruitful, is the absolute unbridled Titanic passion that I have put
into it. It is passion that has made my intellect clear, ... it is passion that enabled me to
sit for years before a blank page, thinking the whole time about one probably trivial point
which I could not get right ...”([8] pp.231) Russell wrote to mathematician and logician
Gottlob Frege about his paradox. Frege was about to build the foundation of arithmetic.
The second volume of his Basic Laws of Arithmetic was about to go to press. Frege was
surprised, he wrote: “Hardly anything more unwelcome can befall a scientific writer than
that one of the foundations of his edifice be shaken after the work is finished. This is
the position into which I was put by a letter from Mr Betrand Russell as the printing of
this volume was nearing completion... ” Russell’s paradox in axiomatic set theory was
disastrous. Further, since set theory was seen as the basis for axiomatic development of
all other branches of mathematics, Russell’s paradox threatened the foundation. This
motivated a great deal of research around the turn of the 20th century to develop a
consistent (contradiction free) mathematics.

Exercise 7.1

1. We can define numbers in natural language. For example “the maximum of two
digits number” defines 99. Define a set containing all numbers that cannot be
described within 20 words. Consider such an element: “The minimum number
that cannot be described within 20 words”. Is it a member of this set?

2. “The only constant is change” said by Heraclitus. Is this Russell’s paradox?
3. Is the quote saying by Socrates (the beginning of this chapter) Russell’s paradox?

7.3 Philosophy of mathematics
To solve Russell’s paradox that affects the foundation of mathematics and logic, many
mathematicians continued discussing, debating, and proposed varies of solutions from
1900 to 1930. For thousands of years, mathematics had long been regarded as the truth
with non-doubtful absoluteness and uniqueness in rational thinking. In this hot discussion,
people finally realized that different mathematics can coexist under different philosophical
views.

7.3.1 Logicism
Gottlob Frege was a German philosopher, logician, and mathematician. He is understood
by many to be the father of analytic philosophy. Frege was the early representative of
logicism. His goal was to show that mathematics grows out of logic, and in so doing, he
devised techniques that took him far beyond the traditional logic. Frege treated the naive
set theory as a part of logic. In order to do that, he defined natural numbers with logic.
We know that numbers are abstraction from concrete things. For example 3 can represents
three persons, three eggs, three angles in a figure and so on. All these collections are a
class2 containing 3 elements. Which one should be used to represent natural number
3? Frege’s idea is ‘all’. All such classes that 1-to-1 correspondence can be established.
This is a infinite, abstract class that defines natural number 3. Although a bit complex,
it’s a great definition that free from culture limitation. No matter what language, what
symbol you are using, there won’t be any ambiguities to understand number 3 through

2Frege’s work was prior to Cantor’s, he used the term ‘class’, while Cantor later used ‘set’ in German
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Frege’s method. This is because no symbol is needed in Frege’s definition. As such, Frege
managed to define number – which is the class of all classes. On top of this definition
and logical laws, Frege developed his theory of natural numbers, hence established logical
arithmetic. As the next step, he was going to develop all mathematics except for geometry
from logic. This is what Frege wanted to achieved in his book Basic Laws of Arithmetic.
Frege believed logical axioms were reliable and widely accepted. Once his work completed,
mathematics would be “fixed on an eternal foundation”.

Gottlob Frege, 1848-1925

We know what happened next. Just during the prepa-
ration of press for Basic Laws of Arithmetic, Russell’s letter
arrived ‘in time’. Frege fell into confusions about Russell’s
paradox. His corner stone – using logic to define the concept
of numbers – is exactly about class of all classes. Such def-
inition directly leads to logical paradox. Frege was shocked,
and finally gave up his logicism viewpoint.

Russell took over the torch of logicism. He then tried
to develop mathematics from logic in another way. Russell
believed all mathematics is symbolic logic. His logicism was
largely influenced by Italian mathematician Giuseppe Peano.
In 1900, Russell attended the International Congress of Phi-
losophy in Paris. He wrote: “The Congress was the turning
point of my intellectual life, because there I met Peano... In
discussions at the Congress I observed that he was always
more precise than anyone else, and that he invariably got

the better of any argument on which he embarked. As the days went by, I decided that
this must be owing to his mathematical logic... It became clear to me that his notation
afforded an instrument of logical analysis such as I had been seeking for years...” After
came back, Russell and Whitehead discussed the basic concepts of mathematics every
day. After hard work, they finally wrote the famous Principia Mathematica3. The three
volumes classic work about mathematical logic were published from 1910 to 1913. To
solve the paradox, Russell pointed that: “An analysis of the paradoxes to be avoided
shows that they all result from a kind of vicious circle. The vicious circles in question
arise from supposing that a collection of objects may contain members which can only be
defined by means of the collection as a whole.” He suggested: “Whatever involves all of
a collection must not be one of the collection” and call this the “vicious-circle principle”.
To carry out this restriction, Russell and Whitehead introduced ‘theory of types’.

The theory of types classified sets into levels. Individual elements, such as a person,
a number, or a particular book are of type 0; The sets of elements in type 0 are of type
1; The set of elements in type 1, which are sets of sets are of type 2... Every set is of
a well defined type. The objects in a proposition must belongs to its type. Thus if one
says a belongs to b, then b must be of higher type than a. Also one cannot speak of a set
belonging to itself. Although this approach can avoid paradox, it is exceedingly complex
in practice. It took 363 pages till the definition of number 1 in Principia Mathematica.
Poincaré remarked: “eminently suitable to give an idea of the number 1 to people who have
never heard it spoken of before.” The theory of types requires all works at their proper
type levels, propositions about integers have to be at the level of integers; propositions
about rationals have to be at the level of rationals. n/1 and n are at different levels, hence
should not be handled in one proposition at the same time. And the common statements
like “all the real numbers...” are not valid any more, as multiple types of sets are involved.

The most questionable part is about axiom of reducibility, axiom of choice, and axiom
of infinity. In order to handle natural numbers, real numbers, and transfinite numbers,

3Russell and Whitehead gave this Latin name in honor of Issac Newton’s Philosophiæ Naturalis Prin-
cipia Mathematica.
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Russel and Whitehead accepted the axiom of infinity to support the concept of infinite
classes. They also accept one can chose elements from non-empty set or even infinite set
to form new set. Such two arguable axioms exist in set theory too. Many people opposed
to the axiom of reducibility particularly. To support mathematical induction, this axiom
says any proposition at a higher level is coextensive with a proposition at type 0 level.
Poincaré pointed out it was disguised form of mathematical induction. But mathematical
induction is part of mathematics and is needed to establish mathematics, hence we cannot
prove consistency.

Alfred North Whitehead, 1861-1947

Later Russell himself became more concerned:
“Viewed from this strictly logical point of view, I
do not see any reason to believe that the axiom
of reducibility is logically necessary, which is what
would be meant by saying that it is true in all pos-
sible worlds. The admission of this axiom into a
system of logic is therefore a defect, even if the ax-
iom is empirically true.”[4]

7.3.2 Intuitionism
Some mathematicians took opposite approach to
build the foundation of mathematics called intu-
itionism. They thought mathematics was purely
the result of the constructive mental activity of
humans rather than the discovery of fundamental
principles claimed to exist in an objective reality.
Intuitionism can be backtracked to Blaise Pascal. Leopold Kronecker was the pioneer
mathematician hold intuitionism philosophy. Many world class mathematicians, includ-
ing János Bolyai, Henri Lebesgue, Henri Poincaré, and Hermann Weyl support intuition-
ism. The founder is the Dutch mathematician Luitzen Egbertus Jan Brouwer. Brouwer
was bore in 1881 in Overschie near Rotterdam, Netherlands. He entered University of
Amsterdam in 1897, and soon demonstrated good mathematics capability. While still
an undergraduate Brouwer proved original results on continuous motions in four dimen-
sional space and published his result in the Royal Academy of Science in Amsterdam
in 1904. Other topics which interested Brouwer were topology and the foundations of
mathematics.

Influenced by Hilbert’s list of problems proposed at the Paris International Congress
of Mathematicians in 1900, Brouwer put a very large effort to study typology from 1907 to
1913. The best known is his fixed point theorem, usually referred to now as the Brouwer
Fixed Point Theorem. This theorem states that in the plan every continuous function
from a closed disk to itself has at least one fixed point. He also extended this theorem
to arbitrary finite dimension. Specially, every continuous function from a closed ball of a
Euclidean space into itself has a fixed point. In 1910, Brouwer proved topological invari-
ance of degree, then gave the rigours definition of topological dimension. Because of the
outstanding contribution to topology, he was elected a member of the Royal Netherlands
Academy of Arts and Sciences.

When Brouwer was a post graduate student, he was interested in the on-going debate
between Russell and Poincaré on the logical foundations of mathematics4. His doctoral
thesis in 1907 attacked the logical foundations of mathematics and marks the beginning

4Poincaré distinguished three kinds of intuition: an appeal to sense and to imagination, generalization
by induction, and intuition of pure number—whence comes the axiom of induction in mathematics. The
first two kinds cannot give us certainty, but, he says, “who would seriously doubt the third, who would
doubt arithmetic?”[67]
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of the Intuitionist School. His views had more in common with those of Poincaré and if
one asks which side of the debate he came down on then it would have with the latter.
Brouwer was killed in 1966 at the age of 85, struck by a vehicle while crossing the street
in front of his house.

L. E. J. Brouwer, 1881-1966

Brouwer’s intuitionism came from his philoso-
phy: mathematics is a intellectual human activity.
It does not exist outside our mind. Therefore, it
is independent from the real physical world. The
mind recognizes basic and clear intuitions. These
intuitions are not perceptual or empirical, but di-
rectly admit certain mathematical concepts, like in-
tegers. Brouwer believed that mathematical think-
ing is a process of intellectual construction. It
builds its own world, that is independent of expe-
rience, and is limited only by the basic mathemat-
ical intuition. The basic intuitive concepts should
not be understood as undefined in axiomatic the-
ory, but should be conceived as something, as long
as they are indeed useful in mathematical thinking,
they can be used to understand various undefined
concepts in a mathematics.

In his 1908 paper, Brouwer rejected in mathe-
matical proofs the principle of the excluded middle,
which states that any mathematical statement is ei-

ther true or false, no other possibility is allowed. Brouwer denied that this dichotomy
applied to infinite sets. In 1918 he published a set theory, the following year a theory of
measure, and by 1923 a theory of functions, all developed without using the principle of
the excluded middle.

Henri Poincaré, 1854-1912

Brouwer’s constructive theories were not easy to set up
since the notion of a set could not be taken as a basic con-
cept but had to be built up using more basic notions. Be-
cause of this, Intuitionism rejected non-constructive exis-
tence proofs. For example, Euclid’s proof about the exis-
tence of infinite many prime numbers was not acceptable
according to Brouwer because it does not give a way to con-
struct the prime number.

In general, intuitionism was more critical than construc-
tion in the first decades of the 20th Century. Intuitionism
denied a large number of mathematical achievements, in-
cluding irrational numbers, function theory, and Cantor’s
transfinite numbers. Many reasoning methods, like the prin-
ciple of the excluded middle, were rejected. Therefore, it was
strongly opposed by other mathematicians. Hilbert said: “For, compared with the im-
mense expense of modern mathematics, what would wretched remnants mean, the few
isolated results incomplete and unrelated, that the intuitionists have obtained. ”

7.3.3 Formalism
The third mathematical school of thought is the Formalism led by the German mathemati-
cian David Hilbert. Hilbert was one of the most influential and universal mathematicians
of the 19th and early 20th Centuries. He was born in 1862 in Königsberg, Eastern Prus-
sia. He didn’t shine at school at first, but later received the top grade for mathematics.
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In 1880, Hilbert enrolled at the University of Königsberg, where he met and developed
lifelong friendship with Hermann Minkowski (two years younger than Hilbert), and asso-
ciate professor Adolf Hurwitz (three years elder than Hilbert). Hilbert wrote: “During
innumerable walks, at times undertaken day after day, we roamed in these eight years
through all the corners of mathematical science.”

David Hilbert, 1862-1943

In 1895, invited by Felix Klein, he ob-
tained the position of Professor of Mathe-
matics at the University of Göttingen. He
remained there 48 years for the rest of his
life. During the Klein and Hilbert years,
Göttingen became the preeminent institu-
tion in the mathematical world. Students
and young mathematicians viewed Göttin-
gen as the Mecca of mathematics: “Packed
a bag and go to Göttingen!”

Hilbert contributed to many branches
of mathematics. There are too many
terms, theorems named after him, that
even Hilbert himself did not know. He
once asked other colleagues in Göttingen
what ‘Hilbert space’ was. “If you think of

mathematics as a world. which it is, then Hilbert was a world conqueror.” When he died,
Nature remarked that there was scarcely a mathematician in the world whose work did
not derive from that of Hilbert.[68]

Hilbert put forth a most influential list of 23 unsolved problems at the International
Congress of Mathematicians in Paris in 1900. This is generally reckoned as the most
successful and deeply considered compilation of open problems ever to be produced by
an individual mathematician. These were the problems which he considered most signif-
icant in mathematics at that time; not isolated questions but problems of such a general
character that their solution was bound to have an enormous influence on the shape of
future mathematics.

Among Hilbert’s students were Hermann Weyl, the famous world chess champion
Emanuel Lasker, and Ernst Zermelo. But the list includes many other famour names in-
cluding Wilhelm Ackermann, Felix Bernstein, Otto Blumenthal, Richard Courant, Haskell
Curry, Max Dehn, Rudolf Fueter, Alfred Haar, Georg Hamel, Erich Hecke, Earle Hedrick,
Ernst Hellinger, Edward Kasner, Oliver Kellogg, Hellmuth Kneser, Otto Neugebauer, Er-
hard Schmidt, Hugo Steinhaus, and Teiji Takagi. From 1933, the Nazis purged many of
the prominent faculty members, included Hermann Weyl, Emmy Noether and Edmund
Landau. About a year later, the new Nazi Minister of Education, Bernhard Rust asked
whether “the Mathematical Institute really suffered so much because of the departure of
the Jews”. Hilbert replied, “Suffered? It doesn’t exist any longer, does it!” Hilbert died
in 1943 at age of 81. The epitaph on his tombstone in Göttingen consists of the famous
lines he spoke: “We must know. We will know.”

Hilbert’s Foundations of Geometry published in 1899 proposes a formal set, called
Hilbert’s axioms, substituting for the traditional axioms of Euclid. It is the representative
work of axiomatization. Hilbert’s approach signaled the shift to the modern axiomatic
method. From 1904, Hilbert started studying the foundation of mathematics. In 1920
he proposed explicitly a research project that became known as Hilbert’s program. He
wanted mathematics to be formulated on a solid and complete logical foundation. It
opened the way for the development of the formalist school, one of three major schools of
mathematics of the 20th century. According to the formalist, mathematics is manipulation
of symbols according to agreed upon formal rules. It is therefore an autonomous activity
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of thought.
The main goal of Hilbert’s program was to provide secure foundations for all mathe-

matics. In particular this should include:

1. A formulation of all mathematics. In other words all mathematical statements
should be written in a precise formal language, and manipulated according to well
defined rules.

2. Completeness: a proof that all true mathematical statements can be proved in
the formalism.

3. Consistency: a proof that no contradiction can be obtained in the formalism of
mathematics. This consistency proof should preferably use only “finitistic” reason-
ing about finite mathematical objects.

4. Conservation: a proof that any result about “real objects” obtained using reason-
ing about “ideal objects” (such as uncountable sets) can be proved without using
ideal objects.

5. Decidability: there should be an algorithm for deciding the truth or falsity of any
mathematical statement.

To execute his program, Hilbert initiated metamethematics, to study the mathematics
itself using mathematical methods. This study produces metatheories, which are mathe-
matical theories about other mathematical theories. Such approach actually differentiates
three different mathematical systems:

1. Mathematics that is not formalized G: It’s the normal mathematics, that allows
classic logical reasoning. For example, applying principle of excluded middle on
infinite set.

2. Formalized mathematics H: All symbols, formulas, axioms, and propositions are
formalized. They are undefined concepts without any concrete meanings before
explanation. Once explained, they are the concepts in G. In other words, G is the
model of H, and H is formalized G. As Hilbert described: “One must be able to
say at all times — instead of points, straight lines, and planes — tables, chairs,
and beer mugs.” With this approach, the specific meanings and background in
Euclid geometry are put aside, we only focus on the relations between the undefined
concepts, which are reflected through a collection of axioms.

3. Metamathematics K: This is the metatheories to study H. All reasoning in K
should be admitted intuitively. For example, without applying principle of excluded
middle on infinite set.

While Hilbert and the mathematicians who worked with him in his enterprise were
committed to the project, a young mathematician Gödel proved incompleteness theorems,
which showed that most of the goals of Hilbert’s program were impossible to achieve. We’ll
explain the details in later sections.

7.3.4 Axiomatic set theory
Different from the mathematical schools of logicism, intuitionism, and formalism, the
members of the set-theoretic school did not formulate their distinct philosophy at the
beginning, but they gradually gained adherents, and a program. This school today earns
as much as supporters as the other three we introduced.
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The set-theoretic school can be traced back to Cantor and Dedekind’s work. Although
both were primarily concerned with infinite sets, they found by establishing the concept of
natural numbers on basis of set, all of mathematics could then be derived. When Russell’s
paradox was found at the centre of Cantor’s set theory, some mathematicians believed
that the paradox was due to the informal introduction of sets. Cantor’s set theory is often
described today as ‘naive set theory’. Hence the set theoretic thought that a carefully
selected axiomatic foundation would remove the paradoxes of set theory. Just as the
axiomatization of geometry and of the number system had resolved logical problems in
those areas. German mathematician Ernst Zermelo first took the axiomatization approach
in set theory in 1908.

Zermelo also believed the paradoxes arose because Cantor had not restricted the con-
cept of a set. He therefore stressed with clear and explicit axioms to clarify what is meant
by a set, and what properties sets should have. In particular, he wanted to limit the size of
possible sets. He had no philosophical basis but sought only to avoid the contradictions.
His axiom system contained the undefined fundamental concepts of set and the relation
of one set being included in another. These and the defined concepts were to satisfy the
statements in the axioms. No properties of sets were to be used unless granted by the
axioms. In his system, the existence of infinite sets, the operations as the union of sets,
and the formation of subsets were provided as axioms. Zermelo also used the axiom of
choice[4].

(a) Ernst Zermelo, 1871-1953 (b) Abraham Fraenkel, 1891-1965

Zermelo’s system of axioms was improved by Abraham Fraenkel in 1922. Zermelo did
not distinguished a set property and the set itself, they were used as synonymous. The
distinction was made by Fraenkel. The system of axioms used mostly common by set
theorists is known as Zermelo-Fraenkel system, abbreviated as ZF system. They both
saw the possibility of refined and sharper mathematical logic available in their time, but
did not specify the logical principles, which they thought were outside of mathematics,
and could be confidently applied as before[4].

Zermelo provided 7 axioms in his 1908 paper. Then in 1930, Fraenkel, Skolem, and
Von Neumann suggested to add another two axioms. These axioms are as below:

1. Axiom of extensionality: Two sets are equal if they have the same elements. For
set A and B, if A ⊆ B and B ⊆ A, then A = B.

2. Empty set: The empty set exists.
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3. Axiom schema of separation: Also known as axiom schema of specification.
Any property that can be formalized in the language of the theory can be used
to define a set. For set S, if proposition p(x) is defined, then there exists set
T = {x|x ∈ S, p(x)}.

4. Axiom of power set: One can form the power set (the collection of all subsets of
a given set) of any set. This process can be repeated infinitely.

5. Axiom of union: The union over the elements of a set exists.

6. Axiom of choice�abbreviated as AC.

7. Axiom of infinity: There exists a set Z, containing empty set. For any a ∈ Z,
then {a} ∈ Z. This axiom ensures infinite set exits.

8. Axiom schema of replacement: This axiom is introduced by Fraenkel in 1922.
For any function f(x) and set T , if x ∈ T , and f(x) is defined, there exits a set S,
that for all x ∈ T , there is a y ∈ S, such that y = f(x). It says that the image of a
set under any definable function will also fall inside a set.

9. Axiom of regularity: Also known as axiom of foundation. It was introduced by
Von Neumann in 1925. x does not belong to x.

As such, set theory was abstracted to a axiomatic system. Set turned to be an un-
defined concept that satisfies these axioms. They do not permit ‘all inclusive set’, hence
avoid the paradox, and fixed the defects in naive set theory. However, there were still
debate about which axioms were acceptable, particularly the axiom of choice is arguable.

Figure 7.12: Banach-Tarski paradox: a solid ball can be decomposed and put back to-
gether into two copies of the original ball.

In 1924, Polish mathematicians Stefan Banach and Alfred Tarski proved a theorem
called Banach-Tarski paradox5. This theorem states that, if accept axiom of choice, then
for a solid ball in 3 dimensional space, there exists a decomposition of the ball into a
finite number of disjoint subsets, which can then be put back together in a different way
to yield two identical copies of the original ball. Indeed, the reassembly process involves
only moving the pieces around and rotating them without changing their shape. Banach
and Tarski was going to reject axiom of choice through this theorem. However, their
proof looked so natural, that mathematicians tend to consider it only reflects the counter
intuitive fact about axiom of choice. Some set-theorists insist not to including axiom of
choice, such axiomatic set theory is called ZF system, while the one included axiom of
choice is called ZFC system. We introduced the interesting relation between axiom of
choice and continuum hypothesis in previous chapter.

5Also known as Hausdorff-Banach-Tarski theorem, or ‘Doubling sphere paradox’.
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7.4 Gödel’s incompleteness theorems
By 1930, there had been four separated, distinct, and more or less conflicting approaches
about mathematics foundation. Their supporters adherence to their own mathematical
schools. One could not say a theorem is correctly proven, because by 1930, he had to add
by whose standard, it was proven correct. The consistency of mathematics, which moti-
vated these new approaches was not settled at all except if one argue that it’s the human
intuition guarantees consistency[4]. Hilbert was still planing his project optimistically to
prove the completeness and consistency of mathematics. All these were ended up by a
young mathematician and logician, Gödel.

Kurt Gödel, 1906-1978

Kurt Gödel was born in 1906 in Brünn, Austria-
Hungary Empire (now Brno, Czech Republic) into
a German family. He had quite a happy childhood.
He had rheumatic fever and recovered at age 6.
However, 2 years later when read medical books
about the illness, he learnt that a weak heart was
a possible complication. Although there is no evi-
dence that he did have a weak heart, Kurt became
convinced that he did, and concern for his health
became an everyday worry for him. In his family,
young Kurt was known as “Mr. Why” because of
his insatiable curiosity.

In 1924, Gödel entered the University of Vienna.
he hadn’t decided whether to study mathematics or
theoretic physics until he learnt number theory. He
decided to take mathematics as his main subject
in 1926. Gödel was also interested in philosophy,

and took part in seminars about mathematical logic. The exploration of philosophy and
mathematics set Gödel’s life course.

In 1929, at the age of 23, he completed his doctoral dissertation. In it, he established
his completeness theorem regarding the first-order predicate calculus. He was going to
further study Hilbert’s program to prove the completeness and consistency of mathematics
in finite steps. However, he soon developed an excepted result. In 1930 Gödel attended the
Second Conference on the Epistemology of the Exact Sciences, held in Königsberg. Here
he delivered his first incompleteness theorem, and soon, proved the second incompleteness
theorem.

Gödel worked at University of Vienna from 1932. In 1933, Adolf Hitler came to
power in Germany, the Nazis rose in influence in Austria academy over the following
years. In 1936, Moritz Schlick, whose seminar had aroused Gödel’s interest in logic, was
assassinated by one of his former students. This triggered “a severe nervous crisis” in
Gödel. He developed paranoid symptoms, including a fear of being poisoned. After the
world war II broken out, Gödel accepted the invitation from the Institute for Advanced
Study in Princeton, New Jersey. and moved to US. To avoid the difficulty of an Atlantic
crossing, the Gödels took the Trans-Siberian Railway to the Pacific, sailed from Japan
to San Francisco, then crossed the US by train to Princeton. He met Albert Einstein
in Princeton, who became a good friend. They were known to take long walks together
to and from the Institute for Advanced Study. Einstein’s death in 1955 impacted him
a lot. In his later life, logician and mathematician Wang Hao was his close friend and
commentator.

Gödel’s married Adele Nimbursky, whom he had known for over 10 years on September
20th, 1938. Their relationship had been opposed by his parents on the grounds that she
was a divorced dancer, six years older than Gödel. Later in his life, Gödel suffered periods
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of mental instability and illness. He had an obsessive fear of being poisoned; he would
eat only food that Adele prepared for him. Late in 1977, she was hospitalized for six
months and could subsequently no longer prepare her husband’s food. In her absence, he
refused to eat, eventually starving to death. He weighed 29 kilograms (65 lb) when he
died. His death certificate reported that he died of “malnutrition and inanition caused
by personality disturbance” in 1978. Because of the outstanding contributions in logic,
he was regarded as the greatest logician since Aristotle.

In 1931, Gödel published his paper titled On Formally Undecidable Propositions of
Principia Mathematica and Related Systems. Where ‘Principia Mathematica’ is the work
of Russell and Whitehead. In that article, he proved for any computable axiomatic system
that is powerful enough to describe the arithmetic of the natural numbers:

1. If a system is consistent, it cannot be complete.

2. The consistency of axioms cannot be proved within their own system.

For any consistency formal system, Gödel gave an undecidable statement G, that
can neither be proved nor disproved. This theorem is called Gödel’s first incompleteness
theorem. It tells that consistent formalized system is incomplete. As far as the system
is powerful enough to contain arithmetic of natural numbers, there will be problems
exceed it. One may ask, since G is undecidable, what if accept G or G’s negation as an
additional axiom, to obtain a more powerful system? However, Gödel soon proved the
second incompleteness. It tells that if a formal system containing elementary arithmetic,
then the consistency cannot be proved within its own system. Whether accept or reject
G, the new system is still incomplete. There always exists undecidable statement in the
higher level.

In Euclidean geometry for example, we can exclude the fifth postulate, to obtain the
axiomatic system with the first four postulates. However, we cannot prove the fifth pos-
tulate true or false. We know that whether accept or reject the fifth postulate gives
consistent geometry – Euclidean geometry and varies of non-Euclidean geometries re-
spectively. In axiomatic set theory ZF system, we cannot prove axiom of choice true
or false. Accepting it gives the consistent ZFC system; while rejecting it gives another
consistent system. After add the axiom of choice to establish ZFC system, we cannot
prove the continuum hypothesis true or false in ZFC. Accepting continuum hypothesis
gives a consistent system; while rejecting continuum hypothesis gives another consistent
system.

Figure 7.14: Escher, Angles and Devils, 1941
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Gödel’s first and second incompleteness theorems ended a half-century of attempts,
beginning with the work of Frege and culminating in Principia Mathematica and Hilbert’s
formalism, to find a set of axioms sufficient for all mathematics. Even the elementary
arithmetic system is consistent, such consistency cannot be proved within itself. As
mathematician André Weil said: “God exists since mathematics is consistent, and the
Devil exists since we cannot prove it.”[8]

7.5 Proof sketch for the first incompleteness theorem
According to Hilbert’s project, the first step is to formalize all the mathematics into a
system. Then study it with metamathematics. In order to do that, we need represent
every mathematical branch as a formal system, which only contains finite many axioms,
then prove it is complete and consistent. Among them, the most fundamental system is
the arithmetic of natural numbers. Many mathematical branches are isomorphic to it. In
previous chapter, we see how to extend natural numbers to define integers, rationals, and
real numbers. By establishing the correspondence between points and real numbers, we
can further treat the Euclidean geometry as arithmetic through coordinate geometry.

7.5.1 Formalize the system
Here we use the method and terms, that Douglas Hofstadter wrote in his popular book
Gödel, Escher, Bach: An Eternal Golden Braid to introduce the proof sketch. Gödel’s
proof also starts from modeling a formal system. We call this system “Typographical
Number Theory”, abbreviated as TNT. It happens to be the same abbreviation of Trini-
trotoluene, a powerful explosive. Hofstadter intended to give this name to indicate it’s
powerful enough to destroy the building itself. TNT formalizes the number theory in
natural language into a series of typographical strings. Although sounds complex, we
can realize it step by step on top of the Peano Axioms we introduced in chapter 1. As
the first thing, we need define numbers. According to Peano’s axioms, zero is natural
number, every natural number has its successor, we can define the typographical string
for numbers as the following:

zero 0
one S0
two SS0

three SSS0
... ...

Where ‘S’ means successor, two letters, ‘SS’ mean the successor of a successor. A
hundred ‘S’s and a ‘0’ are the 100 times successor of zero, which is the natural number
100. Although it is very long, the rule itself is simple enough. With natural numbers
being defined, we need next define variables. To make the system as simple as possible,
we only use 5 typographical letters a, b, c, d, e. When need more variables, we can simply
add primes like a′, a′′, a′′′. Next we need ‘+’ for addition, ‘·’ for multiplication, and the
parenthesis to control the arithmetic orders. To formalize the proposition we need ‘=’,
‘¬’ for negation, and → for implication. Here are some examples of formal propositions
(no matter their truth or falsehood):

• one plus two equals four: (S0 + SS0) = SSSS0

• two plus two is not equal to five: ¬(SS0 + SS0) = SSSSS0
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• if one equals to zero, then zero equals one: (S0 = 0)→ (0 = S0)

A proposition can have free variables, for example:

(a+ SS0) = SSS0

It means a plus 2 equals 3. Obviously the value of a determines if this proposition is
true or false. Therefore, we need universal quantifier ∀, existential quantifier ∃, and colon
‘:’ to indicate quantifier scope. The following proposition:

∃a : (a+ SS0) = SSS0

means, there exists a, such that a plus 2 equals 3. Here is another example:

∀a : ∀b : (a+ b) = (b+ a)

It is exactly the commutative law of addition for natural numbers. When remove the
quantifier for a, it changes to:

∀b : (a+ b) = (b+ a)

This is a open formula, since a is free. It expresses a unspecified number a commutes
with all numbers b. It may or may not be true. In order to compose propositions, we need
logical conjunction (and) ∧, logical disjunction (or) ∨. Although there are few symbols,
TNT is very expressive. Here are some examples:

2 is not the square of any natural numbers: ¬∃a : (a · a) = SS0
Fermat’s last theorem holds when n equals 3: ¬∃a : ∃b : ∃c : ((a · a) · a) + ((b · b) · b) =

((c · c) · c)
We defined typographical symbols to express propositions so far. To construct TNT

system, we also need axioms and reasoning rules.

Axioms and reasoning rules

Following Peano’s axioms, we define 5 axioms for the TNT system:

1. ∀a : ¬Sa = 0, this axiom states that, zero is not the successor of any number;

2. ∀a : (a+ 0) = 0, this axiom states that, any number plus 0 equals itself;

3. ∀a : ∀b : (a+ Sb) = S(a+ b), this axiom defines the addition for natural numbers;

4. ∀a : (a · 0) = 0, this axiom states that, any number multiplies zero equals zero;

5. ∀a : ∀b : (a ·Sb) = ((a ·b)+a), this axiom defines multiplication for natural numbers.

Next we establish reasoning rules. For example, from axiom 1, that 0 is not the
successor of any number, we want to deduce a special case, that 1 is not the successor of
0. In order to do this, we introduce the rule of specification:

Rule of specification: Suppose u is a variable occurs in string x. If ∀u : x is a
theorem, then x is also a theorem, and any replacement of u in x wherever it occurs, also
gives a theorem.

There is a restriction, the term that replaces u, must not contain any variables that
is quantified in x. And the replacement should be consistent. The opposite rule to
specification is the rule of generalization. It allows us to add the universal quantifier
before a theorem.
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Rule of generalization: Suppose x is a theorem, u is a free variable in it. Then
∀u : x is a theorem.

For example, ¬S(c+S0) = 0 means there is no such a number, that plus 1, then take
the successor gives 0. We can generalize it as: ∀c : ¬S(c+ S0) = 0.

The next rule tells us how to convert universal and existential quantifiers.
Rule of interchange: Suppose u is a variable, then the string ∀u : ¬ and ¬∃u : are

interchangeable.
When applying this rule to axiom 1 for example, it transforms to ¬∃a : Sa = 0. The

next rule allows us to put a existential quantifier before a string.
Rule of existence: Suppose a term appears once or multiply in a theorem, then it

can be replaced with a variable, and add a corresponding existential quantifier in front.
Use axiom 1 for example again: ∀a : ¬Sa = 0, we can replace 0 with a variable b, and

add the corresponding existential quantifier to give: �∃b : ∀a : ¬Sa = b. It states that,
there exists a number, such that any natural number is not its successor.

We next consider the symmetry and transitivity for equality, and define rules. Let
r, s, t all stand for arbitrary terms.

Rules of quality:

• Symmetry: if r = s is a theorem, then s = r is also theorem;

• Transitivity: if r = s and s = t are theorems, then r = t is also theorem.

To add or remove the successorship S, we define below rules.
Rules of successorship�

• Add: If r = t is theorem, then Sr = St is a theorem;

• Drop: If Sr = St is theorem, then r = t is a theorem.

So far, the TNT system is very powerful, we can construct complex theorems with it.

Exercise 7.2
1. Translate Fermat’s last theorem into a TNT string.
2. Prove the associative law of addition with TNT reasoning rules.

Incompleteness of TNT

With the axioms and reasoning rules in TNT system, we can prove a series of theorems
easily:

(0 + 0) = 0
(0 + S0) = S0

(0 + SS0) = SS0
(0 + SSS0) = SSS0

... ...

From axiom 2, we can deduce the first theorem by replacing a with 0; on top of this
theorem, and use axiom 3, we can obtain the second theorem; every theorem can be
deduced from the previous one. Observe this pattern, we immediately ask, why can’t we
summarize them to a theorem?

∀a : (0 + a) = a

Note it is different from axiom 2. Unfortunately, we can’t reason this theorem with
all the rules in TNT so far. We may want to add an additional rule: if all this series
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of strings are theorems, then the universally quantified string which summarizes them is
also a theorem. However, only human that outside TNT has this insight. It’s not a valid
rule for the formal system.

Lack of such summarize capability indicates TNT is incomplete. Accurately speaking,
a system with this kind of ‘defect’ is called ω incomplete. Where ω is the cardinal of
countable infinite set introduced in previous chapter. We say a system is ω incomplete if
all the strings in a series are theorems, but the universal quantified summarizing string is
not a theorem. Incidentally, the negation of the summarizing string:

¬∀a : (0 + a) = a

is not a theorem of TNT too. It means the string is undecidable within TNT system.
The capability of TNT is not enough to determine this string is theorem or not. It just
likes the same situation, that with only the first four postulates in Euclidean geometry,
the fifth postulation is undecidable. We can either accept to add the fifth postulation
to obtain Euclidean geometry, or reject to add its negation to obtain non-Euclidean
geometry. Similarly, we can either add this string or its negation to TNT to construct
different formal systems.

It looks a bit counter intuitive if we chose the negation as theorem: zero plus any
number does not equal to this number any more. It’s quite different from the arithmetic
of natural numbers that familiar to us. It exactly reminds us, the concept in a formal
system is undefined. We give it the meaning of addition for natural numbers only for the
purpose of easy understanding.

The ω incompleteness of TNT tells us, we are missing an important rule – you may have
already thought of – Peano’s fifth axiom that corresponding to mathematical induction.
Let’s add this last piece of tile to the puzzle.

Rule of induction: Suppose u is a variable in string X, denoted as Xu. If it is a
theorem when replace u with 0, and ∀u : Xu→ XSu. It means if X is a theorem for u,
so as it is when replace u to Su. Then ∀u : Xu is also a theorem.

With mathematical induction supported, TNT system now has the same capability
as Peano’s arithmetic.

Exercise 7.3
1. Prove that ∀a : (0 + a) = a with the newly added rule of induction.

7.5.2 Gödel numbering
One critical step Gödel took was to introduce Gödel numbering. TNT system is powerful
enough to mirror other formal system, is it possible to mirror TNT by itself? What Gödel
thought is to ‘arithmetize’ the reasoning rules. To do this, he assigned all symbols with
a number.

Axiom 1 is translated to such numerals:
∀ a : ¬ S a = 0

626 262 636 223 123 262 111 666
The numbering scheme is not unique. It does not matter if one assigns different

numbers. With Gödel numbering, every TNT string can be represented as a number
(although it can be a very big number). The problem is in the other direction: given
any number, can we determine if it represents a TNT theorem? We know the first five
TNT numbers, which represent the five axioms. With the TNT reasoning rules, we can
construct infinite many TNT numbers from these five numbers. Atop of this, we introduce
a number theory predication:

a is a TNT number.
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symbol number symbol number
0 666 S 123
= 111 + 112
· 236 ( 362
) 323 a 262
′ 163 ∧ 161
∨ 616 → 633
¬ 223 ∃ 333
∀ 626 : 636

Table 7.1: A Gödel numbering to TNT

For example, 626,262,636,223,123,262,111,666 is a TNT number (We add commas to
make it easy to read), it represents axiom 1. Its negation form is:

¬a is a TNT number.

For example, 123,666,111,666 is not a TNT number. It means we can replace a by a
string of 123666111666 Ss and a 0. This huge string actually means: S0 = 0 is not a TNT
theorem. TNT system can really speak about itself. It is not an accidental feature, but
because of the fact that all formal systems are isomorphic to number theory N . Hence
we formed a circle: A TNT string has its interpretation in number theory N , while the
statement in N can have a second meaning, which is the metalanguage interpretation
about TNT.

TNT Number theory N Meta-TNT
Number theory interpretation Metalanguage statement

Figure 7.15: TNT → number theory N → Meta-TNT

7.5.3 Construct the self-reference
The last step in Gödel’s proof is to construct a self-reference. It’s such a TNT string,
called G, which is about itself:

G is not a theorem of TNT.

Now we can detonate TNT. Whether G is a theorem of TNT or not? If G is a theorem,
then it states the truth that “G is not a theorem”. Here we see the power of self-reference.
As a theorem, G can’t be falsehood. Because we assume that TNT will not treat falsehood
as theorem, we have to draw the conclusion that G is not a theorem. While known that
G is not a theorem, we should admit that G is truth. It reflects that TNT does not meet
our expectation – we found a string, it states the truth, but is not a theorem. Further,
considering the fact that G has its number theory interpretation, which is a statement
of arithmetic property about natural numbers. From the reasoning outside TNT, we can
confirm this statement is true, and the string is not a theorem of TNT. However, when
we ask TNT whether this string is true, TNT could never say ‘Yes’ or ‘No’.

G is that undecidable proposition. This is the sketch of the proof of Gödel’s first
incompleteness theorem.
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7.6 Universal program and diagonal argument
What does Gödel’s incompleteness theorems mean to programming? We have an exactly
isomorphic problem of programming. In order to see it, let us start from a formal computer
programming language, This language supports primitive recursive function. The so
called primitive recursive function is a kind of number theory functions, they can map
from natural numbers to natural numbers, and follow the 5 axioms:

1. Constant function: The 0-ary constant function 0 is primitive recursive;

2. Successor function: The 1-ary successor function S(k) = k+1 is primitive recursive;

3. Projection function: The n-ary function, which accepts n arguments, and returns
its i-th argument Pn

i is primitive recursive;

4. Composition: The result of finite many times composition of primitive functions is
still primitive recursive;

5. Primitive recursion: {
h(0) = k

h(n+ 1) = g(n, h(n))

We say h is computed from g through primitive recursion. It can be extended to
the case of multiple arguments.

The programming language that supports basic arithmetic like addition, subtraction,
if-then branches, equal, less than prediction, and bounded loop is called primitive recursive
programming language. The bounded loop means the number of loops are determined
beforehand. It can be loop without go-to statement, or for-loop that does not allow to
alter the loop variable inside it. However, it cannot be while loop, or repeat-until loop.
Because of these limitations, all primitive recursive programs must halt.

An important property of primitive recursive function is that, all primitive recursive
programs are recursively enumerable. Suppose we can list all primitive recursive functions
that with one input and one output, store them in a infinite big library. We can number
each of them6, from 0, 1, 2, 3, ... And denote these programs as B[0], B[1], B[2], .... For
the i-th program, when input n, it gives result B[i](n).

Now, we construct a special function f(n), when input n, its output is what the n-th
program’s output for n plus 1. Like this:

f(n) = B[n](n) + 1

Such f is definitely computable. Now we ask whether f is a primitive recursive
program stored in our library? If yes, suppose its number in the library is m. According to
our numbering method, when inputm to them-th program, the result should be B[m](m).
However, from the definition of f , its output should be f(m) = B[m](m) + 1. These two
results are not equal obviously. The contradiction proves there exists computable function
that is not primitive recursive.

Our proof uses the same method as Cantor’s diagonal argument in previous chap-
ter. We have to relax the bounded loop limitation to make the programming language
more powerful. To do that, we allow go-to statement in the loop to jump out; the loop
variable can be altered inside; we introduced while loop, repeat-until loop; and general

6One numbering method is to concatenate all ASCII codes of the program to form a number, then
sort them from less to big. Since each program is unique, their ASCII codes are different
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recursive functions. As such, we extend from primitive recursive function to total recur-
sive function. This kind of programming language is called Turing-complete language.
Most computer programming languages are Turing-complete, which are isomorphic to the
formal systems like arithmetic of natural numbers. However, there is defect in Turning-
complete language, as we can construct the primitive recursive function of Turing halting
problem. It proves there exits incomputable problem. Is it possible to relax the limita-
tion further, empower Turning-complete language, to design a universal program? The
answer is no. Turning-complete is at the highest level, that reaches to the limitation of
formal system. There is no other limitation can be relaxed any more. Gödel’s incomplete-
ness theorems tell us, once the formal system is powerful enough to include arithmetic of
natural numbers, there must be undecidable problem in it.

7.7 Epilogue

Figure 7.16: Escher, Dragon, 1952

As human being, our rational
thinking is great. It can lead
us back to thousands of years,
and talk to ancient sages; it can
send us across the universe, and
step onto the unreachable planet;
it can foresee elementary parcels
that are invisible to eyes; it can
break through intuition and reach
to high dimension magic world.
Looking up the sky, through the
clouds, dust, and stars, we feel
the insignificant of ourselves. We
are just passing passengers in the
long river of time, just like a drop
in the vast sea.

The problem we introduce in
this chapter, is essentially about
ourselves as human. Does there
exist the boundary of our ratio-
nal thinking? Are we swallow-
ing ourselves along a strange cir-
cle? These are questions every-
body will ask at the era of artifi-
cially intelligence. People are making machine isomorphic to people, making the huge
machinery computing isomorphic to brain and rational thinking. Just as Escher illus-
trated in his Dragon, he tried best to break free from the two-dimension picture. He has
found the two slits in the paper. His head and neck pokes through one slit, and the tail
through the other, with the head biting the tail, he want to pull himself out to the three-
dimension world. As the observer, we clearly know all still happen on the two-dimension
paper, the dragon’s hard work is in vain. All these are “like a dream, an illusion, a bubble
and a shadow, like dew and lightning.”

Even it was about a hundred years ago, the hot debate about mathematical foundation,
the genius proof given by Gödel still have their practical significance today. As human
beings, we are humbly in awe of the nature, the universe, our ancestors, and ourselves.
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Answers

.1 Preface
1. Implementing a tick-tack-toe game is a classic programming exercise. It’s trivial

to test if the sum of three numbers is 15. Please use this point to implement a
simplified tick-tack-toe program that never loses a game.
We use Lo Shu square to model tick-tack-toe game as they are isomorphic. We setup
two sets X,O to represent the cells each player has occupied. For the game in the
preface, it starts with X = ϕ, O = ϕ, and ends with X = {2, 5, 7, 1}�O = {4, 3, 8, 6}.
To determine if either player wins, we write a program to check if there are any 3
elements add up to 15.
There are two methods to do this checking. One is to list all the rows, columns, and
diagonals. There 8 tuples in total as: {{4, 9, 2}, {3, 5, 7}, ..., {2, 5, 8}}. Then check
if anyone is the subset of the cells occupied by the player. The other method is
interesting. Suppose a player covers cells X = {x1, x2, ..., xn}, sorted in ascending
order as they appear in the Lo Shu square. We can first pick x1, then use two
pointers l, r point to the next element and the last element. If the sum of three
numbers s = x1 + xl + xr equals to 15, it means the player lines up and win. If
it is less than 15, because the elements are in ascending order, we can increase the
left pointer l by 1 and examine again. otherwise, if it is greater than 15, then we
decrease the right pointer r by 1. When the left and right pointers meet, then no
tuple add up to 15 when fixing x1. We next pick x2 and do the similar things. In
worst case, after (n− 2) + (n− 3) + ...+ 1 checks, we know whether a player wins
or not.
def win(s):

n = len(s)
if n < 3:

return False
s = sorted(s)
for i in range(n − 2):

l = i + 1
r = n − 1
while l < r:

total = s[i] + s[l] + s[r]
if total == 15:

return True
elif total < 15:

l = l + 1
else:

r = r − 1
return False

Given X and O, we can test if the game is in end state – either a player wins or
draw with all 9 cells being occupied. Next we use the classic min-max method in

247
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AI to realize the game. For each state, we evaluate its score. One player tries to
maximize the score, while the opponent tries to minimize it. For a draw state, we
evaluate the score as zero; if player X wins, we give it score 10; and player O wins,
we give it a negative score -10. These numbers are arbitrary. They can be any other
values without impact the correctness.

WIN = 10
INF = 1000

# Lo Shu magic square
MAGIC_SQUARE = [4, 9, 2,

3, 5, 7,
8, 1, 6]

def eval(x, o):
if win(x):

return WIN
if win(o):

return −WIN
return 0

def finished(x, o):
return len(x) + len(o) == 9

For any game state, we let the program explore ahead till an end state (one side
wins, or draw). The explore method, is to exhaustive cover all unoccupied cells,
then turn to the opponent player, consider what is the best move to beat the other.
For all candidate moves, select the highest score for player X, or select the lowest
score for player O.

def findbest(x, o, maximize):
best = −INF if maximize else INF
move = 0
for i in MAGIC_SQUARE:

if (i not in x) and (i not in o):
if maximize:

val = minmax([i] + x, o, 0, not maximize)
if val > best:

best = val
move = i

else:
val = minmax(x, [i] + o, 0, not maximize)
if val < best:

best = val
move = i

return move

The min-max search is recursive. In order to win fast, we take the number of steps
into account on top of the state score. For payer X, we deduce the score from the
recursion depth; while for player O, we add the depth to the score.

def minmax(x, o, depth, maximize):
score = eval(x, o)
if score == WIN:

return score − depth
if score == −WIN:

return score + depth
if finished(x, o):

return 0 # draw
best = −INF if maximize else INF
for i in MAGIC_SQUARE:

if (i not in x) and (i not in o):
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if maximize:
best = max(best, minmax([i] + x, o, depth + 1, not maximize))

else:
best = min(best, minmax(x, [i] + o, depth + 1, not maximize))

return best

We obtain a program that will never lose to human player. It uses the Lo Shu
square on the back end essentially.
def board(x, o):

for r in range(3):
print "−−−−−−−−−−−"
for c in range(3):

p = MAGIC_SQUARE[r*3 + c]
if p in x:

print "|X",
elif p in o:

print "|O",
else:

print "| ",
print "|"

print "−−−−−−−−−−−"

def play():
x = []
o = []
while not (win(x) or win(o) or finished(x, o)):

board(x, o)
while True:

i = int(input("[1..9]==>"))
if i not in MAGIC_SQUARE or MAGIC_SQUARE[i−1] in x or

MAGIC_SQUARE[i−1] in o:
print "invalid move"

else:
x = [MAGIC_SQUARE[i−1]] + x
break

o = [findbest(x, o, False)] + o
board(x, o)

.2 Natural Numbers
1. Define 1 as the successor of 0, prove a · 1 = a holds for all natural numbers;

We first use mathematical induction to prove 0 + a = a (refer to Appendix - Proof
of commutative law of addition). Then:

a′ · 1 = a′ · 0′ 1 as the successor of 0
= a′ · 0 + a′ 2nd rule of multiplication
= 0 + a′ 1st rule of multiplication
= a′ proved previously

2. Prove the distributive law for multiplication;

Proof. We can prove the left side distribution law c(a+b) = ca+cb by mathematical
induction. First when b = 0:

c(a+ 0) = ca 1st rule of addition
= ca+ 0 reverse of 1st rule of addition
= ca+ c0 reverse of 1st rule of multiplication
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Next suppose c(a+ b) = ca+ cb holds, we need prove c(a+ b′) = ca+ cb′

c(a+ b′) = c(a+ b)′ 2nd rule of addition
= c(a+ b) + c 2nd rule of multiplication
= ca+ cb+ c induction hypothesis
= ca+ (cb+ c) associative law of addition
= ca+ cb′ reverse of 2nd rule of multiplication

3. Prove the associative and commutative laws for multiplication.
We only prove the associative law for multiplication (ab)c = a(bc). For the commu-
tative law, we provide a proof outline.
Using mathematical induction, when c = 0:

(ab)0 = 0 1st rule of multiplication
= a0 reverse of 1st rule of multiplication
= a(b0) reverse of 1st rule of multiplication

Next suppose (ab)c = a(bc), we need prove (ab)c′ = a(bc′)

(ab)c′ = (ab)c+ ab 2nd rule of multiplication
= a(bc) + ab induction hypothesis
= a(bc+ b) distribution law proven above
= a(bc′) reverse of 2nd rule of multiplication

To prove the commutative law of multiplication, we take three steps, all with math-
ematical induction. First we prove 1a = a, then prove the right side distribution
law (a+ b)c = ac+ bc, finally, prove the commutative law.

4. How to verify 3 + 147 = 150 with Peano axioms?
Let us first see the classic proof of 2 + 2 = 4:

2 + 2 = 0′′ + 0′′ 2 is the successor of successor of 0
= (0′′ + 0′)′ 2nd rule of addition
= ((0′′ + 0)′)′ 2nd rule of addition
= ((0′′)′)′ 1st rule of addition
= 0′′′′ = 4 4 times successor of 0

It will be too long to prove 3 + 147 = 150 in this way. One method is to apply the
commutative law of addition, then prove 147 + 3 = 150; another method is to use
the mathematical induction to prove 3 + a = a′′′

5. Give the geometric explanation for distributive, associative, and commutative laws
of multiplication.
See figure 17

6. Define square for natural number ()2 with foldn;
We can define square from the iterative relation (n+ 1)2 = n2 + 2n+ 1

()2 = 2nd · foldn (0, 0) h
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Figure 17: Geometric explanation for arithmetic laws

Where h accepts a pair (i, s), containing number i and its square s. It increases i
by 1, then uses the iterative relation to calculate the next square.

h (i, s) = (i+ 1, s+ 2i+ 1)

7. Define ()m with foldn, which gives the m-power of a natural number;
One simple method is to re-use the definition of m() = foldn(1, (·m)) in chapter 1:

()m = 2nd · foldn (0, 0) h

where

h (i, b) = (i+ 1, (i+ 1)m)

It looks a bit strange, as all the intermediate results are dropped. Another method
is to leverage Newton’s binomial theorem:

(n+ 1)m = nm +

(
m

1

)
nm−1 + ...+

(
m

m− 1

)
n+ 1

We can establish the iterative relation from it:

(n)m = 2nd(foldn (1, 1) h (n− 1))

where

h(i, x) = (i+ 1, C ·X)

The C ·X is the dot product between binomial coefficients and the powers: C ·X =∑
cjxj . The powers can be calculated by repeatedly dividing x by i, and the

binomial coefficients can be iterated from Pascal triangle. Below is an example
program that put them together:
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exp m n = snd $ foldn (1, 1) h (n − 1) where
cs = foldn [1] pascal m
h (i, x) = (i + 1, sum $ zipWith (*) cs xs) where

xs = take (m + 1) $ iterate (`div` i) x

pascal = gen [1] where
gen cs (x:y:xs) = gen ((x + y) : cs) (y:xs)
gen cs _ = 1 : cs

8. Define sum of odd numbers with foldn, what sequence does it produce?
1 + 3 + 5 + ... can be defined with foldn as 2nd · foldn (1, 0) h, where:

h (i, s) = (i+ 2, s+ i)

As shown in the figure below this exercise in chapter 1, the sum of odd numbers is
always a square number.

9. There is a line of holes in the forest. A fox hides in a hole. It moves to the next
hole every day. If we can only check one hole a day, is there a way to catch the fox?
Prove this method works. What if the fox moves more than one hole a day?
No matter which hole the fox hides in, we only examine the odd numbered ones 1,
3, 5, ... It can ensure us always catch the fox. Observe the below table:

1 3 5 ... 2m - 1
m m + 1 m + 2 ... 2m - 1

Suppose the fox hides in the hole number m, solving equation m+ k = 2k+1 gives
that, after k = m− 1 days, we will examine the hole number 2m− 1, while the fox
moves exactly to it. Below foldn program demonstrates this process:

fox m = foldn (1,m) h (m− 1)
where : h (c, f) = (c+ 2, f + 1)

If the fox hides in hole number p, and moves q holes everyday, we can denote
such pair as (p, q), then map them to the natural numbers with the method we
introduced in chapter 6 about infinity. With this method, we can enumerate all
(p, q) combinations and catch the fox.

10. What does the expression foldr(nil, cons) define?
It defines the list itself.

11. Read in a sequence of digits (string of digit numbers), convert it to decimal with
foldr. How to handle hexadecimal digit and number? How to handle the decimal
point?
If the lowest digit is on the left, and the highest digit on the right in the input list,
we can convert it as below:

foldr (c d 7→ 10d+ c) 0

However, if the lowest digit is on the right, and the elements in the list are characters
but not digit, then we need adjust it to:
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1st · foldr (c, (d, e) 7→ ((toInt c)e+ d, 10e)) (0, 1)

We can make it process the hexadecimal numbers by replacing 10 to 16 in this
definition. When meet the decimal point, we can divide d, the result so far, by e to
calculate the fractional part value.

1st · foldr h (0, 1)

where

h (c, (d, e)) =

{
c =′ .′ (d/e, 1)

otherwise ((toF loat c)e+ d, 10e)

12. Jon Bentley gives the maximum sum of sub-vector puzzle in Programming Pearls.
For integer list {x1, x2, ..., xn}, find the range i, j, that maximizes the sum of xi +
xi+1 + ...+ xj . Solve it with foldr.
If all numbers are positive, then the maximum sum is the sum of the whole list. This
is because addition is monotone increasing upon positive numbers. If all numbers
are negative, then the maximum sum should be zero, which is the sum of empty list.
For any sub-list, the sum increases when add a positive number, while it decreases
when add a negative number. We can maintain two things during folding: one is
the maximum sum found so far Sm, the other is the sum of the sub-list till the
current number being examined S. By adding the next element, if S exceeds Sm, it
means we found a larger sub-list sum. Hence we replace Sm with S; If S becomes
negative, it means we complete the previous sub-list, and should start a new one.

maxs = 1st · foldr f (0, 0)
where : f x (Sm, S) = (S′

m, S
′)

where in f : S′ = max(0, x+ S), S′
m = max(Sm, S

′)

Here is the example program implements this solution.
maxSum :: (Ord a, Num a) => [a] −> a
maxSum = fst . foldr f (0, 0) where

f x (m, mSofar) = (m', mSofar') where
mSofar' = max 0 (mSofar + x)
m' = max mSofar' m

If want to return the sub-list together with the maximum sum, we can maintain two
pairs Pm and P during folding, each pair contains the sum and the sub-list (S,L).

maxs = 1st · foldr f ((0, []), (0, []))
where : f x (Pm, (S,L)) = (P ′

m, P
′)

where in f : P ′ = max((0, []), (x+ S, x : L)), P ′
m = max(Pm, P

′)

13. The longest sub-string without repeated characters. Given a string, find the longest
sub-string without any repeated characters in it. For example, the answer for string
“abcabcbb” is “abc”. Solve it with foldr.
We give two methods. One solution is to maintain the longest sub-string without
repeated characters during folding, record and check if the character c has met
before and its last appeared position. If c never occurred, or it appears before
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the current sub-string we are examining, then we append it to the current sub-
string, and compare with the longest one we’ve found so far. Otherwise, it means
the current sub-string contains a repeated character, we need go back to its last
occurred position, move ahead one, then restart searching.

longest(S) = fst2 · foldr f (0, |S|, |S|,∅) zip({1, 2, ...}, S)

Where folding starts from a tuple of 4 elements. It contains the length of the longest
sub-string we found so far, the right boundary of the longest sub-string, the right
boundary of the current sub-string, and a map recorded the last occurred position
for different characters. Function fst2 extract the first two elements from the tuple
as result. To obtain the position of each character easily during folding, we zip the
string S and natural number sequence together. The most critical function f is
defined as below:

f (i, c) (nmax, emax, e, Idx) = (n′max, e
′
max, e

′, Idx[c] = i)

where:

n′max = max(nmax, e
′ − i+ 1)

e′ =

{
c /∈ Idx : e

Idx[c] = j : min(e, j − 1)

e′max =

{
e′ − i+ 1 > nmax : e′

otherwise : emax

Here is an example program implement this solution. It returns the maximum
length and the end position of the sub-string.
longest :: String −> (Int, Int)
longest xs = fst2 $ foldr f (0, n, n, Map.empty::(Map Char Int))

(zip [1..] xs) where
fst2 (len, end, _, _) = (len, end)
n = length xs
f (i, x) (maxlen, maxend, end, pos) =

(maxlen', maxend', end', Map.insert x i pos) where
maxlen' = max maxlen (end' − i + 1)
end' = case Map.lookup x pos of

Nothing −> end
Just j −> min end (j − 1)

maxend' = if end' − i + 1 > maxlen then end' else maxend

We record ending position because foldr starts from right. While the traditional
way starts from the left, for example:

function Longest(S)
Idx← ∅
nmax ← 0, smax ← 0, s← 0
for i ∈ {0, 1, ...|S|} do

if S[i] ∈ Idx then
j ← Idx[S[i]]
s = max(s, j + 1)

if i− s+ 1 > nmax then
smax ← s

nmax ← max(nmax, i− s+ 1)
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Idx[S[i]] = i

return S[smax...smax + nmax]

The second method is a number theory solution by leveraging prime numbers. We
map each unique character c to a prime number pc. For any string S, we can
calculate the product of prime numbers mapped from its characters:

P =
∏
c∈S

pc

Therefore, for any new character c′, we can check whether the corresponding prime
number p′ divides P or not to know if c′ appears in S. Based on this fact, we
can design an algorithm. It maintains the product of primes during folding. When
there is a character, that its corresponding prime number divides the product, we
then find a repeated character. We need drop off the part containing the repeated
character and go on folding. During this process, we also need update the longest
sub-string.

longest = fst · foldr f ((0, []), (0, []), 1)

Where the folding starts from a tuple of three elements. The first two are pairs,
represent the longest sub-string (length and content), and the current sub-string.
The last one in the tuple is the product of primes, starts from 1. Function f is
defined as the following:

f c (m, (n,C), P ) =

pc|P : update(m, (n+ 1, c : C), pc × P )
otherwise : update(m, (|C ′|, C ′),

∏
x∈C′

px)

where:

update(a, b, P ) = (max(a, b), b, P )
C ′ = c : takeWhile (6= c) C

14. In the fold definition of Fibonacci numbers, the successor is computed as (m′, n′) =
(n,m+ n). It is essentially matrix multiplication:(

m′

n′

)
=

(
0 1
1 1

)(
m
n

)
Where it starts from (0, 1)T . Then the Fibonacci numbers is isomorphic to natural
numbers under the matrix multiplication:(

Fn

Fn+1

)
=

(
0 1
1 1

)n (
0
1

)
Write a program to compute the power of 2-order square matrix, and use it to give
the n-th Fibonacci number.
First we need define multiplication for square matrix of order 2, and the multipli-
cation between square matrix and vector:(

a11 a12
a21 a22

)
×
(
b11 b12
b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
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and (
a11 a12
a21 a22

)
×
(
b1
b2

)
=

(
a11b1 + a12b2
a21b1 + a22b2

)
When calculate the n-th power of Mn, we need not repeat multiplication n times.
If n = 4, we can first calculate M2, then multiply the result to itself to obtain
(M2)2. There are total two times of multiplication; If n = 5, we only need compute
M4×M , hence there are three times of multiplication. We can recursively compute
the exponential fast based on n’s parity.

Mn = pow(M,n, I)

Where I is the identical square matrix of order 2:
(
1 0
0 1

)
, and the function pow is

defined as below:

pow(M,n,A) =


n = 0 : A

n is even : pow(M ×M,
n

2
, A)

otherwise : power(M ×M, bn
2
c,M ×A)

In fact, we can represent n in binary format, then perform folding on these 0, 1 bits
to compute Mn fast.

.3 Recursion
1. The Euclidean algorithm described in this section is in recursive manner. Try to

eliminate recursion, implement it and the extended Euclidean algorithm only with
loop.
The classic Euclidean algorithm is tail recursive, it can be convert to loop easily:

function GCM(a, b)
while b 6= 0 do

a, b← b, a mod b
return a

However, it’s a bit hard to convert the extended Euclidean algorithm. Let us see
three sequences r, s, t:

r0 = a, r1 = b
s0 = 1, s1 = 0
t0 = 0, t1 = 1
......
ri+1 = ri−1 − qiri,where : qi = bri/ri−1c
si+1 = si−1 − qisi
ti+1 = ti−1 − qiti
......

Obviously, when rk+1 = 0, the sequences terminate. We also know from Euclidean
algorithm that at this time:
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gcm(a, b) = gcm(rk−1, rk) = gcm(rk, 0) = rk

The more important fact is that, at this time, the following Bézout’s identity holds:

gcm(a, b) = rk = ask + btk

Proof. We prove it with mathematical induction. First for 0 and 1:

0 : r0 = a as0 + bt0 = a · 1 + b · 0 = a
1 : r1 = b as1 + bt1 = a · 0 + b · 1 = b

Next suppose ri−1 = asi−1 + bti−1 and ri = asi + bti hold, for i+ 1 case:

ri+1 = ri−1 − qiri sequence definition
= (asi−1 + bti−1)− qi(asi + bti) induction hypothesis
= a(si−1 − qisi) + b(ti−1 − qiti) rearrange
= asi+1 + bti+1 sequence definition

Hence the sequences satisfy Bézout’s identity at any time.

With this fact, we can obtain the non-recursive extended Euclidean algorithm:
function Ext-GCM(a, b)

s′, s← 0, 1
t′, t← 1, 0
while b 6= 0 do

q, r ← ba/bc, a mod b
s′, s← s− qs′, s′
t′, t← t− qt′, t′
a, b← b, r

return (a, s, t)

2. Most programming environments require integers for modular operation. However,
the length of segment isn’t necessarily integer. Implement a modular operation that
manipulates segments. What’s about its efficiency?
Consider the compass and straightedge construction, we can use compass to inter-
cept segment to obtain the modular result.

function mod(a, b)
while b < a do

a← a− b
return a

It’s efficiency is linear obviously. To optimize it, we introduce a lemma:

Lemma .3.1 (Recursive remainder lemma). If r = a mod 2b, then:

a mod b =
{
r ≤ b : r

r > b : r − b

With this lemma, we can speed up the modular operation to logarithmic:
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a mod b


a ≤ b : a

a− b ≤ b : a− b

otherwise :

{
a′ ≤ b : a′,wherea′ = a mod (b+ b)

a′ > b : a′ − b

Inspired by Fibonacci numbers, Robot Floyd, and Donald Knuth managed to elim-
inate the recursion in this algorithm, hence obtained a purely iterative modular
operation:

function mod(a, b)
if a < b then

return a
c← b
while c ≤ a do

c, b← (b+ c, c) ▷ Increase c like Fibonacci numbers
while b 6= c do

c, b← (b, c− b) ▷ Decrease c back
if c <= a then

a← a− c
return a

3. In the proof of Euclidean algorithm, we mentioned “Remainders are always less
than the divisor. We have b > r0 > r1 > r2 > ... > 0. As the remainder can not
less than zero, and the initial magnitude is finite, the algorithm must terminate.”
Can rn infinitely approximate zero, but not be zero? Does the algorithm always
terminate? What does the precondition that a and b are commensurable ensure?
For the commensurable magnitudes, we can use the Well-ordering principle to show
that the Euclidean algorithm must terminate. According to the well-ordering prin-
ciple, every none empty set of natural numbers has the minimum number. This
property can be extended to set of integers, rationals, or even to the finite, none
empty sub-set of real numbers. From the definition of commensurable, we know the
remainders form a finite set.

4. For the binary linear Diophantine equation ax + by = c, let x1, y1 and x2, y2 be
two pairs of solution. Proof that the minimum of |x1 − x2| is b/gcm(a, b), and the
minimum of |y1 − y2| is a/gcm(a, b)

Let the greatest common divisor of a and b be g = gcm(a, b). If x0, y0 is a pair of
solution to the Diophantine equation ax+ by = c, then the following x, y also form
a pair of solution:


x = x0 − k

b

g

y = y0 + k
a

g

It’s easy to verify this fact:

ax+ by = a(x0 − k
b

g
) + b(y0 − k

a

g
)

= ax0 + by0 − ak
b

g
+ bk

a

g
= c− 0 = c
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We next prove that, every solution can be expressed in this form. Let x, y be an
arbitrary pair of solution, we have ax+by = c and ax0+by0 = c both hold, therefore:

a(x− x0) + b(y − y0) = c− c = 0

Divide both sides with the greatest common divisor of a and b. It gives:

a

g
(x− x0) +

b

g
(y − y0) = 0

b

g
(y − y0) = −

a

g
(x− x0)

Note that the left side can be divided by b

g
, hence it must divide the right side too.

But since (
a

g
,
b

g
) = 1, they are co-prime, hence b

g
must divide (x− x0). Let

x− x0 = k
b

g
, for some k ∈ ZZZ

Therefore

x = x0 + k
b

g

Substitute it back to above equation, we obtain:

y = y0 − k
a

g

Hence proved every pair of solution is in this form. Obviously, for any two such
pairs, the minimized difference is obtained when k = 1. It means the minimum of
|x1 − x2| is b/gcm(a, b), and the minimum of |y1 − y2| is a/gcm(a, b).

5. For the regular pentagon with side of 1, how long is the diagonal? Proof that in the
pentagram shown in this chapter, the segment AC and AG are incommensurable.
What’s their ratio in real number?
Paul Lockhart gives a beautiful method in his Measurement[69]. As shown in figure
18, we can divide the regular pentagon into three triangles. It’s easy to show that
triangle A and B are congruent, and they are similar to triangle C (can you prove
it?). If the length of the pentagon side is 1, let the diagonal length be d, then the
base of triangle C is 1, and its two hypotenuses both are d − 1. From the similar
triangles, we have:

1/d = (d− 1)/a

Solving this quadratic equation gives d =

√
5 + 1

2
. We drop the other solution

d =

√
5− 1

2
as it is shorter than the side (in fact, it is the length of the hypotenuse

of the smaller triangle C).
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For the segment AC and AG in the figure, according to the 3 triangles we divided,
they are actually the side and the diagonal of the pentagon. Suppose they are
commensurable, then the base and hypotenuse of the smaller triangle are commen-
surable. Hence in the recursive inner pentagram star, the side and diagonal are also
commensurable. We can repeat this process infinitely without end. Therefore, our
assumption cannot hold. The side and diagonal are incommensurable. Written in
decimals, it is about 0.6180339887498949...

The unit regular pentagon

6. Use λ conversion rules to verify tail (cons p q) = q�
The λ expressions for cons and tail are:

cons = a 7→ b 7→ f 7→ f a b
tail = c 7→ c (a 7→ b 7→ b)

From the two definitions, we can verify tail (cons p q) = q holds.

tail (cons p q) = (c 7→ c (a 7→ b 7→ b)) (cons p q)
β−→ (cons p q) (a 7→ b 7→ b)
= ((a 7→ b 7→ f 7→ f a b) p q) (a 7→ b 7→ b)
β−→ ((b 7→ f 7→ f p b) q) (a 7→ b 7→ b)
β−→ (f 7→ f 7→ f p q) (a 7→ b 7→ b)
β−→ (a 7→ b 7→ b) p q
β−→ (b 7→ b) q
β−→ q

7. We can define numbers with λ calculus. The following definition is called Church
numbers:
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0 : λf.λx.x
1 : λf.λx.f x
2 : λf.λx.f (f x)
3 : λf.λx.f (f (f x))

: ...

Define the addition and multiplication operators for the Church numbers with what
we introduced in chapter 1.
For natural number n, the meaning as a Church number is to apply function f to
x by n times. Let’s define successor function first:

succ = λn.λf.λx.f (n f x)

It means fn+1(x)) = f(fn(x)). Then we can define addition as:

plus = λm.λn.λf.λx.m f (n f x)

Which means fm+n(x) = fm(fn(x)). While the multiplication is defined as:

mul = λm.λn.λf.λx.m (n f) x

It means fmn = (fn)m(x).

8. The following defines the Church Boolean values, and the relative logic operators:

true : λx.λy.x
false : λx.λy.y
and : λp.λq.p q p

or : λp.λq.p p q
not : λp.p false true

where false is defined as same as the Church number 0. Use the λ conversion rules
to prove that: and true false = false. Please give the definition of if ... then ...
else ... expression with the λ calculus.

and true false = (λp.λq.p q p) true false
β−→ true false true
= (λx.λy.x) false true
β−→ false

if ... then ... else ... expression can be defined as: λp.λa.λb.p a b

9. Define the abstract mapt for binary trees without of using foldt.{
mapt(f, nil) = nil

mapt(f, node(l, x, r)) = node(mapt(f, l), f(x),mapt(f, r))

10. Define a function depth, which counts for the maximum depth of a binary tree.

depth = foldt(one, x, y 7→ 1 +max(x, y), 0)

Where one is a constant function. It always returns 1. i.e. one = x 7→ 1.
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11. Someone thought the abstract fold operation for binary tree foldt, should be defined
as the following:

foldt(f, g, c, nil) = c
foldt(f, g, c, node(l, x, r)) = foldt(f, g, g(foldt(f, g, c, l), f(x)), r)

That is to say g : (B × B) → B is a binary operation like add. Can we use this
foldt to define mapt?
This foldt cannot define tree mapping. A tree should be mapped to another tree
with the same structure. Each value in the tree is sent to another value. Note the
type of f is f : A→ B, it send the element of type A in the tree to type B. While
the type of g is g : (B×B)→ B, it only maps values of B, but cannot preserve the
tree structure.

12. The binary search tree (BST) is a special tree that the type A is comparable.
For any none empty node(l, k, r), all elements in the left sub-tree l are less than
K, and all elements in the right sub-tree r are greater than k. Define function
insert(x, t) : (A× Tree A)→ Tree A that inserts an element into the tree.

insert(x, nil) = node(nil, x, nil)

insert(x, node(l, k, r)) =

{
x < k : node(insert(x, l), k, r)

otherwise : node(l, k, insert(x, r))

13. Can we define the mapping operation for multi-trees with folding? If not, how
should we modify the folding operation?
Similar to above exercise, we need modify the folding definition for multi-tree to
preserve the tree structure:{

foldm(f, g, c, nil) = c

foldm(f, g, c, node(x, ts)) = g(f(x),map(foldm(f, g, c), ts))

Where map applies to list. With this tree folding tool, we can define multi-tree map
as below:

mapm(f) = foldm(f, node, nil)

.4 Symmetry
1. Do all the even numbers form a group under addition?

Yes, even numbers form a group under addition. Even number add even number,
the result is still even. Add is associative. The unit is zero. The inverse of a number
is its negate.

2. Can we find a subset of integers, that can form a group under multiplication?
The subset {−1, 1} form a group under multiplication. The unit is 1. Every element
is the reverse of itself.

3. Do all the positive real numbers form a group under multiplication?
Yes. Positive real numbers are close under multiplication. The unit is 1. For each
number r, the reverse is 1/r.
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4. Do integers form a group under subtraction?
No, integers cannot form a group under subtraction. This is because subtraction is
not associative. for e.g. (3 - 2) - 1 = 0, while 3 - (2 - 1) = 2.

5. Find an example of group with only two elements.
As shown in previous exercise, set {−1, 1} forms a group under addition. Another
example is Boolean values {T, F}, they form a group under logic exclusive or (xor).
The logic exclusive or is closed and associative. The unit is F , because every element
exclusive or F gives itself. And every element is the reverse of itself.

6. What is the identity element for Rubik cube group? What is the inverse element
for F?
The unit for the Rubik cube group is the identity transform, which keeps any state
unchanged. The reverse of F is F ′, which rotate the face side 90 degree counter-
clockwise.

7. The set of Boolean values {True, False} forms a monoid under the logic or operator
∨. It is called ‘Any’ logic monoid. What is the identity element for this monoid?
False

8. The set of Boolean values {True, False} forms a monoid under the logic and operator
∧. It is called ‘All’ logic monoid. What is the identity element for this monoid?
True

9. For the comparable type, when compare two elements, there can be three different
results. We abstract them as {<,=, >}7. For this set, we can define a binary
operation to make it a monoid. What is the identity element for this monoid?
Define the binary operation as:

< ◦ x = <
= ◦ x = x
> ◦ x = >

Where x is any element among the three. These three relations form a monoid. The
unit is =.

10. Prove that the power operation for group, monoid, and semigroup is commutative:
xmxn = xnxm

In order to prove the commutative law, we first use mathematical induction to prove
a lemma: xnx = xxn. For group and monoid, when n = 0:

x0x = ex = x = xe = xx0

As there is no unit in semigroup, we start from n = 1:

x1x = xx = xx1

Suppose for n, xnx = xxn holds, then for n+ 1:
7Some programming languages, such as C, C++, Java use negative number, zero, and positive number

to represent these three results. In Haskell, they are GT, EQ, and LE respectively.
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xn+1x = (xxn)x recursive definition of power
= x(xnx) associative
= x(xxn) induction hypothesis
= xxn+1 recursive definition of power

With this lemma, we use mathematical induction again to prove the commutativity
for power operation. For group and monoid, when n = 0, we have:

xmx0 = xme definition of 0-th power
= xm definition of unit
= exm definition of unit
= x0xm definition of 0-th power

Because semigroup does not have unit, we start from n = 1:

xmx1 = xmx definition of 1-st power
= xxm the lemma
= x1xm definition of 1-st power

Suppose the commutativity law xmxn = xnxm holds for n, then for n+ 1:

xmxn+1 = xm(xxn) recursive definition of power
= (xmx)xn associative law for multiplication
= xxmxn the lemma
= x(xmxn) associative law for multiplication
= x(xnxm) induction hypothesis
= (xxn)xm associative law for multiplication
= xn+1xm recursive definition of power

11. Is the odd-even test function homomorphic between the integer addition group
(Z�+) and the Boolean logic-and group (Bool,∧)? What about the group of integers
without zero under multiplication?
odd-even test function maps every integer to Boolean value true or false. To test
homomorphic, we need verify whether f(a)f(b) = f(a · b) holds. However, there is
a negative case:
a, b are all odd, i.e. odd(a) = odd(b) = True. Their sum is even, odd(a+b) = False.
However, the logic and result is odd(a) ∧ odd(b) = True 6= odd(a+ b) = False.
Hence they are not homomorphic.
While the multiplicative group of integers without zero is homomorphic with the
logic and group. We can verify all the three cases:

• a, b are all odd, i.e. odd(a) = odd(b) = True. Their product ab is still odd:
odd(ab) = True. Hence, odd(a) ∧ odd(b) = odd(ab);

• a, b are all even, i.e. odd(a) = odd(b) = False. Their product ab is still even:
odd(ab) = False. Hence, odd(a) ∧ odd(b) = odd(ab);

• a, b are old and even respectively. Let odd(a) = True, odd(b) = False. Their
product ab is even: odd(ab) = False. Hence, odd(a) ∧ odd(b) = odd(ab).

Therefore, they are homomorphic.
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12. Suppose two groups G and G′ are homomorphic. In G, the element a→ a′. Is the
order of a same as the order of a′?
Their orders are same. To prove it, let the image of unit e be e′, the homomorphism
is f . Denote the order of a is n, i.e. an = e.
On one hand:

f(an) = f(e) = e′

On the other hand, according to the definition of homomorphism:

f(an) = f(a)f(a)...f(a) total n
= a′a′...a′ total n
= (a′)n

Summarize the above two results, we have (a′)n = e′. Hence the order of a and a′

are same.

13. Prove that the identity element for transformation group must be identity transfor-
mation.
Suppose the unit transformation is ϵ′ : a→ aϵ

′
= ϵ′(a). According to the definition

of unit, for any transformation τ , ϵ′τ = τ holds, i.e.

τ : a→ aτ

ϵ′τ : a→ (aϵ
′
)τ

Therefore, aϵ′ = a = ϵ′(a), ϵ′ is identity transformation.

14. List all the elements in S4.
(1);
(12), (34), (13), (24), (14), (23);
(123), (132), (134), (143), (124), (142), (234), (243);
(1234), (1243), (1324), (1342), (1423), (1432);
(12)(34), (13)(24), (14)(23)�
There are total 4! = 24 elements.

15. Express all the elements in S3 as the product of cyclic forms.

permutation 123 213 132 321 231 312
cyclic notation (1) (12) (23) (13) (123) (132)

16. Write a program to convert the product of k-cycles back to permutation.
function Permute(C, n)

π ← [1, 2, ..., n]
for c ∈ C do

j ← c[1]
m← |c|
for i← 2 to m do

π[j]← c[i]
j ← c[i]
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π[c[m]]← c[1]

return π

17. What symmetries for what shape are defined by the symmetric group S4?
It defines the symmetry of a tetrahedron. A tetrahedron has four vertex corners,
each has an axis. Rotation around such axis by 120° and 240° is symmetric. Connect
the middle point of every two opposite edges also gives an axis. There are total 3
such axes, each one is reflective symmetric. Include the identity transformation,
there are total 2× 4 + 3 + 1 = 12 symmetries. They form a group called A4, which
is a alternating group.

Figure 19: The rotation and reflection axes

For the tetrahedron 1234 in figure 20, elements in group A4 transform it to:
3124, 2314, 1423, 1342, 4213, 3241, 4132, 2431, 2143, 3412, 4321, 1234
These 12 transformations are all proper congruences. Besides, there are also im-
proper congruences. As shown in figure 20, when rotated by 120° against the axis,
the tetrahedron transforms to 3124 on the right, this is a proper congruence. Then
reflect it against surface O13, we get the bottom-right tetrahedron 3142. This is an
improper congruence.

Figure 20: Improper congruence

For every element in A4, there is such a improper congruence by reflection. In total
12:
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3142, 2341, 1432, 1324, 4231, 3214, 4123, 2413, 2134, 3421, 4312, 1243
Although there are other 2 reflection surfaces, they don’t generate new transforma-
tions, as there are 4! = 24 permutations for 4 points. All the 24 transformations of
proper and improper congruences are corresponding to the elements in S4.

18. Proof that cyclic groups are abelian.
Let the generator be a. For any two elements, express them as the power of a, i.e.
ap, aq respectively. Because:

apaq = ap+q = aq+p = aqap

Hence it is abelian.

19. Proof theorem that determines if a none empty subset H of group G forms a sub-
group, if and only if:

i For all a, b ∈ H, the product ab ∈ H;
ii For all element a ∈ H, its reverse a−1 ∈ H.

First prove the sufficiency. Condition i ensures H is closed on multiplication. The
associativity holds for multiplication in G, hence also holds in H. Because H is not
empty, there exists an element a, based on condition ii, the corresponding a−1 is
also in H. And from condition i, aa−1 = e ∈ H holds. Therefore H is a subgroup.
Next prove the necessity. If H forms a subgroup, then condition i is true obviously.
For condition ii, since H is a group, there exits the unit element e′, such that for
every element a in H, equation e′a = a holds. As both e′ and a are in G, we say e′
is a solution to equation ya = a in G. However, there is only one solution in G for
this equation, which is the unit e of G, hence e′ = e ∈ H.
As H is a group, equation ya = e has solution a′ in H. While a′ is also the solution
of this equation in G. However, the unique solution to this equation in G is a−1.
Therefore, a′ = a−1 ∈ H.

20. List the left cosets for H in below figure.

H
(1), (1 2)

(1)H
(1), (1 2)

(1 3)H
(1 3), (1 3 2)

(2 3)H
(2 3), (1 2 3)

Multiply the subgroup H = {(1), (1 2)} from left with (1), (1 3), and (2 3) gives:

(1)H = {(1), (1 2)}
(1 3)H = {(1 3), (1 3 2)}
(2 3)H = {(2 3), (1 2 3)}

21. Today is Sunday, what day it will be after 2100 days?
There are 7 days in a week. According to the Fermat’s little theorem, 27−1 ≡ 1
mod 7. We have:
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2100 = 216×6+4 ≡ 1× 24 mod 7
≡ 16 mod 7
≡ 2 mod 7

Therefore, it will be Tuesday.

22. Given two strings (character string or list), write a program to test if they form the
same necklace.
Given two strings S1, S2 with the same length, we can duplicate S1 and append it
after itself, then examine whether S2 is the sub-string of S1S1. If yes, then they can
form the same necklace.

eqiv(S1, S2) = S2 ⊂ (S1 ++ S1)

23. Write a program to realize Eratosthenes sieve algorithm.
For all natural numbers from 2, pick the next as a prime, then remove all its mul-
tiplicands. Then do this repeatedly. Here is an example Haskell program:
primes = sieve [2..] where

sieve (x:xs) = x : sieve [y | y <− xs, y `mod` x > 0]

The following are the example Python and Java programs.
def odds():

i = 3
while True:

yield i
i = i + 2

class prime_filter(object):
def __init__(self, p):

self.p = p
self.curr = p

def __call__(self, x):
while x > self.curr:

self.curr += self.p
return self.curr != x

def sieve():
yield 2
iter = odds()
while True:

p = next(iter)
yield p
iter = filter(prime_filter(p), iter)

list(islice(sieve(), 100))

public class Prime {
private static LongPredicate sieves = x −> true; // initialize sieve as id
public final static long[] PRIMES = LongStream

.iterate(2, i −> i + 1)

.filter(i −> sieves.test(i))

.peek(i −> sieves = sieves.and(v −> v % i != 0)) // update, chain the
sieve

.limit(100) // take first 100

.toArray();
}
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24. Extend the idea of Eratosthenes sieve algorithm, write a program to generate Euler
ϕ function values for all numbers from 2 to 100.
When generate prime numbers within n with the sieve of Eratosthenes, we can
update the Euler ϕ function list by every prime numbers found so far. The list
is initialized with all elements start from 1. For every prime number p, the corre-
sponding ϕ(p) = p(1 − 1

p
) = p − 1. All the multiplicands of p need multiply with

this value. However, it is not enough as ϕ(p2) = p2(1− 1

p
) = pϕ(p). Next we need

multiply all the Euler function value for multiplicands of p2 by p, and repeat for
multiplicands of p3 and so on until pm exceeds n. Below is the algorithm of this
idea.

function Euler-Totient(n)
ϕ← {1, 1, ..., 1} ▷ 1 to n
P ← {2, 3, ..., n} ▷ sieve input
while P 6= ∅ do

p← P [0]
P ← {x|x ∈ P [1...], x mod p 6= 0}
p′ ← p
repeat

for i← from p′ to n step p′ do
if p′ = p then

ϕ[i]← ϕ[i]× (p− 1)
else

ϕ[i]← ϕ[i]× p
p′ ← p′ × p

until p′ > n

return ϕ

25. Write a program to realize fast modular multiplication, and Fermat’s primality test.
Our idea is to realize the fast modular multiplication with the similar approach
when calculate power.

xy =

{
y is even : x⌊y/2⌋

y is odd : x · x⌊y/2⌋

Based on this, we can change it to modular multiplication as below:
function Mod-Exp(x, y, n)

if y = 0 then
return 1

z ← Mod-Exp(x, by/2c, n)
if y is even then

return z2 mod n
else

return x · z2 mod n

With Fermat’s little theorem, we can realize the primality test with some selected
’witnesses’:

function primality(n)
random select k positive numbers a1, a2, ..., ak < n
if an−1

i ≡ 1 mod n, for all i = 1, 2, ..., k then
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return prime
else

return composite

26. Prove the theorem that the two cancellation rules hold in a nonzero ring (ring
without zero divisor).

Proof. Suppose there is no zero divisor in R. Because

ab = ac⇒ a(b− c) = 0

as no zero divisor, hence:

a 6= 0, ab = ac⇒ b− c = 0⇒ b = c

Similarly,

a 6= 0, ba = ca⇒ b = c

Therefore, both cancellation rules hold in R. Reversely, suppose the first cancella-
tion rule hold in R. Because:

ab = 0⇒ ab = a0

Based on the assumption,

a 6= 0, ab = 0⇒ b = 0

Hence R does not have zero divisor. We can make the similar prove when the second
cancellation rule holds.

27. Prove that, all real numbers in the form of a+ b
√
2, where a, b are integers form a

integral domain under the normal addition and multiplication.

Proof. We need verify three things:

i The commutative law for multiplication holds.

(a+ b
√
2)(c+ d

√
2) = ac+ 2bd+ (ad+ bc)

√
2

= (c+ d
√
2)(a+ b

√
2)

ii There is unit 1 for multiplication.

1(a+ b
√
2) = (a+ b

√
2)1 = a+ b

√
2

iii No zero divisor

(a+ b
√
2)(c+ d

√
2) = 0⇒ a = b = 0 or c = d = 0
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28. Prove that Q[a, b] = Q[a][b], where Q[a, b] contains all the expressions combined
with a and b, such as 2ab, a+ a2b etc.
Let us see an example first:

Q[
√
2,
√
3] = {a+ b

√
2 + c

√
3 + d

√
6,where a, b, c, d ∈ Q}

Q[
√
2][
√
3] = {a+ b

√
3,where a, b ∈ Q[

√
2]}

= {a′ + b′
√
2 + (c+ d

√
2)
√
3,where a′, b′, c, d ∈ Q}

= {a′ + (b′ + d)
√
2 + c

√
3 + d

√
6,where a′, b′, c, d ∈ Q}

Proof.
Q[a][b] = {x0 + x1b+ x2b

2 + ...+ xnb
n,where xi ∈ Q[a]}

n is the minimum integer that polynomial p(b) = 0 exists. Substitute xi with the
expressions in field Q[a].

Q[a][b] = {y0,0 + y0,1a+ y0,2a
2 + ...+ y0,ma

m +
(y1,0 + y1,1a+ y1,2a

2 + ...+ y1,ma
m)b +

...
+(yn,0 + yn,1a+ yn,2a

2 + ...+ yn,ma
m)bn}

Where yi,j ∈ Q, m is the minimum integer that polynomial p(a) = 0 exists.
Without loss of generality, we assumem < n (otherwise, we letm′ = min(m,n), n′ =
max(m,n)). We can further convert it as:

Q[a][b] = {y0,0 + y0,1a+ y1,0b+ y0,2a
2 + y1,1ab+ y2,0b

2 + ...
+y0,ma

m + y1,m−1a
m−1b+ ...+ ym,0b

m+
y1,ma

mb+ y2,m−1a
m−1b2 + ...+ ym,1b

m+1 + ...
+yn,ma

mbn}

This field is formed with all the expressions of a, b.

29. Prove that, for any polynomial p(x) with rational coefficients, E/Q is the field
extension, f is the Q-automorphism of E, then equation f(p(x)) = p(f(x)) holds.

Proof. Because f is automorphism, we have:

f(x+ y) = f(x) + f(y), f(ax) = f(a)f(x), f(1/x) = 1/f(x)

Further, since f is Q-automorphism, we have:

f(x) = x, ∀x ∈ Q

Let p(x) = a0 + a1x+ ...+ anx
n, where ai ∈ Q, then:

f(p(x)) = f(a0 + a1x+ ...+ anx
n)

= f(a0) + f(a1x) + ...+ f(anx
n) f(x+ y) = f(x) + f(y)

= f(a0) + f(a1)f(x) + f(a2)f(x)
2 + ...+ f(an)f(x)

n f(ax) = f(a)f(x)
= a0 + a1f(x) + a2f(x)

2 + ...+ anf(x)
n f(x) = x, ∀x ∈ Q

= p(f(x))
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30. Taking the complex number into account, what is the splitting field for polynomial
p(x) = x4 − 1? What are the functions in its Q-automorphism?
There are four roots for polynomial x4 − 1. They are ±1,±i. We can factor the
polynomial to p(x) = (x + 1)(x − 1)(x + i)(x − i). Actually, the splitting field of
p(x) is not complex number field C. It is too big. The splitting field is Q[i].
There are two transformations in this Q-automorphism. One is f(a+ bi) = a− bi,
the other is the identity transformation g(x) = x.

31. What’s the Galois group for quadratic equation x2 − bx+ c = 0?
We know the two roots for quadratic equation are:

x1, x2 =
b±
√
b2 − 4c

2

There are three cases: (1) there exists a rational number, such that b2 − 4c = r2.
There are two rational roots (including duplicated ones) in this case; (2) No such
rational number. Equation is not solvable in rational field, but there are real roots;
(3) the discriminant is negative, hence the equation is not solvable in real field. But
there are complex roots. Let’s see the corresponding Galois groups for these three
cases:

Case 1: there are two rational roots b± r
2

. There is only one element in its Galois
group, which is the identity automorphism f(x) = x.

Case 2: there are two irrational roots b±
√
d

2
. There are two elements in its Galois

group. One is the automorphism f(p + q
√
d) = p − q

√
d, where p, q are rationals;

the other is the identity transformation.

Case 3: There are two complex roots b± i
√
d

2
. There are two elements in its Galois

group. One is the automorphism f(p + qi) = p − qi, where p, q are real numbers;
the other is the identity transformation.
Actually, in case 2 and 3, their Galois groups are isomorphic in the splitting field.
Note that f(f(x)) = x. It is isomorphic to the group of two elements 0, 1 under the
addition modulo 2. It is also isomorphic to the cyclic group C2 or ZZZ/2ZZZ. Where
the notation ZZZ/2ZZZ means the quotation group of integers under addition ZZZ and its
sub-group of even numbers 2ZZZ.

32. Prove that, if p is prime number, then Galois group for equation xp − 1 is the
(p− 1)-cycle cyclic group Cp−1.
The p roots of xp − 1 are the points along the unit circle in complex plane, i.e.
1, ω, ω2, ..., ωp−1. They can be expressed in form of e2πki/p. The splitting field is
Q[ω].
Consider automorphism f as an element in Galois group Gal(Q[ω]/Q). According
to the definition of automorphism, we have:

f(ω)k = f(ωk) = 1 ⇐⇒ ωk = 1

It means f(ω) is also a p-th root of unity (a root of equation xp − 1 = 08). Denote:
8If p is not a prime number, but an integer n greater than 1, then the k-th power of the m-th root is

ζkm = e2πmki/n. There may exist some k < n, such that ζkm = 1. Actually, it holds as far as n divides
mk. However, if n is a prime number p, then k can’t be less than p, but must be multiplicand of p.
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f(ω) = hi(ω) = ωi

If f(ω) is the i-th root of unity, we name it as hi, where 1 ≤ i ≤ p− 1 (why i can’t
be 0?). In this way, we establish a one-to-one mapping from Galois group to cyclic
group Cp−1:

Gal(Q[ω]/Q)
σ−−→ Cp−1 : σ(hi) = i

Where the Galois group contains p − 1 automorphisms {h1, h2, ..., hp−1}, hence it
has the same order as the cyclic group Cp−1.
Next we prove this is a group isomorphism.

(hi · hj)(ω) = hi(hj(ω)) = hi(ω
j) = ωji = ωij

hence

σ(hi · hj) = ij = σ(hi) · σ(hj)

And h1(ω) is the generator of this cyclic Galois group.

Here are two different groups that often cause confusion. The first one is the
group of integers under addition modulo n. It’s a cyclic group, containing
the residue class modulo n of { 0, 1, 2, ..., n − 1}, total n elements. This
group is often denoted as ZZZ/nZZZ. It is isomorphic to the group formed with
the n roots of equation xn − 1 = 0. The elements are the n-th root of unity
{1 = ζ0n, ζ

1
n, ζ

2
n, ..., ζ

n−1
n }. The binary operation is multiplication.

The second group is integers under multiplication modulo n. The group ele-
ments are not all the residues from 0 to n − 1, but all the ones coprime to n.
The group operation is modulo multiplication. Denoted as (ZZZ/nZZZ)×. There
are total ϕ(n) elements, where ϕ is Euler’s totient function. When n is prime
p, there are {1, 2, ..., p − 1}, total p − 1 group elements. However, the multi-
plicative group modulo n is not necessary cyclic. Luckily it is cyclic when n is
prime. An interesting fact is that (ZZZ/pZZZ)× is isomorphic to the additive group
ZZZ/(p− 1)ZZZ.

This exercise tells us: For the Galois group in rational field extension, if it is
generated by n-th root of unity, then this group is isomorphic to the multi-
plicative group of integers modulo n, i.e. (ZZZ/nZZZ)×. For example, the cubic

equation x3 − 1 = 0 has three roots {1, −1± i
√
3

2
}. Its Galois group contains

two automorphisms. One is f(x) = x, which is corresponding to h1(ω) = ω1;
the other is g(a + bi) = a − bi, which is corresponding to h2(ω) = ω2. The
effect of h2 is transform the order of the three roots from 1, 2, 3 to 1, 3, 2.

1 7→ 12 = 1
ω 7→ ω2

ω2 7→ (ω2)2 = ω3ω = ω
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33. The 5th degree equation x5 − 1 = 0 is radical solvable. What’s its Galois subgroup
chain?
From previous exercise, we know the 5 roots are points along the unit circle in the

complex plane: {1, ζ, ζ2, ζ3, ζ4 }, where ζ = e2πi/5 =

√
5− 1 + i

√
10 + 2

√
5

4
. The

Galois group in rational field is a cyclic group of order 4: G(Q[ζ]/Q) = C4. It is
isomorphic to the multiplicative group modulo 5: (ZZZ/5ZZZ)× = {1, 2, 3, 4}5. There
is no intermediate field extension. The splitting field is Q[ζ]. The Galois group in
splitting field is {1}.
Obviously, {1} is the normal subgroup of C4. The quotient group C4/{1} is cyclic
too. In previous exercise, we proved that cyclic group is abelian, hence the equation
is radical solvable.

.5 categories
1. Prove that the identity arrow is unique (hint: refer to the uniqueness of identity

element for groups in previous chapter).

Suppose there exists another identity arrow id′A, pointed A from itself: A
id′A−−−→ A.

Consider every arrow from A to B: A f−−→ B, from the definition of identity arrow,
f ◦ idA = f holds. When replace B with A, and replace f with id′A, then:

id′A ◦ idA = id′A

Similar, for every arrow from B to A: B
g−−→ A, according to the definition of

identity arrow, id′A ◦g = g holds. When replace B with A, replace g with idA, then:

id′A ◦ idA = idA

Summarize these two result, we obtain idA = id′A, hence the identity arrow is
unique.

2. Verify the monoid (S,∪,∅) (the elements are sets, the binary operation is set union,
the identity element is empty set) and (N,+, 0) (elements are natural numbers, the
binary operation is add, the identity element is zero) are all categories that contain
only one object.
The key idea is that every monoid is a category contains only one object. It’s a bit
difficult to answer: what is the object in this category? In fact, it does not matter
what this object is. The object is not necessary the monoid, or any given set. It
even need not contain any elements. To avoid bother with concrete object, we give
it notation ⋆.
Let’s first see the set monoid under union. Every set as an element in the monoid
s ∈ S can be used to define an arrow:

⋆ s−−→⋆

Note there is no any inner structure (of the monoid) involved. The arrow composi-
tion is exactly set union.
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⋆

⋆ ⋆

s1 s2

s1 ◦ s2 = s1 ∪ s2

Because set union is associative, the arrows is also associative. The empty set is
the unit of this monoid, it defines the identity arrow. As the empty set unions any
set equals to that set itself. It serves as the identity arrow. The set monoid under
union does form a category contains only one object.

⋆

s1

s2

s1 ∪ s2

Next let us see the additive monoid for natural numbers. Every number n can define
an arrow:

⋆ n−−→⋆

The arrow composition is addition. Since addition is associative, hence arrow com-
position is also associative. Zero, 0 defines the identity arrow. This is because 0
adds to any number equals to this number itself. Therefore, the additive monoid
for natural numbers does form a category.

⋆

m

n

m+ n

3. In chapter 1, we introduced Peano’s axioms for natural numbers and isomorphic
structures to Peano arithmetic, like the linked-list etc. They can be described in
categories. This was found by German mathematician Richard Dedekind although
the category theory was not established by his time. We named this category as
Peano category, denoted as PnoPnoPno. The objects in this category is (A, f, z), where
A is a set, for example natural numbers N ; f : A → A is a successor function. It
is succ for natural numbers; z ∈ A is the starting element, it is zero for natural
numbers. Given any two Peano objects (A, f, z) and (B, g, c), define the morphism
from A to B as:

A
ϕ−−→ B
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It satisfies:

ϕ ◦ f = g ◦ ϕ and ϕ(z) = c

Verify that PnoPnoPno is a category.
An object in Peano category is a tuple of (A, f, z). An arrow is a map ϕ that
preserve the tuple structure. Arrow composition is function composition:

A
ϕ−−→ B

ψ−−→ C

A
ψ ◦ ϕ−−−−→ C

Because function composition is associative, hence arrow composition is associative.
For identity arrow:

A
idA−−−→ A

It satisfies idA(z) = z, and idA ◦ f = f ◦ idA.
Obviously, the tuple (NNN, succ, 0) is an object in Peano category. It’s interesting
that, for every object (A, f, z) in Peano category, there is a unique arrow:

(NNN, succ, 0)
σ−−→ (A, f, z)

where:

σ(n) = fn(z)

which maps any natural number n to the result of applying f to z for n times.

4. For the list functor, define the arrow map with foldr.
It’s about to define list map with foldr essentially:

fmap f = foldr f Nil

5. Verify that the composition of maybe functor and list functor Maybe ◦ List and
List ◦Maybe are all functors.
We only prove Maybe ◦ List is a functor. The other proof is similar. Any object
A is sent to Maybe(List A). For arrows, let us first see the case of identity arrow:

(Maybe ◦ List) id = Maybe(List id) functor composition
= Maybe id identity arrow for list functor
= id identity arrow for maybe functor

Next is about arrow composition:

(Maybe ◦ List) (f ◦ g) = Maybe(List (f ◦ g)) functor composition
= Maybe((List f) ◦ (List g)) composition for list functor
= (Maybe (List f)) ◦ (Maybe (List g)) composition for maybe functor
= ((Maybe ◦ List) f) ◦ ((Maybe ◦ List) g) functor composition
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6. Proof that the composition for any functors G ◦ F is still a functor.
Similar to previous exercise, we need prove functor composition satisfies identity
arrow and arrow composition. First for identity arrow:

(G ◦ F) id = G(F id) functor composition
= G id identity arrow for functor F
= id identity arrow for functor G

Then for arrow composition:

(G ◦ F) (ϕ ◦ ψ) = G(F (ϕ ◦ ψ)) functor composition
= G((F ϕ) ◦ (F ψ)) arrow composition for functor F
= (G (F ϕ)) ◦ (G (F ψ)) arrow composition for functor G
= ((G ◦ F) ϕ) ◦ ((G ◦ F) ψ) functor composition

7. Give an example functor for preset.
The functor for preset category is a monotone function.

8. For the binary tree defined in chapter 2, define the functor for it.
Consider an object A in set total function category, the binary tree functor sends it
to:
data Tree A = Empty | Branch (Tree A) A (Tree A)

For arrow A
f−−→ B, the binary tree functor maps it to:

fmap f Empty = Empty
fmap f (Branch l x r) = Branch (fmap f l) (f x) (fmap f r)

Or we can use the mapt defined in chapter 2:

fmap = mapt

9. For any two objects in a poset, what is their product? what is their coproduct?
In chapter 3, we mentioned any poset is a category, every element is the poset is an
object, there is at most one arrow between two objects (the arrow exits if they have
ordering relation). For two elements (objects) a and b, if they have arrows both to
the up and down stream, then:

meet a ∧ b join a ∨ b

is the

product coproduct

for this pair of objects.
Where meet is the least upper bound (also called supremum) of the two objects,
and join is the greatest lower bound (infimum) of them. In general, the join and
meet of a subset of a partially ordered set need not exist, hence the product and
coproduct of a poset need not exist too.
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10. Prove the absorption law for coproduct, and verify the coproduct functor satisfies
composition condition.
The absorption law for coproduct states:

[p, q] ◦ (f + g) = [p ◦ f, q ◦ g]

Proof.
[p, q] ◦ (f + g)

= [p, q] ◦ [left ◦ f, right ◦ g] definition of +
= [[p, q] ◦ (left ◦ f), [p, q] ◦ (right ◦ g)] fusion law
= [[p, q] ◦ left ◦ f, [p, q] ◦ right ◦ g] associative
= [p ◦ f, q ◦ g] cancellation law

The composition condition for coproduct states:

(f + g) ◦ (f ′ + g′) = f ◦ f ′ + g ◦ g′

Proof. Let p = left ◦ f , and q = right ◦ g

(f + g) ◦ (f ′ + g′)
= [left ◦ f, right ◦ g] ◦ (f ′ + g′) definition of +
= [p, q] ◦ (f ′ + g′) substitute with p, q
= [p ◦ f ′, q ◦ g′] absorption law
= [left ◦ f ◦ f ′, right ◦ g ◦ g′] substitute p, q back
= [left ◦ (f ◦ f ′), right ◦ (g ◦ g′)] associative law
= f ◦ f ′ + g ◦ g′ reverse of +

11. Prove that swap satisfies the natural transformation condition (g × f) ◦ swap =
swap ◦ (f × g)

For A f−−→ C and B
g−−→ D, we need prove the below diagram commutes.

(A,B) (B,A)

(C,D) (D,C)

swapA,B

swapC,D

f × g g × f = swap f × g

Proof.
((g × f) ◦ swap) (A,B)

= (g × f) (swap (A,B)) definition of composition
= (g × f) ◦ (B,A) definition of swap
= (g B, f A) product of arrows
= (D,C) definition of g, f
= swap (C,D) reverse of swap definition
= swap (f A, g B) reverse of f, g definition
= swap ((f × g) (A,B)) product of arrow
= (swap ◦ (f × g)) (A,B) reverse of composition
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12. Prove that the polymorphic function length is a natural transformation. It is defined
as the following:

length : [A]→ Int
length [] = 0
length (x : xs) = 1 + length xs

For any object A, the arrow length indexed by A is:

[A]
lengthA−−−−−−→ KInt A

where KInt is constant functor. It sends every object to Int, and sends every arrow

to identity arrow idint. For arrow A
f−−→ B, we need prove below diagram commutes.

A [A] KInt A

B [B] KInt B

f

lengthA

lengthB

List(f) KInt(f)

From the definition of constant functor, this diagram is equivalent to:

A [A] Int

B [B] Int

f

lengthA

lengthB

List(f) id

We are about to prove:

id ◦ lengthA = lengthB ◦ List(f)

Which means: lengthA = lengthB ◦ List(f)

Proof. Use mathematical induction, we first consider the empty list case:

lengthB ◦ List(f)[]
= lengthB [] definition of list functor
= 0 definition of length
= lengthA [] reverse of length definition

Next suppose lengthB ◦ List(f) as = lengthA as holds, we have:

lengthB ◦ List(f)(a : as)
= lengthB (f(a) : List(f) as) definition of list functor
= 1 + lengthB (List(f) as) definition of length
= 1 + lengthB ◦ List(f) as arrow composition
= 1 + lengthA as induction assumption
= lengthA (a : as) reverse of length definition
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13. Natural transformation is composable. Consider two natural transformations F ϕ−−→

G and G ψ−−→ H. For any arrow A
f−−→ B, draw the diagram for their composition,

and list the commutative condition.

FA GA HA

FB GB HB

F(f)

ϕA

ϕB

ψA

ψB

G(f) H(f)

The commutative condition is:

H(f) ◦ (ψA ◦ ϕA) = (ψB ◦ ϕB) ◦ F(f)

14. In the poset example, we say if there exists the minimum (or the maximum) element,
then the minimum (or the maximum) is the initial object (or the final object).
Consider the category of all posets PosetPosetPoset, if there exists the initial object, what is
it? If there exists the final object, what is it?
For the PosetPosetPoset category, the objects are posets, the arrows are monotone functions.
For two posets P,Q, arrow P

h−−→ Q means for any two ordered elements a ≤ b in
P , h(a) ≤ h(b) holds.
The initial object in this category is the empty poset 0 = ∅. There is unique arrow
from it to any poset P :

∅ −→ P

The final object is the singleton poset 1 = {⋆}, the order relationship is R =
{(⋆,⋆)}, i.e. ⋆ ≤⋆. From any poset P , there is unique arrow to 1:

P −→ {⋆}
p 7→ ⋆

15. In the Peano category PnoPnoPno (see exercise 2 in section 1), what is the initial object in
form (A, f, z)? What is the final object?
The initial object is (NNN, succ, 0). There is unique arrow from it to any object:

(NNN, succ, 0)
σ−−→ (A, f, z) : σ(n) = fn(z)

The final object is a singleton 1 = ({⋆},⋆, id). There is unique arrow from any
object (A, f, z) to the final object:

(A, f, z)
σ−−→ 1 : σ(a) = ⋆

16. Verify that ExpExpExp is a category. What is the id arrow and arrow composition in it?

Let us first verify the id arrow h
id−−→ h, such that the following diagram commutes:
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A A×B

A A×B C

idA idA × idB
h

h

Next is the arrow composition:

The composition of h i−−→ k and k j−−→ m is j ◦i such that below diagram commutes:

A A×B

D D ×B C

E E ×B

f

g

f × idB

g × idB

h

k

m

For arrow h
j−−→ k, it means idk ◦ j = j = j ◦ idh holds. And the associative law

hold for any three arrows.

17. In the reflection law curry apply = id, what is the subscript of the id arrow? Please
prove it with another method.
The subscript of the id arrow is the type of the binary arrow: A×B → C.

Proof.
curry ◦ apply f a b

= curry (apply f) a b definition of composition
= (apply f) (a, b) definition of curry
= f(a, b) definition of apply
= idA×B→C f(a, b)

18. We define the equation

(curry f) ◦ g = curry(f ◦ (g × id))

as the fusion law for Currying. Draw the diagram and prove it.

D D ×B

A A×B

CB CB ×B C

g

curry f

g × id
f ◦ (g × id)

f

apply
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Observe the triangle of D × B, A× B, and C. We know the arrow of D × B → C
is f ◦ (g × id).
According to the definition of exponentials and transpose arrow, we have:

apply ◦ (curry f) ◦ g = f ◦ (g × id)

According to the universal property of curry and apply:

(curry f) ◦ g = curry(f ◦ (g × id))

19. Draw the diagram to illustrate the reverse element axiom for group.
The reverse element axiom can be formalized as: m ◦ (id, i) = m ◦ (i, id) = e

G G×G G

1 G 1

(id, i) (i, id)

m

e e

20. Let p be a prime. Use the F-algebra to define the α arrow for the multiplicative
group for integers modulo p (refer to the previous chapter for the definition of this
group).
According to the α arrow defined for group:

FA α = e+m+ i−−−−−−−−−−−→ A

The multiplicative group for integers modulo p is defined as:

e () = 1 1 is the unit
m(a, b) = ab mod p multiplication modulo p

i(a) = ap−2 mod p Fermat’s little theorem ap−1 ≡ 1 mod p

21. Define F-algebra for ring (refer to the previous chapter for definition of ring).
The algebraic structure of ring contains three parts:

i Carrier object R, the set that carries the algebraic structure of ring;
ii Polynomial functor FA = 1 + 1 +A×A+A×A+A;

iii Arrow FA α = z + e+ p+m+ n−−−−−−−−−−−−−−−−−−→ A, consists of the unit of addition z, the
unit of multiplication e, addition p, multiplication m, and negation n.

These define the F -algebra (R,α) for ring. When the carrier object is integers for
example, the ring is defined as below under standard arithmetic:

z () = 0
e () = 1
p(a, b) = a+ b
m(a, b) = ab
n(a) = −a
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22. What is the id arrow for F-algebra category? What is the arrow composition?
The id arrow is the homomorphism from F -algebra (A,α) to itself. The arrow
composition is the composition of F -morphisms. The arrow between carrier object

A
f−−→ B

g−−→ C makes the following diagram commute:

FA FB FC

A B C

α β γ

F(f) F(g)

f g

g ◦ f ◦ α = γ ◦ F(g) ◦ F(f) = γ ◦ F(g ◦ f)

23. Someone write the natural number like functor as the below recursive form. What
do you think about it?
data NatF A = ZeroF | SuccF (NatF A)

No, such definition does not work. Consider carrier object A, Functor NatF is
recursive, it does not send A to a determined object. In fact, we expect it is mapped
to a object in Peano category (A, f, z).

24. We can define an α arrow for NatFInt→ Int, named eval:
eval : NatFInt→ Int
eval ZeroF = 0
eval (SuccF n) = n+ 1

We can recursively substitute A′ = NatFA to functor NatF by n times. We denote
the functor obtained as NatFnA. Can we define the following α arrow?

eval : NatFnInt→ Int

eval : NatFnInt→ Int
eval ZeroF = 0 ZeroF is an object of NatFnInt

eval (SuccF ZeroF ) = 1 ZeroF is an object of NatFn−1Int
eval (SuccF (SuccF ZeroF )) = 2 ZeroF is an object of NatFn−2Int

...
eval (SuccFn−1 ZeroF ) = n− 1 ZeroF is an object of NatFInt

eval (SuccFn m) = m+ n

25. For the binary tree functor TreeF A B, fix A, use the fixed point to prove that
(Tree A, [nil, branch]) is the initial algebra
Let B′ = TreeF A B. We recursively apply to itself, and call this result as
Fix (TreeF A).

Fix (TreeF A) = TreeF A (Fix (TreeF A)) definition of fixed point
= TreeF A (TreeF A(...)) expand
= NilF |BrF A (TreeF A (...)) (TreeF A (...)) definition of binary tree functor
= NilF |BrF A (Fix (TreeF A)) (Fix (TreeF A)) reverse of fixed point

Compare with the definition of TreeA:
data Tree A = Nil | Br A (Tree A) (Tree A)

Hence Tree A = Fix (TreeF A). The initial algebra is (Tree A, [nil, branch]).



284 Answers

.6 Fusion
1. Verify that folding from left can also be defined with foldr:

foldl f z xs = foldr (b g a 7→ g (f a b)) id xs z

To make it easy, we rewrite it to:

foldl f z xs = foldr step id xs z
where : step x g a = g (f a x)

foldl f z [x1, x2, ..., xn]
= (foldr step id [x1, x2, ..., xn]) z
= (step x1(step x2(...(step xn id)))...) z
= (step x1(step x2(...(an 7→ id (f an xn))))...) z
= (step x1(step x2(...(an−1 7→ (an 7→ id (f an xn)) (f an−1 xn−1))))...) z
= (a1 7→ (a2 7→ (...(an 7→ id (f an xn)) (f an−1 xn−1))...(f a2 x2))(f a1 x1)) z
= (a1 7→ (a2 7→ (...(an 7→ f an xn) (f an−1 xn−1))...) (f a1 x1)) z
= (a1 7→ (a2 7→ (...(an−1 7→ f (f an−1 xn−1) xn) ...)) (f a1 x1)) z
= (a1 7→ f (f (...(f a1 x1) x2) ...) xn) z
= f (f (...(f z x1) x2) ...) xn

We can further write f as an infix of ⊕ to highlight the difference between foldl
and foldr:

foldl ⊕ f z = ((...(z ⊕ x1) ⊕ x2)...) ⊕ xn

2. Prove the below build...foldr forms hold:

concat xss = build (f z 7→ foldr (xs x 7→ foldr f x xs) z xss)
map f xs = build (⊕ z 7→ foldr (y ys 7→ (f y)⊕ ys) z xs)

filter f xs = build (⊕ z 7→ foldr (x xs′ 7→

{
f(x) : x⊕ xs′

otherwise : xs′
) z xs)

repeat x = build (⊕ z 7→ let r = x⊕ r in r)

First for the list concat:

Proof.
build (f z 7→ foldr (xs x 7→ foldr f x xs) z xss)

= (f z 7→ foldr (xs x 7→ foldr f x xs) z xss) (:) [] definition of build
= foldr (xs x 7→ foldr (:) x xs) [] xss β-reduction
= foldr ++ [] xss concatenate two lists
= concat xss concatenate multiple lists

Next for list map
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Proof.
build (⊕ z 7→ foldr (y ys 7→ (f y)⊕ ys) z xs)

= (⊕ z 7→ foldr (y ys 7→ (f y)⊕ ys) z xs) (:) [] definition of build
= foldr (y ys 7→ f(y) : ys) [] xs β-reduction
= foldr (x ys 7→ f(x) : ys) [] xs α transformation, change name
= map f xs definition of list map

Next for filter

Proof.

build (⊕ z 7→ foldr (x xs′ 7→

{
f(x) : x⊕ xs′

otherwise : xs′
) z xs)

= (⊕ z 7→ foldr (x xs′ 7→

{
f(x) : x⊕ xs′

otherwise : xs′
) z xs) (:) [] definition of build

= foldr (x xs′ 7→

{
f(x) : x : xs′

otherwise : xs′
) [] xs β-reduction

= filter f xs definition of filter

Last for repeat

Proof.
build (⊕ z 7→ let r = x⊕ r in r)

= (⊕ z 7→ let r = x⊕ r in r) (:) [] definition of build
= (let r = x : r in r) β-reduction
= repeat x definition of repeat

3. Simplify the quick sort algorithm.{
qsort [] = []

qsort (x : xs) = qsort [a|a ∈ xs, a ≤ x] ++ [x] ++ qsort [a|a ∈ xs, x < a]

First, we can transform the ZF-expression to filter, and combine the two rounds
of list filtering to one pass:{

qsort [] = []

qsort (x : xs) = qsort as++ [x] ++ qsort bs

where:
(as, bs) = foldr h ([], []) xs

h y (as′, bs′) =

{
y ≤ x : (y : as′, bs′)

otherwise : (as′, y : bs′)

Next we further simplify the list concatenation:

qsort as++ [x] ++ qsort bs
= qsort as++ (x : qsort bs)
= foldr(:) (x : qsort bs)(qsort as)
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4. Verify the type constraint of fusion law with category theory. Hint: consider the
type of the catamorphism.
As shown in below diagram:

ListFA [A] [A]

ListFA B B

ListFA(h) h = LαM
(:) + []

α = f + z

The catamorphism LαM is abstracted to build some algebraic structure from α, i.e.
g α. Where g accepts the α arrow of an F -algebra, generates result of B. The α
arrow is the coproduct of f : A→ B → B and z : 1→ B, that the type is:

g : ∀A.(∀B.(A→ B → B)→ B → B)

The definition of build is build(g) = g (:) []. It applies g to the α arrow of the initial
algebra, and builds the object of the initial algebra, which is a list of [A].

build : ∀A.(∀B.(A→ B → B)→ B → B)→ List A

5. Use the fusion law to optimize the expression evaluation function:

eval = sum ◦map (product ◦ (map dec))

eval es
= sum(map (product ◦ (map dec)) es) function composition
{sum in fold, map in build}

= foldrfoldrfoldr (+) 0 (buildbuildbuild (⊕ z 7→ foldr (t ts 7→ (f t)⊕ ts) z es)) let f = product ◦ (map dec)
= (⊕ z 7→ foldr (t ts 7→ (f t)⊕ ts) z es) (+) 0 fusion law
= foldr (t ts 7→ (f t) + ts) 0 es β-reduction

Written in point-free form as:

eval = foldr (t ts 7→ (f t) + ts) 0

Next we simplify the product ◦ (map dec) part

(product ◦ (map dec)) t
= product (map dec t) function composition
{product in fold, map in build}

= foldrfoldrfoldr (×) 1 (buildbuildbuild (⊕ z 7→ foldr (d ds 7→ (dec d)⊕ ds) z t))
= (⊕ z 7→ foldr(d ds 7→ (dec d)⊕ ds) z t) (×) 1 fusion law
= foldr (d ds 7→ (dec d)× ds) 1 t β-reduction
= foldr ((×) ◦ fork (dec, id)) 1 t let fork(f, g) x = (f x, g x)

Substitute this to f , we obtain the final simplified result:

eval = foldr (t ts 7→ (foldr ((×) ◦ fork (dec, id)) 1 t) + ts) 0
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6. How to expand all expressions from left?
When expand from left to right, there are three options for every digit d:

(a) Insert nothing. It means append d to the last factor of the last sub-expression
of ei. Combine fn ++ [d] as a new factor. For example when ei is 1 + 2, d is 3,
write 3 after 1 + 2 without inserting any symbols, we obtain a new expression
1 + 23;

(b) Insert ×. It means we create a new factor [d], then append it to the last sub-
expression of ei. Combine tm ++ [[d]] as a new sub-expression. For the same
1 + 2 example, we write 3 after it, put a × between 2 and 3, hence obtain a
new sub-expression 1 + 2× 3;

(c) Insert +. It means we create a new sub-expression [[d]], then append it to ei
to obtain a new expression ei ++ [[[d]]]. For the same 1 + 2 example, we write
3 after it, put a + between 2 and 3, hence obtain a new expression 1 + 2 + 3.

We need define the append function to add an element after a list:

append x = foldr (:) [x]

Then we define a function onLast(f), which applies f to the last element of a list:

onLast f = foldr h []

where :

{
h x [] = [(f x)]

h x xs = x : xs

Then we implement the above three expansion options:
add d exp = [((append d) `onLast`) `onLast` exp,

(append [d]) `onLast` exp,
(append [[d]]) exp]

7. The following definition converts expression to string:

str = (join “+”) ◦ (map ((join “× ”) ◦ (map (show ◦ dec))))

Where show converts number to string. Function join(c, s) concatenates multiple
strings s with delimiter c. For example: join(“#”, [“abc”, “def”]) =“abc#def”. Use
the fusion law to optimize str.
We defined join(ws) in chapter 5. It insert space between every two strings. We
can extract the space as a parameter to define join(c, s):

join c = foldr (w b 7→ foldr (:) (c : b) w) []

Observe the definition of str. It contains embedded (join c) ◦ (map f) as:

str = (join c) ◦ (map f)
where : f = (join d) ◦ (map g)

where c = ‘+’, d = ‘×’, and g = show ◦ dec. What we need is to simplify (join c) ◦
(map f).



288 Answers

(join c) ◦ (map f) es
{join in fold, map in build}

= foldrfoldrfoldr (w b 7→ foldr (:)(c : b) w) [] (buildbuildbuild (⊕ z 7→ foldr (y ys 7→ (f y)⊕ ys) z es))
{fusion law}

= (⊕ z 7→ foldr (y ys 7→ (f y)⊕ ys) z es)) (w b 7→ foldr (:) (c : b) w) []
{β-reduction}

= foldr (y ys 7→ foldr (:) (c : ys) (f y)) [] es

Substitute the +, ×, and show ◦ dec in, we obtain the final result:

str = foldr (x xs 7→ foldr (:) (‘+′ : xs)(
foldr(y ys 7→ foldr (:) (‘×′ : ys) (show ◦ dec y)) []) []

.7 Infinity
1. In chapter 1, we realized Fibonacci numbers by folding. How to define Fibonacci

numbers as potential infinity with iterate?

F = (fst ◦ unzip) (iterate ((m,n) 7→ (n,m+ n)) (1, 1))

For example take 100 F gives the first 100 Fibonacci numbers

2. Define iterate by folding.
Consider the infinite stream iterate f x. After applying f to each element, and
prepend x as the first one, we obtain this infinite stream again. Based on this fact,
we can define it as:

iterate f x = x : foldr(y ys 7→ (f y) : ys) [] (iterate f x)

For example:
take 10 $ iter (+1) 0
[0,1,2,3,4,5,6,7,8,9]

3. Use the definition of the fixed point in chapter 4, prove Stream is the fixed point
of StreamF .
Let A′ = StreamF E A, then apply it to itself repeatedly. We call this result
Fix (StreamF E)

Fix (StreamF E) = StreamF E (Fix (StreamF E)) definition of fixed point
= StreamF E (StreamF E (...)) expand recursively
= Stream E (Stream E (...)) change name
= Stream E reverse of Stream

Therefore, Stream is the fixed point of StreamF .

4. Define unfold.
We often use Maybe to define the terminate condition:
unfold :: (b −> Maybe (a, b)) −> (b −> [a])
unfold f b = case f b of

Just (a, b') −> a : unfold f b'
Nothing −> []
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5. The fundamental theorem of arithmetic states that, any integer greater than 1 can
be unique represented as the product of prime numbers. Given a text T , and a
string W , does any permutation of W exist in T? Solve this programming puzzle
with the fundamental theorem and the stream of prime numbers.
Our idea is to map every unique character to a prime number, for example, a → 2,
b → 3, c → 5, ... Given any string W , no matter it contains repeated characters or
not, we can convert it to a product of prime numbers:

F =
∏

pc, c ∈W

We call it the number theory finger print F of string W . When W is empty, we
define its finger print as 1. Because multiplication of integers is commutative, the
finger print is same for all permutations of W , and according to the fundamental
theorem of arithmetic, the finger print is unique. We can develop an elegant solution
based on this: First, we calculate F of string W , then slide a window of length |W |
along T from left to right. When start, we also need to compute the finger print
within this window of T , and compare it with F . If they are equal, it means T
contains some permutation of W . Otherwise, we slide the window to the right by
a character. We can easily compute the updated finger print value for this new
window position: divide the product by the prime number of the character slides
out, and multiply the prime number of the character slides in. Whenever the finger
print equals to F , we find a permutation. In order to map different characters
to prime numbers, we can use sieve of Eratosthenes to generate a series of prime
numbers. Below is the example algorithm accordingly.

function contains?(W,T )
P ← ana era [2, 3, ...] ▷ prime numbers
if W = ϕ then

return True
if |T | < |W | then

return False
m←

∏
Pc, c ∈W

m′ ←
∏

Pc, c ∈ T [1...|W |]
for i← |W |+ 1 to |T | do

if m = m′ then
return True

m′ ← m′ × PTi/PTi−|W |

return m = m′

6. We establish the 1-to-1 correspondence between the rooms and guests. For guest i
in group j, which room number should be assigned? Which guest in which group
will live in room k?
Use the convention to count from zero, and use pair (i, j) to denote the j-th guest
in the i-th group. Let us list the first several guests and their rooms:
(i, j) (0, 0) (0, 1) (1, 0) (2, 0) (1, 1) (0, 2) (0, 3) (1, 2) (2, 1) (3, 0) ...
k 0 1 2 3 4 5 6 7 8 9 ...

i+ j 0 1 1 2 2 2 3 3 3 3 ...

Writing down the values i + j, we can find the pattern. There are 1 instance of
number 0, 2 instances of number 1, 3 instances of number 2, 4 instances of number
3, ... They are exactly the triangle numbers found by Pythagoreans. Let m = i+ j,
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there are total m(m+ 1)

2
grid points along the diagonals on the left-bottom side of

a given grid.
For the diagonal where this point belongs to, if m is odd, then the room number
increases along the left up direction, i increases, and j decreases; if m is even, then
the direction is right-bottom. Summarize the two cases gives the following result:

k =
m(m+ 1)

2
+

{
m− j : m is odd
j : m is even

Further, we can use (−1)m to simplify the conditions:

k =
m(m+ 2) + (−1)m(2j −m)

2

7. For Hilbert’s Grand hotel, there are multiple solutions for the problem on the third
day. Can you give a different numbering scheme based on the cover page of the
book Proof without word?

0 1 2 3 4 5

1

2

3

4

5

0 1

23

4 5 6

7

8 9

10

Figure 21: Another numbering scheme for infinity of infinity

As shown in figure 21, we count along the gnomon shaped path. There are odd
number of grid points along every gnomon.

8. Let x = 0.9999...., then 10x = 9.9999..., subtract them gives 10x − x = 9. Solving
this equation gives x = 1. Hence 1 = 0.9999.... Is this proof correct?
Yes, it’s correct.

9. Light a candle between two opposite mirrors, what image can you see? Is it potential
or actual infinity?
The candle image reflects between the two mirrors endlessly, generates infinite many
images. If we consider the speed of light is limited, then it is potential infinity from
physics viewpoint.
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.8 Paradox
1. We can define numbers in natural language. For example “the maximum of two

digits number” defines 99. Define a set containing all numbers that cannot be
described within 20 words. Consider such an element: “The minimum number that
cannot be described within 20 words”. Is it a member of this set?
This is an instance of Russell’s paradox. Whether it is a member, all lead to con-
tradiction.

2. “The only constant is change” said by Heraclitus. Is this Russell’s paradox?
Yes, this is an instance of Russell’s paradox.

3. Is the quote saying by Socrates (the beginning of chapter 7) Russell’s paradox?
Yes, it is an instance of Russell’s paradox.

4. Translate Fermat’s last theorem into a TNT string.
We need define power operation first.

{
∀a : e(a, 0) = S0 0-th power is 1
∀a : ∀b : e(a, Sb) = a · e(a, b) recursion

We can then define Fermat’s last theorem atop it.

∀d : ¬∃a : ∃b : ∃c : ¬(d = 0 ∨ d = S0 ∨ d = SS0)→ e(a, d) + e(b, d) = e(c, d)

5. Prove the associative law of addition with TNT reasoning rules.
Surprisingly, we can prove every theorem below:

a+ b+ 0 = a+ (b+ 0)
a+ b+ S0 = a+ (b+ S0)

a+ b+ SS0 = a+ (b+ SS0)
...

For example:

a+ b+ 0 = a+ b = a+ (b+ 0)

And:

a+ b+ SS0 = SS(a+ b+ 0)
= SS(a+ b)
= a+ SSb
= a+ (b+ SS0)

However, we cannot prove: ∀c : a+ b+ c = a+ (b+ c).
To do that, we has to introduce mathematical induction.
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6. Prove that ∀a : (0 + a) = a with the newly added rule of induction.
First for the case of 0:

0 + 0 = 0

Next suppose (0 + a) = a holds, we have:

(0 + Sa) = S(0 + a) axiom 3
= Sa induction hypothesis

From the rule of induction, we obtain: ∀a : (0 + a) = a



Proof of commutative law of
addition

To prove the commutative law of addition a + b = b + a, we prepare three things. The
first states that, for any natural number a, we have:

0 + a = a (1)

It means the zero on the left side can be cancelled for addition. When a = 0, according
to the first rule of addition, it holds:

0 + 0 = 0

As the induction, suppose 0 + a = a holds, we are going to show that 0 + a′ = a′.

0 + a′ = (0 + a)′ second rule of addition
= a′ induction assumption

Next we define the successor of 0 be 1, and prove the second fact:

a′ = a+ 1 (2)

It means the successor of any natural number is this number plus 1. This is because:

a′ = (a+ 0)′ first rule of addition
= a+ 0′ second rule of addition
= a+ 1 1 is defined as the successor of 0

The third thing we are going to prove is the starting case:

a+ 1 = 1 + a (3)

When a = 0, we have:

0 + 1 = 1 We proved the left 0 can be cancelled
= 1 + 0 first rule of addition

For induction case, suppose a+1 = 1+ a holds, we are going to show a′ +1 = 1+ a′.

a′ + 1 = a′ + 0′ 1 is the successor of 0
= (a′ + 0)′ first rule of addition
= ((a+ 1) + 0)′ second result we proved. (2)
= (a+ 1)′ second rule of addition
= (1 + a)′ induction assumption
= 1 + a′ second rule of addition

293
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On top of these three results, we can prove the commutative law of addition. We first
show that when b = 0 it holds. According to the first rule of addition, we have a+0 = a;
While from the first result we proved, 0+ a = a holds too. Hence a+0 = 0+ a. Then we
prove the induction case. Suppose a+b = b+a holds, we are going to show a+b′ = b′+a.

a+ b′ = (a+ b)′ second rule of addition
= (b+ a)′ induction assumption
= b+ a′ second rule of addition
= b+ a+ 1 second result we proved. (2)
= b+ 1 + a third result we proved. (3)
= (b+ 1) + a associative law proved in chapter 1
= b′ + a third result we proved. (3)

Therefore we proved commutative law of addition with Peano’s axioms([10], p147 -
148).



Uniqueness of product and
coproduct

Are product and coproduct unique? The following theorem answers this question.

Lemma .8.1. For any pair of object A, B of category CCC, let the objects and arrows in
below diagram

P I

A A

B B

Q J

pA

pB

qA

qB

iA

jA

iB

jB

be a pair of

product coproduct

wedges, then

P,Q I, J

are isomorphic wedges. There are unique arrows:

P I

Q J

f g f g

Such that: {
pA = qA ◦ f pB = qB ◦ f
qA = pA ◦ g qB = pB ◦ g

{
iA = g ◦ jA iB = g ◦ jB
jA = f ◦ iA jB = f ◦ iB

Where f and g are inverse pair of isomorphisms.
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Proof. We only prove the left side part. The right side can be proved in a similar way.
Given A, B, Object Q and the pair qA, qB form a product wedge. Object P and the pair
pA, pB form another wedge. From the definition of product, there is a unique mediator f
satisfying:

pA = qA ◦ f � pB = qB ◦ f

By reversing the role of P and Q (Let P be product, and Q be arbitrary wedge), we
have:

qA = pA ◦ g � qB = pB ◦ g

Hence we have: {
pA ◦ g ◦ f = qA ◦ f = pA

pB ◦ g ◦ f = qB ◦ f = pB

and: {
qA ◦ f ◦ g = pA ◦ g = qA

qB ◦ f ◦ g = pB ◦ g = qB

Therefore:

g ◦ f = idP f ◦ g = idQ

This proved if two objects have product (or coproduct), then it is unique.



Cartesian product and disjoint
union of sets form product and
coproduct

Proof. We prove this by construction. The Cartesian product A×B contains all combi-
nations from the two sets.

{(a, b)|a ∈ A, b ∈ B}

We define two special arrows (functions) as pA and pB :{
fst (a, b) = a

snd (a, b) = b

Consider an arbitrary wedge

A

X

B

p

q

Where p x = a, q x = b, x ∈ X. For example, let X be Int, A be Int, and B be Bool,
the two functions p and q are defined as:{

p(x) = −x
q(x) = even(x)

Such that p negates an integer, and q examines if it is even. We define the function
X

m−−→ A×B as below:

m(x) = (a, b)

For this example, we have:

m(x) = (−x, even(x))

Such that, the following diagram commutes:
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A

X A×B

B

p

q

m
fst

snd

Let us verify it:

(fst ◦m)(x) = fst m(x) function composition
= fst (a, b) definition of m
= a definition of fst
= p(x) reverse of p

and:
(snd ◦m)(x) = snd m(x) function composition

= snd (a, b) definition of m
= b definition of snd
= q(x) reverse of q

For the above example, we have:{
(fst ◦m)(x) = fst (−x, even(x)) = −x = p(x)

(snd ◦m)(x) = snd (−x, even(x)) = even(x) = q(x)

We also need prove the uniqueness of m. Suppose there exists another function x h−−→
A×B, such that the diagram also commutes:

fst ◦ h = p and snd ◦ h = q

We have:
(a, b) = (p(x), q(x)) definition of p, q

= ((fst ◦ h)(x), (snd ◦ h)(x)) commute
= (fst h(x), snd h(x)) function composition
= (fst (a, b), snd (a, b)) reverse of fst, snd

Hence h(x) = (a, b) = m(x), which proves the uniqueness of m.
Next we prove the coproduct part. The elements in the disjoint union A+B have two

types. One comes from A as (a, 0), the other comes from B as (b, 1). We can define two
special arrows (functions) as iA and iB :{

left(a) = (a, 0)

right(b) = (b, 1)

Consider the wedge of an arbitrary set X:

A

X

B

p

q
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We define arrow A+B
m−−→ X as below:{

m (a, 0) = p(a)

m (b, 1) = q(b)

Such that the following diagram commutes:

A

A+B X

B

p

q

m
left

right

Next we need prove the uniqueness of m. Suppose there exists another arrow A+B
h−−→

X, also makes the diagram commutes:

h ◦ left = p and h ◦ right = q

Taking any a ∈ A, b ∈ B, we have:{
h (a, 0) = h(left(a)) = (h ◦ left)(a) = p(a) = m (a, 0)

h (b, 1) = h(right(a)) = (h ◦ right)(b) = q(b) = m (b, 1)

Hence h = m, which proves the uniqueness of m.
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Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and

useful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, be-
cause free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a

notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part a
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textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for re-
vising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or dis-
courage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent”
is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING
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You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers)

of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions

of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.
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C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
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You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,

under the terms defined in section 4 above for modified versions, provided that you in-
clude in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released

under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s
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Cover Texts may be placed on covers that bracket the Document within the aggregate, or
the electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of

the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense, or dis-
tribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free

Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If
the Document specifies that a proxy can decide which future versions of this License can
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be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide

Web server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of such a
server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all
works that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with … Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.
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