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1 Introduction

The regls addon is essentially a front-end for functionality coded in C in the gretl regls plugin; to
run the package you will need gretl version 2020e or higher. The plugin implements LASSO (Tib-
shirani, 1996)—by default via the Alternating Direction Method of Multipliers (ADMM) algorithm
as set out in Boyd et al. (2010); Ridge regression, by default via Singular Value Decomposition; and
the “elastic net” hybrid of LASSO and Ridge.

The best-known implementation of regularized regression is that provided by the glmnet package
for R. Since we make several references to glmnet below we should state up front what we’re talking
about. The authors of glmnet are Jerome Friedman, Trevor Hastie, Rob Tibshirani, et al. Current
information on glmnet can be found at https://glmnet.stanford.edu/; for further information
on the algorithms used in the package see Friedman et al. (2010).!

This package supports LASSO, Ridge and elastic net via the functions regls() and mreg1s(). The
first of these requires that a dataset is in place while the second accepts data in matrix form,
otherwise they are essentially the same; see Section 12 for details on mregls(). We begin by
discussing LASSO, which is the default method. Ridge is discussed in Section 8 and elastic net in
Section 10.

We use the LASSO parameterization employed by Boyd et al: the objective is
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where n is the number of observations, k is the number of candidate regressors (the number of
columns of X) and A > 0 is the LASSO regularization hyperparameter. In this context A = 0 gives
plain OLS, and at the other end of the spectrum there exists a data-dependent value of A, namely
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which drives all elements of B to zero. A key control variable for our regls function is the scaled
term S = A/Amax, SUch that 0 < s < 1.

The regls function takes three arguments: a series (the dependent variable), a list (the independent
variables, not including a constant) and a bundle to contain optional parameters; and it returns a
bundle, described below. Its signature is therefore

function bundle regls (series y, Tist X, bundle parms)

The parms argument may be omitted, in which case all settings assume their default values, de-
scribed below.

One basic element in the parms bundle is a specification for A, which may take either of two forms,
as follows:

lwe should point out that glmnet supports regularized estimation of generalized linear models. At present regls only
supports least squares.
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1. under the key 1frac (“lambda fraction”), a scalar (single s value) or vector (sequence of s
values); or

2. under the key nTambda, the number of s values to be used (= 4), in which case the values will
be assigned automatically.

If nTambda is provided instead of 1frac, the automatic s vector is a logarithmically declining se-
quence starting at 1 and finishing at 0.0001. For example, given nTambda = 5 the sequence will be
s =11, 0.1, 0.01, 0.001, 0.0001}.

If neither Tfrac nor nTambda is specified, the default is as if nTambda were given as 25.

In case you wish to specify a sequence succinctly but with more control, the package contains a
utility function Tambda_sequence(), which takes up to three arguments. The first and second
arguments (required) give the maximum s and the number of values, while the third (optional)
argument can be used to give the minimum s (by default 0.0001). As with the nlambda option the
values are spaced logarithmically. So if you were to do

parms.1frac = lambda_sequence(1l, 20, 0.001)

the resulting sequence would be s = {1, 0.69519, 0.48329, ..., 0.00144, 0.001}.

A second basic member of the parameter bundle is stdize, a boolean switch to toggle standard-
ization of the data. The default is to perform standardization (corresponding to a non-zero value
of this option), but if the data are already standardized on input stdize may be set to 0. The
estimates include an intercept (which is not subject to regularization) only if stdize is on.

Another basic option is verbosity. This has a default value of 1, meaning that regls prints out a
certain amount of information about its progress and/or results. Setting it to 0 makes regls run
(mostly) quietly; setting it to 2 or 3 produces more output in some cases.

The further optional parameters, as well as the contents of the bundle returned by regls, are best
explained by reference to the various modes of usage of the function, namely estimation with a
single value of A; exploration of a range of A values using a unified training sample; and (probably
most relevant in practice) search for optimal A via cross validation.

2 Estimation with a single regularization

Suppose we have 1200 observations on some series y and list X (with k = 100 members) and we
wish to train on the first 1000 observations, using s = 0.2, then predict for the remaining 200. And
let’s say the data are not pre-standardized. We might then do:

bundle parms = _(1frac = 0.2)
smp1 1 1000
bundle 1b = regls(y, X, parms)

We’ll then find the following in Th:

e B: The full vector of k + 1 coefficients (including an intercept).

e nzb: A vector holding only the non-zero coefficients.

e nzX: A list identifying the regressors with non-zero coefficients.
e Tmax: The Apax value for the standardized data.

e Tambda: The value of A = 5 Ak, See (2) above.

e crit: The minimized LASSO criterion, see (1) above.



R2: Coefficient of determination, 1 — > (y — 3)%/ > (y — ¥)°.

BIC: The Bayesian Information Criterion for the estimated model.

nobs: The number of training observations used.

Tfrac: The input value of s.

stdize: Whether regls did standardization or not.
To predict for the remainder of the observations we could then do:

smp1 1001 1200
series pred = lincomb(lb.nzX, Tb.nzb)

At some points below we refer to the coefficient of determination (under the key R2) as “R2”. But
note that with regularized regression, unlike OLS, this figure is not equal to the squared correlation
between y and .

3 Exploring a range of regularizations

Suppose we wish to compare results from several values of A, using all the training data. We might
then revise the prior script as:

bundle parms = _(1frac = lambda_sequence(1l, 10))
smp1 1 1000
bundle 1b = regls(y, X, parms)

In this case Tb.B will be a matrix holding the full coefficient vector for each s (one column per s
value); 1b.crit, R2 and 1b.BIC will be column vectors holding the LASSO criterion, R? and BIC
value for each s; and the bundle will contain these additional items:

e 1fmin: The s value which produces the smallest BIC value.

e idxmin: The 1-based index value of 1fmin in the vector passed as 1frac.

The BIC (Schwarz, 1978) is calculated by regls as —20(B) + k*(A)logn, where £(B) is the log-
likelihood, based on the sum of squared residuals, and k*(A) the number of non-zero coefficients
for the given A. This criterion provides a guide (though certainly not an infallible one) to the likely
out-of-sample performance of a model: smaller values of BIC are better. Note that the LASSO
criterion itself does not offer such a guide (it is likely to decrease monotonically along with A), but
it can be useful in comparing the effectiveness of minimization algorithms (see Appendix A).

When multiple A values are specified, the vector nzb and list nzX refer to the non-zero coefficients
and associated regressors obtained with s = 1fmin (the BIC minimizer). Out-of-sample predictions
using this s can be obtained via Tincomb(nzX, nzb).

4 Optimizing via cross validation

Searching for optimal A over the entire training sample we run the risk of overfitting. The standard
remedy is to divide the training data into “folds” and do cross validation. The algorithm is then (in
pseudo-code):

for each s value, s(j)
MSE(j) = 0

end

for each fold, f(i)



set the estimation sample to the complement of (i)
for each s value, s(3j)
perform regularized estimation using s(j) and predict for f(i)
MSE(j) <- MSE(j) + MSE for f(i)
end
end

We then perform regularized estimation on the full training data using the s value that yields the
least total MSE on the above procedure (or perhaps take an alternative approach—see below).

The basic options connected with cross validation (to be entered in the parameter bundle passed
to regls) are as follows:

e xvalidate: Boolean, trigger for doing cross validation (required).
e nfolds: Integer, the number of folds (optional, default 10).

e randfolds: Boolean, whether the folds should be assigned randomly (optional, default 0).

At present the folds are either assigned at random or (by default) they are sequences of consecutive
observations. It may be worth adding a facility to set the folds via a predefined series. A further
point: at present the folds are by construction all the same size —the result of integer division of
the number of training observations by the number of folds, which means that any “remainder”
training observations are ignored. That could be generalized if it seems worthwhile.

When cross validation is specified regls will print some information on the performance of the
values of s used, a snippet of which is shown below:

s MSE se
1.000000 1.000000 0.063336
0.615848 0.870633 0.057432
0.379269 0.759641 0.048581
0.233572 0.694237 0.043515

The MSE value is the mean across the folds, and se is its standard error, computed as per glmnet.

While it would seem most natural to select for further prediction the s value that minimizes MSE
on cross validation—call this s* —glmnet suggests an alternative policy: select the largest s that
delivers an MSE within one standard error of the minimum, which we’ll call s*. It may be that s*
and s' are the same value, but if not this policy gives the benefit of the doubt to parsimony.

After cross validation, regls by default stores the full coefficient matrix (one column per value
of s, estimated on the full training data) under the key B. And the returned bundle also holds the
indices of both s* and st, under the keys idxmin and idxlse respectively. One can therefore
select the desired set of coefficients and obtain fitted values using the full input list X—with const
prepended unless your data are pre-standardized.

matrix optimal_b = Tb.B[,Tb.idxmin] # or 1b.idxlse, or other column
Tist A1l = const X
series fitted = lincomb(Al11, optimal_b)

Note that B has as many rows as X has members, plus one for the intercept.
But there’s another method which may be more convenient: after cross validation the regls return
bundle holds a single nzb vector and nzX list, such that fitted values can be obtained thus:

series fitted = Tincomb(1b.nzX, 1b.nzb)

By default it’s the s* (idxmin) column that’s selected for forming nzb, but if you wish to use st
you can arrange for that by setting use_1se to a non-zero value in the parameter bundle passed to
regls, as in



parms.use_lse = 1

Further cross validation options

Some additional cross validation options are supported.

e seed: Integer, you can supply this to control the randomization when randfolds is active,
hence getting exactly repeatable results.

e single_b: Boolean. If non-zero it stops regls from estimating coefficients for all s values
after cross validation; only the selected “best” value (s* or st) is used. The matrix B mentioned
above then holds just a single column. This may shave a little off the execution time.

5 Execution speed

According to the discussion in Section 3.2.2 of Boyd et al. (2010): the ADMM algorithm is reliable
but is known not to be fast (or not if accurate results are wanted). However, we have been able to
accelerate ADMM to the point where execution time is unlikely to be an issue, by two main means.

¢ We implemented the suggestion in Section 3.4.1 of Boyd et al. (2010): letting the penalty factor
p vary across ADMM iterations to keep the magnitudes of the primary and dual residuals in
rough balance. This turns out to be highly effective.

e We implemented automatic “farming out” of cross validation to multiple MPI processes (when
MPI is available on the host machine). It's possible to prevent this by adding no_mpi to the
parameter bundle with a non-zero value.

In one benchmark case we considered —with 1500 training observations, 101 covariates, 50 values
of A and 10 randomized cross validation folds—the execution time was about 13 seconds before
making the changes mentioned above, and about 1.5 seconds thereafter.?

6 Additional ADMM controls

This section describes some additional controls over the ADMM algorithm that can be passed to
the regls function via the parms bundle. Under the key admmctr1 you can supply a 3-vector whose
elements are, in order:

¢ rho: a positive real number, the initial ADMM penalty parameter. It seems that p = 8.0 works
well but higher or lower values might produce faster convergence in some cases.

e reltol: the relative tolerance used in gauging whether the algorithm has converged suffi-
ciently.

e abstol: the absolute convergence tolerance (which will be scaled by the square root of the
number of candidate regressors).

We have found that reltol and absto1 values of 10~% and 109, respectively, produce reasonably
accurate results in a manageable number of iterations. Setting smaller values will produce greater
accuracy at the cost of more iterations. Non-positive values of these terms are ignored, so one
can, for example, set a single element by passing a zero vector with just the desired term set to a
positive value.

20n a desktop machine with 4 Intel i7 processors, running Linux.



7 LASSO examples

Besides the sample script supplied with the package, more examples can be found in the directo-
ries murder, wine and fat at http://gretl.sourceforge.net/lasso/. Some of these scripts
incorporate comparison with glmnet. The murder-rate and wine quality examples use real-world
data; the fat example is an artificial case with more regressors than observations.

Note that it’s necessary to run the scripts involving randomized cross validation several times to
get a good idea of what’s going on: in each case there seem to be a few “favoured solutions” of
varying probability. Sometimes one sees regls finding the better one, sometimes glmnet.

8 Ridge regression

While LASSO involves £; regularization, Ridge uses ¥»: the penalty factor A applies to the sum of
squared coefficients, giving rise to the following objective:
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In consequence, although a large value of A will shrink Ridge estimates substantially relative to
OLS it will not send any coefficients to exactly zero as does LASSO. If the X matrix exhibits strong
collinearity, LASSO will tend to eliminate most of the collinear terms while Ridge will tend to dis-
tribute the predictive weight across the terms, yielding several small coefficients instead of one
relatively substantial coefficient and a bunch of zeros.

To get the regls function to perform Ridge regression rather than LASSO, set a value of 1 under
the key ridge in the parms bundle, as in

parms.ridge = 1

Most of the points made above with respect to LASSO carry over to Ridge. The same three modes of
operation described in Sections 2 to 4 (from estimation using a single value of A to cross-validation
with as many values as you like) are available.

There is an important difference, however, in respect of the calibration of A. In the LASSO case
there’s an easily computed Apax (= | X'y |l») which just suffices to force all slope coefficients to
zero and so, as explained above, the user is asked to express the LASSO penalty as a fraction of this
maximum. In the case of Ridge there is generally no finite A that will drive all coefficients to zero
and so no “natural” maximum to serve as a benchmark. We therefore offer the user three options
for the specification of “1frac,” controlled by the integer-valued parameter 1ambda_scale:

e lambda_scale = 0: no scaling is performed. The “1frac” values are taken as actual A values
(and so do not have to be bounded by 1.0 above).

e lambda_scale = 1 (the default): we emulate glmnet. The largest value of A is set to 9.9 x 103>,
which will drive all coefficients to near-zero. The second-largest A (call it A) is then set to
1000 times || X’y |l», and subsequent values in the sequence are scaled in relation to A.

e Tambda_scale = 2: we follow the suggestion of some practitioners, setting Amax to the
squared Frobenius norm of X, which will not drive all coefficients to near-zero but will impose
substantial shrinkage in relation to OLS.

To be clear on the action of options 1 and 2 for Tambda_scale, suppose our 1frac specification is

1frac = {1, 0.5, 0.25, 0.125}

Then if Tambda_scale = 1 this translates to


http://gretl.sourceforge.net/lasso/

Tam2 = 1000 * infnorm(X’y)
effective_lambda = {9.9e35, T1am2, 0.5*1am2, 0.25*1am2}

while if Tambda_scale = 2 it becomes

laml = tr(X’X) # Frobenius norm squared
effective_lambda = {laml, 0.5*laml, 0.25*laml, 0.125*Taml}

Note that the relevant matrix norms are computed after standardization.

One further point on the scaling of A: since the key 1frac doesn’t look right when Tambda_scale
= 0, we accept Tambda as an alternative key. In fact, if Tambda rather than 1frac is found in the
input bundle, the default for Tambda_scale switches to 0 (but an explicit setting will override this).

In addition to BIC and R2 the return bundle from Ridge regression contains edf (a scalar if a single
A is specified, otherwise a column vector). This is the “effective” degrees of freedom, or number of
free parameters, calculated via the SVD of the matrix of regressors:
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where the o;s are the singular values. As a measure of the “size” of a model this takes the place of
the number of non-zero coefficients in LASSO.

In the case of a single A, when estimation is performed using the default SVD method, further infor-
mation is available: the return bundle contains the covariance matrix of the parameter estimates
(other than the constant) under the key vcv. And if the verbosity option is set to 2 you get a
printout of the model, showing standard errors, z statistics and P-values.

9 The CCD option

As stated above, the default algorithms used by regls for LASSO and Ridge are ADMM and SVD,
respectively. However, you have the option—for both LASSO and Ridge —of using the Cyclical
Coordinate Descent (CCD) algorithm, as employed by glmnet. This is governed by two additional
keys in the parms bundle:

e ccd: boolean, default 0. Set this to 1 to use CCD.

e ccd_toler: apositive scalar setting the convergence tolerance for CCD. The defaultis 107 (as
in glmnet); setting a smaller value will give greater accuracy at the expense of more iterations.

Using CCD will give results that are more directly comparable with glmnet. Beyond that, practi-
tioners are likely to ask, how do the algorithms compare in terms of speed and accuracy? This
question is addressed in detail in Appendix A. The short answer is that CCD at its default tolerance
is faster but somewhat less accurate than ADMM and SVD. By tightening the CCD tolerance one can
generally close the accuracy gap; this may or may not reverse the ranking in terms of speed.

10 Elastic net

As mentioned above, elastic net is a hybrid of LASSO and Ridge. It employs a combination of £;
and ¥» penalties governed by a hyperparameter 0 < « < 1. The objective is
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Thus @ = 1 gives LASSO, x = 0 gives Ridge, and anything between gives a combination. It has been
argued that better out-of-sample prediction can be obtained in some cases by preserving some



highly collinear regressors a la Ridge, while sending some coefficients to exact zero as in LASSO,
and elastic net allows for this.

In the regls function, elastic net is selected by specifying a fractional value under the key alpha
in the parameters bundle. This automatically switches to the CCD algorithm (Section 9), so the
ccd_toler option becomes applicable.3

When elastic net is used on a sequence of As without cross validation (see Section 3) regls pro-
vides a BIC measure as a possible means of selecting the most promising penalty factor. This
requires calculation of the effective number of parameters (degrees of freedom), for which we use
the method specified in Zou and Hastie (2005).

Note that if cross validation is called for with elastic net, it is only the A value that is optimized. To
assess the efficacy of various « values one would have to perform several cross validation runs.

1T GUIl usage

You can access regls in the gretl GUI via the menu item Model/Other linear models/Regularized
least squares. This brings up the dialog box shown in Figure 1. Multiple A values and cross valida-
tion are supported as shown. Clicking the Advanced button gives access to most of the additional
options discussed above (e.g. choice of algorithm, seed for randomized cross-validation folds).

- gretl: specify model
gk Regularized least squares

const Dependent variable
CATHOL é

PUPIL set as default
WHITE

ADMEXP

REV const

MEMMEA

INCOME =S

COLLEGE
REGION

Regressors

Estimator LASSO hd a= | 1.0

O single A-fraction  0.500 — +

Multiple A values | 2

Advanced...

Help Clear Cancel oK

Figure 1: regls dialog

3In principle the ADMM algorithm could handle elastic net, but to date we have not implemented such support.



The option Show criterion plot (available only if multiple As are specified) produces a plot
showing the behavior of the minimand (MSE if cross validation is selected, BIC otherwise) as A
is varied. An example of the MSE case can be found in Figure 2. The triangle indicates the MSE
minimizer and the circle indicates the point favored by the “one standard error” criterion (s', see
Section 4).

Mean cross-validation MSE with one-s.e. band

09 F b

MSE

0.8 0\ _
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1 0.1 0.01 0.001 0.0001
s = MA_{max}

”»

Figure 2: MSE plot, invoked by “Show criterion plot

12 Reference: public functions

bundle regls (series y, Tist X, bundle parms)

Performs LASSO, Ridge or Elastic net estimation given the dependent variable y, the regressors X,
and options in parms. Returns a bundle containing the results. Table 1 lists the parameters that
can be passed via the parms argument.

matrix Tambda_sequence (scalar Imax, int K, scalar eps[0.0001])

Produces a column vector holding a logarithmic sequence of K values running from Tmax to eps.
It is required that 0 < Tmax < 1 and 0 < eps < Tmax. In context such values are interpreted as
instances of s = A/Apax-

matrix regls_get_stats (const numeric y, const numeric yhat)

The arguments y and yhat must be either series or vectors (and both of the same type). Returns a
2-vector holding MSE = > (v — ¥)2/nand R2 =1 - > (y — )2/ > (y — ¥)2.



1frac

scalar or vector

A-fraction(s)

nTambda integer number of automatic As
stdize 0/1, default 1 standardize the data
ridge 0/1, default 0 do Ridge regression

Tambda_scale

0,1 or 2, default 1

see Section 8

verbosity 0,1, 2 or 3, default 1 printing of output
xvalidate 0/1, default 0 do cross validation
nfolds optional integer > 1, default 10 number of folds
randfolds 0/1, default 0 use random folds
use_lse 0/1, default 0 see Section 4

seed optional integer controls random folds
single_b 0/1, default 0 see Section 4
no_mpi 0/1, default 0 see Section 5
admmctri optional control vector see Section 6

ccd 0/1, default O see section 9
ccd_toler positive scalar, default 107 see Section 9
alpha 0 < o <1 (default 1) see Section 10

Table 1: Summary of parameters for the regls function

scalar regls_pc_correct (const numeric y, const numeric yhat)

The arguments y and yhat must be either series or vectors (and both of the same type). Returns
the percentage of cases in which yhat rounded to the nearest integer equals y. Useful only when y
is integer-valued.

matrix regls_foldvec (int nobs, int nf)

Returns a column vector of length nobs in which nf successive blocks of length nobs/nf take on
the values 1, 2,..., nf, respectively. Useful only for composing a folds vector than can be passed
to glmnet for comparison with gretl when consecutive folds are used in cross validation.

void regls_multiprint (const bundle b, const numeric y, const numeric X)

The bundle argument b should be obtained via regls or mregls estimation with several T1frac
values, as in Section 3 or 4 above. The arguments y and X should be the same as those passed
to regls (y a series, X a list) or mregls (y an n-vector, X an n X k matrix). This function prints a
summary table showing R?, the sum of absolute values of the coefficients, and df (the number of
non-zero coefficients) associated with each value of A. Usage is illustrated in the example script
Tambda_sequence. inp, which is reproduced in part in Listing 1.

void regls_coeff_plot (const bundle b, const matrix sel[null])

10



Produces a plot showing the paths of coefficient estimates as the LASSO or Ridge constraint is
progressively relaxed. The bundle argument should be obtained via regls estimation with several
1frac values, as in Section 3 or 4 above. The optional second argument allows you to pass in a
selection vector to limit the number of paths shown (the default being to show all). For example, a
matrix constructed as follows

matrix sel = {5,10,15,20,30}

would limit the plot to coefficients 5, 10, 15, 20 and 30. The numbering of the coefficients is 1-based
and the order is that of the X list argument to regTs.

numeric regls_pred (const bundle b, const numeric X)

Convenience function for producing predicted values. The bundle argument should be obtained
via regls or mregls estimation. If estimation was by regls the numeric argument X should be a
list, and the function returns the predictions as a series. In the case of mregls, X must be a matrix
and a column vector is returned. This function automatically handles the presence or absence of
an estimated intercept, as well as selection of a specific coefficient vector when estimation has been
performed for multiple values of the regularization parameter.

bundle mregls (const matrix y, const matrix X, bundle parms)

This function works like reg1s(), except that y is a column vector of length n and X is an n x k
matrix. The options accepted in parms are as described in Table 1 above. Consistent with the
different input types, one element in the output bundle also differs in type: in regls output nzX
is a list of series while in mregls output it is a selection vector, picking out the columns of the X
matrix that have non-zero coefficients.

series glmnet_pred (matrix *Rb, Tist X)

Convenience function for handling results retrieved by gretl from glmnet. On entry Rb should hold
the full coefficient vector (including any zeros) and X the full list of candidate regressors, and the
return value is the result of Tincomb (X, Rb). On exit Rb holds only the non-zero coefficients, with
row-names added based on the X list. This is then comparable with gretl’s nzb.

void glmnet_multiprint (const matrix RB, const matrix Rlam,
const bundle b, const series y, list X)

Convenience function for facilitating comparison of results when the same regularization task
has been performed in gretl using regls and in R using glmnet. The output is like that of
regls_multiprint. The matrices RB and R1am should be obtained from the object returned by
glmnet(); b should be the bundle returned by regls. Usage is illustrated in Listing 1.

13 Change log

Version 0.9, 2023-05-20: Add support for matrix input via the mregls function; simplify the signa-
ture of regls_multiprint; add function gTmnet_multiprint.
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Version 0.4, 2022-10-02: Enhancements for regls plots; document GUI usage; update an internal
function signature to comply with gretl’s new “const inheritance” policy.

Version 0.32, 2022-08-05: fix breakage for single-lambda case.

Version 0.31, 2022-06-03: update URL; revise fragile list-saving code; allow “lambda” as alternative
to “Ifrac” on input.

Version 0.3, 2021-04-17: fix bug with Ridge verbose printout, and replace some tables with figures
in the doc for ease of comprehension of comparative experiments.

Version 0.2, 2021-01-29: support a higher verbosity level for GUI use; improve printout for LASSO
coefficients, when applicable.

Version 0.1, 2020-10-09: initial release.
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Listing 1: LASSO with lambda sequence

set verbose off
include regls.gfn

open murder.gdt --quiet --frompkg=regls

# all available predictors w. no missing values
Tist X = population..LemasPctOfficDrugUn

smp1 1 800
printf "Sample range %d to %d\n", $tl, $t2

bundle parms = _(nlambda = 8, verbosity = 0)

bundle 1bl = regls(murdPerPop, X, parms)
printf "\ngretl (ADMM):\n"
regls_multiprint(Tbl, murdPerPop, X)

parms.ccd = 1

bundle 1b2 = regls(murdPerPop, X, parms)
printf "\ngretl (CCD):\n"
regls_multiprint(1b2, murdPerPop, X)

# STOP here if R + glmnet is not available
# quit

# R::glmnet
Tist LL = murdPerPop X
foreign language=R --send-data=LL
Tibrary(gimnet)
X <- as.matrix(gretldatal[,2:ncol(gretldata)])
y <- as.matrix(gretldatal,1])
m <- glmnet(x, y, family = "gaussian", alpha = 1, nlambda = 8,
standardize = T, intercept = T)
Rb <- as.matrix(coef(m))
gretl.export(Rb)
Rlam = as.matrix(m$lambda)
gretl.export(RTam)
end foreign

matrix Rb = mread("Rb.mat", 1)

matrix RTam = mread("Rlam.mat", 1)

printf "\nglmnet:\n"

glmnet_multiprint(Rb, Rlam, 1b2, murdPerPop, X)

13



Appendix A Comparison of algorithms

This appendix reports some experiments designed to gauge the accuracy and speed of the Cyclical
Coordinate Descent (CCD) algorithm as compared to the default algorithms in regls —ADMM for
LASSO and SVD for Ridge.

Design of experiments

The general design of our experiments is as follows. For some selected dataset and sample range
we compute the values of the minimized objective function (LASSO or Ridge) for a sequence of A
values. In each test we compare two optimization methods—call them A and B—taking A as the
baseline and exploring how the difference in results between the methods behaves as we tighten
the convergence tolerance for method B. We assume that for the iterative methods ADMM and
CCD, tightening the tolerance (within reason) will produce more accurate results, or at least will
not produce less accurate results. Therefore, if the difference diminishes as tolerance is tightened
for B we can infer that A was more accurate at the initial tolerance level.

We measure the difference between sets of results via Euclidean distance.* To gauge the trade-off
between accuracy and speed we also record the execution time for method B divided by that for A.

In the experiments reported below we used the murder rates dataset (murder.gdt) supplied with
the regls package, with murdPerPop as dependent variable and 101 regressors.> The A sequence
was of length 20. In the LASSO tests we used the first 800 observations and in the Ridge tests the
first 1500 (to make the test take longer and improve the resolution of the timer). We’re aware that
the results we show are liable to be data- and model-dependent and we offer some comments on
this in the concluding section.

Ridge: SVD and CCD

The Ridge problem has an analytical solution and regls implements this using Singular Value De-
composition, which is generally regarded as the gold standard for accuracy in digital computation.
Results obtained via SVD can therefore be used as a benchmark against which to assess the accu-
racy of the solution provided by CCD.

Figure 3 shows our findings. The distance between the two sets of results declines monotonically
as the CCD tolerance is tightened, as one would expect. At its default tolerance of 10~ CCD is
faster than SVD (in this example by about 30 percent), but it takes longer than SVD if one wants
the extra accuracy associated with a tolerance of 1072 or less. Note, however, that there seems to
be little point in reducing the CCD tolerance below 1079,

LASSO: ADMM and CCD

LASSO is trickier than Ridge in that there’s no analytical solution to serve as a natural benchmark.
In this case we take ADMM (at its default tolerance in regls) as baseline —without assuming its
results are “correct” —and see what happens.

Figure 4 shows monotonic decline in difference of results as the CCD tolerance is tightened from
107 to 10719, at which point the results become practically indistinguishable. We interpret this to
mean that ADMM at its default settings produces results that can be taken as “correct” for practical
purposes.

Notice that with LASSO the effect of tighter tolerance on the execution time for CCD relative to the
baseline is a good deal more marked than in the Ridge case. When the CCD tolerance is reduced
from 10~7 to 102 Ridge time becomes slightly greater than SVD time, while LASSO time becomes
over twice that of ADMM.

‘_1We also tried Mean Absolute Deviation but this did not seem to contribute additional information.
°This dataset was referenced by Ryan Tibshirani in the LASSO context; see https://www.stat.cmu.edu/~ryantibs/
datamining/lectures/17-modr2.pdf.
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Figure 3: Ridge regression: CCD performance relative to SVD baseline. CCD tolerance
distance between estimates in red (left) and relative execution time in blue (right).
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If ADMM is more accurate than CCD at their respective default tolerances, can we find tolerances
for the former that produce similar accuracy to the CCD default? And if so, what happens to the
speed comparison?

Figure 5 shows the results of a relevant experiment. The integers, i, on the x-axis represent pro-
gressively slacker tolerance pairs, (i x 1072, i x 1074), for ADMM. (Note that the i = 1 already
gives values 100 times greater than the ADMM default.) As expected, greater tolerances correspond
to shorter execution times (blue line, right-hand scale) and increasing distance from the baseline
high-accuracy ADMM results (red line, left-hand scale). CCD, at its default tolerance of 10~7, enters
the picture in two ways: its execution speed is by construction 1 on the right-hand scale, while its
deviation from the baseline estimates is shown by the dotted red line.

In this example there is a range of the ADMM tolerances, comprising i = 2 and i = 3, over which
ADMM is both faster and more accurate than CCD.

0.00035 1.2
0.00030 | <- CCD, tol 107 1115

111
0.00025 |

1 1.05
0.00020 |

11
0.00015 |

4 0.5
0.00010 | 1 oo
0.00005 L L 0.85

1 2 3 4

Figure 5: LASSO estimation: ADMM performance at slacker tolerances. See text for explanation of x-axis.
Euclidean distance from high-accuracy estimates in red (left) and time relative to CCD in blue (right).

As noted above, such figures are likely to be data- and model-dependent, but we conjecture that
ADMM tolerances of (1072,10~%) are conservative relative to CCD at tolerance 10~7 in the sense
that they are likely to deliver results of equal accuracy to CCD or better.

Conclusion

The results shown above, from a single dataset, are obviously illustrative rather than definitive. On
the strength of similar tests on other datasets we're able to say something about what is generally
applicable and what is variable.

In all of our experiments CCD at its default tolerance is faster but less accurate than SVD for Ridge
regression, and faster but less accurate than ADMM (at its default tolerance) for LASSO. And in all
cases the accuracy of CCD can be increased (up to a point) by reducing its tolerance.

Two things are relatively variable (apparently depending on, among other things, the number of
observations and the number of regressors, though not in any easily predictable way).

e The time taken by CCD relative to the alternatives as a function of the CCD tolerance. In some
cases (unlike the example above) CCD retains its speed advantage as its tolerance is reduced.
While CCD is bound to slow down some at tighter tolerance it may still be the fastest method.

e Convergence of CCD is not guaranteed. In a few LASSO trials we saw failure at, for example,
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a tolerance of 10719, when ADMM had converged OK and the difference statistics seemed to
show room for further improvement of accuracy on the part of CCD. This suggests that CCD
is not always capable of accuracy equal to ADMM. It’s possible that in other cases this could
be reversed (ADMM unable to equal the accuracy of CCD), though we didn’t see any such in
our trials.

So here’s our conclusion. (As a warning to the reader we have emphasized the words that signal
our remaining uncertainty!) If you want maximally accurate results you should use SVD for Ridge
and probably use ADMM for LASSO. You can usually get equal accuracy from CCD if you tighten
its tolerance far enough but then CCD may take longer than the alternatives. On the other hand, if
you reckon the accuracy of CCD at its default tolerance is good enough for practical purposes you
can save time by using it. Unless, in the case of LASSO, you'd like to set the ADMM tolerances to
(1072,107%), in which case you may get somewhat more accurate results with little difference in
execution time.

To go any further we would have to assess what’s “good enough” accuracy (for example, with out-
of-sample prediction in view). Does the extra accuracy of ADMM and SVD actually help, or is it
surplus to requirements? We have something to say about that in Appendix B.

Appendix B Comparison with glmnet

Given the benchmark status of R’s glmnet we have tried to ensure that our results are very close to
those from glmnet unless we can demonstrate a good reason for divergence. We comment below
on reasons why results may differ in certain respects.

Different conventions

It should be noted that regls and glmnet employ different conventions in some respects. This does
not affect the comparison of reported coefficients or predicted values, but it can make comparison
of A values a little awkward. The LASSO objective function and definition of A« used by regls
were stated in Section 1, but to be fully explicit we should say that the X and y in equation (2) for
the maximum A are taken to be standardized values.

In glmnet the objective (in the linear Gaussian case) is

min i —XiB)% + A Z 1B;]

L
poo2n i

This differs from our equation (1) in dividing the sum of squared residuals (SSR) by 2n rather
than 2. Since glmnet is not actually using a different relative weighting of the SSR and the sum
of absolute coefficient values, it follows that their “A” must be read as n~! times ours. Moreover,
while we take each A; value to be s; times Anax as defined in equation (2), the A values printed by
glmnet are (in our notation)

Ai = Si - Amax é—y/n

where 0, is the ML estimate of the standard deviation of the dependent variable. To obtain the
glmnet A corresponding to a given s one can do:

RTlam = s * b.Imax * sdc({y}) / b.nobs
where b is a bundle obtained via regls on the same data, y is the dependent series and sdc({y})

gives 0,. The current sample range must be the same as for b to get &, right, but if glmnet was
told not to standardize the data then this term should be omitted as it is assumed to be 1.
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Cross validation methodologies

There’s a substantive difference between regls and glmnet in respect of cross validation. This
applies even if the CCD algorithm is selected in regls, which results in near-identical results for
LASSO or Ridge coefficients when simply processing a sequence of A values.

In regls cross validation, the entire training dataset is standardized at the outset, then each fold
gets its share of the standardized data. The maximum A is also determined using the full training
set and the same A sequence is used for each fold. In glmnet, by contrast, both standardization and
calculation of the A sequence are done per fold. For example, suppose the training data are divided
into 10 folds, each comprising 10 percent of the observations. Then glmnet both standardizes and
computes a A sequence using the complementary 90 percent of the data.

Extended test of cross validation

The primary point of cross validation is to determine the value of a hyperparameter (for LASSO, A)
that is likely to give best results in genuine out-of-sample prediction. In this section we describe
some experiments designed to probe the impact (if any) of certain differences noted above on the
efficacy of out-of-sample prediction. We are particularly interested in

¢ the methodological difference between regls and glmnet noted in the previous section, and

o the “extra accuracy” of the ADMM algorithm, at its default tolerance, over CCD at its default
tolerance, noted in Appendix A.

As regards the methodological difference, not a great deal can be said about this a priori, though
one thing is clear: the more homogeneous the training data, the less details of method are going to
matter. If the statistical properties of the fold-complement samples are very similar to those of the
full training data then the locus of standardization (training data or fold-complement) won’t make
much difference. In addition, if Apax = | X'V ||« doesn’t differ much across the samples the locus of
calculation of the A sequence won’t matter much either, and A-matching —if it is required — should
be relatively unproblematic.

That said, real-world datasets of interest are not necessarily very homogeneous so the details could
matter. To investigate this we ran experiment on two rather different datasets.

e Dataset 1: murder rates and covariates for US localities (murder.gdt, supplied with the regls
package). Comprises 2215 observations on 102 variables.

e Dataset 2: white wine quality and physico-chemical covariates. Comprises 4898 observations
on 12 variables (78 after adding squares and interactions of covariates).®

We “leveraged” the datasets by randomizing the order of the observations at each of 2000 iterations
then taking the first N observations for training and the next M for testing, with N + M a subset of
the full data available. For Dataset 1 N = 1200 and M = 200, and for Dataset 2 N = 1500, M = 500.

The body of the test involved cross validating with 10 folds (composed of consecutive observations
since the whole dataset was randomized) then predicting for the M holdout observations using the
optimal A on the “one standard error” rule favored by glmnet. This rule selects the larger of (a)
the A* which minimizes mean out-of-sample MSE and (b) the largest A that lies within o* of A*,
where o * is the standard error of the minimized mean MSE.” The figure of merit calculated at each
iteration was the R? for the testing data, 1 — >.(y — )2/ > (v — ¥)2.

This test was run (with common randomization) using three variants of cross validation, each with
its default settings: the glmnet function cv.glmnet; regls using the CCD algorithm; and regls
using the ADMM algorithm. As mentioned above, there are two distinct differences at play. In

6See https://archive.ics.uci.edu/ml/datasets/wine+quality.
“The mean is taken across the folds, weighted if necessary.
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comparing glmnet with regls CCD the coefficient vectors produced for given data and given A are
near-identical, and the relevant difference lies in the details of the cross validation methodology. In
comparing regls CCD and ADMM the cross validation method is exactly the same and the relevant
difference lies in the “excess precision” afforded by ADMM over CCD, at their respective default
tolerances, as discussed in Appendix A.

Statistics for out-of-sample R? from the Dataset 1 experiment are shown in Table 2. In this exper-
iment regls CCD gave better out of sample prediction than glmnet, and ADMM did a little better
again. The first difference —due to cross validation methodology —appears to be more substantial

than the second.

mean s.d.
glmnet 0.4724 0.1518
CCD 0.4954 0.1545
ADMM 0.4984 0.1608

s.e.(mean)

0.0034
0.0035
0.0036

95% C.L

0.4657 - 0.4790
0.4886 - 0.5022

0.4914 - 0.5055

median min max

0.4881 -2.6289 0.7044
0.5118 -2.7911 0.6900
0.5172 -2.7831 0.6925

Table 2: Out of sample R?, 2000 replications, Dataset 1

Figure 6 gives another angle on the comparisons, plotting estimated kernel densities for the three

variants.8

glmnet
CCD
ADMM ——

0.2 0.3

0.4

0.5

0.6 0.7

Figure 6: Estimated densities for out of sample R?, Dataset 1

Since each mothod was given the same data at each iteration, paired-difference tests for R? might be
considered appropriate; these are shown in Table 3, along with the correlations across the methods

per iteration.

|z|

glmnet, regls CCD 20.6
glmnet, regls ADMM 21.6

regls CCD, regls ADMM 8.4

p

0.946
0.942
0.996

Table 3: Paired-difference tests and correlations, out of sample R?

8We truncated the plot on the left to focus on the bulk of the distributions; instances of R? < 0.2 were rare, and their

frequency did not differ much by method.
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From this point of view all the differences are strongly statistically significant, though the advantage
of ADMM over CCD might not be considered of much practical importance.

Table 4 shows out-of-sample R? statistics for Dataset 2. Again ADMM has the highest mean and
median, and regls CCD does better than glmnet on these citeria, but here the differences are rela-
tively small. Kernel densities are shown in Figure 7. The displacement of the distribution between
methods, in the same direction as for Dataset 1, is appreciable® but maybe not large enough to be
of practical importance.

mean s.d. s.e.(mean) 95% C.I median min max
glmnet 0.2735 0.0518 0.0012 0.2712-0.2758 0.2775 -0.5072 0.3994
CCD 0.2763 0.0523 0.0012 0.2740-0.2786 0.2803 -0.5072 0.3994
ADMM 0.2774 0.0558 0.0012 0.2750-0.2799 0.2826 -0.5260 0.4029

Table 4: Out of sample R?, 2000 replications, Dataset 2

12 T T T T T T
glmnet

10 | ADMM ——

0 | | | |
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Figure 7: Estimated densities for out of sample R?, Dataset 2

Dataset heterogeneity

Can we account for the difference in results between Dataset 1 and Dataset 2 by reference to the
relative heterogeneity of the data? It’s not obvious how such heterogeneity can best be measured,
but we tried a rough and ready heuristic with focus on the dependent variable: how much do its
sample statistics vary across the fold-complement samples, relative to the full training data?

We calculated two statistics, H, and H, for each dataset, using the randomize-and-subset proce-
dure described above. At each of 2000 iterations, i, we summed the absolute proportional devi-
ations of the fold-complement sample means, y;;, j = 1,2,...,10, from the sample mean for the
training data, y;. We then took the mean of these values across the iterations:

1 2000 10
H = T~ _.. —_ _' —'
K7 2000 l:zl ; \vij — Pil /|7l

H, was calculated in an exactly analogous way, with the sample standard deviations in place of the
means. The values of these measures for the datasets were

9And statistically significant: paired-difference |z| = 19.9 for glmnet vs CCD and 5.8 for CCD vs ADMM.
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Dataset1 0.12059 0.15032
Dataset 2 0.01039 0.05089

Thus it appears that—on this crude measure at least—Dataset 2 is a good deal more homoge-
neous than Dataset 1. This is consistent with the observation that differences in out-of-sample
performance attributable to differences in the algorithms were much smaller for Dataset 2.

Conclusion

It’s risky to conclude much on the strength of just two datasets —even when leveraged by random-
ization and subsetting. But it does seem that standardization at the level of the full training data,
and employment of a single A sequence —derived from the full training data and applied for all
folds—may be conducive to best out-of-sample prediction. It also seems that the extra precision of
ADMM at its default setting is helpful for out-of-sample prediction, though this effect is relatively
small and may or may not be considered worthwhile.

Example script

An example script used with Dataset 1 is shown on the following page. This instance produces
results for regls CCD and glmnet. Results for regls ADMM can be obtained by omitting the ccd
setting in the parms bundle. To explore a different randomization one could comment out the set
seed line, in which case the seed for the random number generator will be set from the clock on
start-up.
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Listing 2: Monte Carlo script for out-of-sample prediction

set verbose off

set R_1ib on

set R_functions on

include regls.gfn

open murder.gdt --quiet --frompkg=regls

# obtain results for regls CCD and cv.glmnet

foreign language=R
lasso_R <- function(x,y,f,n1) {
if (! "glmnet" %in% (.packages())) {
Tibrary(glmnet)
}
m <- cv.glmnet(x, y, foldid = f, family = "gaussian", alpha = 1,
nlambda = nl, standardize = T, intercept = T)
Rb <- as.matrix(coef(m$glmnet.fit, s = m$lambda.lse))
}

end foreign

# all available predictors without missing values
Tist X = population..LemasPctOfficDrugUn
Tist X0 = const X # for glmnet prediction

bundle parms = _(nlambda=50, verbosity=0, ccd=1, xvalidate=1)
parms.nfolds = 10
parms.use_lse = 1

# for glmnet
matrix foldvec = regls_foldvec(1200, 10)

set seed 997361
K = 2000
matrix OSR2 = zeros(K,2)

Toop i=1..K --quiet
smp1 full
series sorter = uniform()
dataset sortby sorter

smpl 1 1200 # training data
bundle 1b = regls(murdPerPop, X, parms)
matrix Rb = R.Tasso_R({X}, {murdPerPop}, foldvec, 50)

smp1 1201 1400 # testing data

series pred = lincomb(1b.nzX, Tb.nzb)
m = regls_get_stats(murdPerPop, pred)
OSR2[1,1] = m[2]

series Rpred = lincomb(X0, Rb)

m = regls_get_stats(murdPerPop, Rpred)
OSR2[1,2] = m[2]

endloop

mwrite(OSR2, "murder_ccd.mat")
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