Gretl Function Package Guide

Allin Cottrell
Department of Economics
Wake Forest University

Riccardo (Jack) Lucchetti
Dipartimento di Scienze Economiche e Sociali
Universita Politecnica delle Marche

September, 2023

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation (see http://www.gnu.org/licenses/fd1.html).

http://www.gnu.org/licenses/fdl.html

Contents

1 Introduction

1.1 The purpose of function packages
1.2 The form of function packages i
1.3 Using thisdocumentt e e e e e e

2 For package users

2.1 The two package browsers i i i it i it e e e e e e
2.2 Acquiring apackage e e e e e e
2.3 Using function packages: thebasics
2.4 Some finer points e e e e e e e e e e
3 For package authors
3.1 Building a package via the commandline
3.2 Building a packageviathe GUL. i
3.3 Common requirementsS v v v v it e e e e e e e e e e e e e e e e e e
3.4 Gretl package idioms e e e e e
3.5 Publishingapackage. e
3.6 Maintaining a package e e
Appendix A: The CLIon Windows o i i i i i e e e e e e e e e e e e e
Appendix B: Makefile basics e
4 Package specification details
4.1 Basicelements. i i e e e e e e e e
4.2 GUIrelated elementsottt e e e e e e
4.3 Bundlerelated elements. e
4.4 Extraelements i i i e e e e e e e e
4.5 Anoteon gretl versioning e e e e
5 Zip package details
5.1 Basicspecification e e
5.2 Example: almonreg e e e e e e e
5.3 Example: GHegy i e e e e
5.4 Example: HIP o . o e
Bibliography

13
13
17
21
23
30
31
33
35

37
37
38
41
42
43

44
44
44
45
45

47

Chapter 1

Introduction

1.1 The purpose of function packages

The primary purpose of gretl function packages is to add estimators, hypothesis tests or other
analytical procedures to gretl’s repertoire of built-in procedures. While function packages may also
be used for other purposes (e.g. pedagogy, replication exercises), those made available via the gretl
server are expected to extend gretl’s functionality in non-trivial ways.!

1.2 The form of function packages

The core component of a gretl function package—in simpler cases, the sole component—is a gfn
file. This is an XML file conforming to the Document Type Definition gret1func.dtd, which is
supplied in the gretl distribution; the latest version can always be found online.? Such files contain

¢ the hansl code for at least one function;
e various items of metadata (author, version, date, etc.);
¢ help text for the function(s), or a pointer to help in PDF format; and

e a sample script that illustrates a call to the packaged function(s).

While it is possible in principle to create and edit a gfn file “manually”, using a suitable text editor,
this is not recommended. Gretl provides tools (both command-line and GUI) to create and maintain
package files, such that authors are not required to mess with raw XML.

We will refer to packages that consist of a gfn file alone as “simple packages” (the included hansl
code may not be simple, but the structure is).

The alternative to a simple package we will call a “zip package”. Such packages take the form of a
PKZIP archive containing a gfn file along with other materials, which may include PDF documenta-
tion (in place of plain text help), data needed by the package for internal use (for example, tables
of critical values for some test statistic), and/or extra data files or scripts intended to supplement
the required sample script. Zip packages can be built using command-line tools or with the help of
the gretl GUL

One point to note about zip packages is that the PKZIP wrapper is actually just a storage and
transport format. When such a package is installed, it is unpacked in a suitable location. Further
details on this package format can be found in chapter 5.

IFor an extended discussion of the rationale for such packages see “Extending gretl: addons and bundles” (Cottrell,
2011). Note, however, that the distinction between regular packages and “addons” in that document has become some-
what blurred, as regular packages have gradually acquired many of the rights and responsibilities previously confined to
official gretl “addons”. On the rights side, regular packages are now able to hook into the gretl GUI; on the responsibilities
side, contributed packages are now subject to (minimal) vetting before they can appear in the public download area on
the gretl server.

2See http://sourceforge.net/p/gretl/git/ci/master/tree/share/functions/gretlfunc.dtd.

http://sourceforge.net/p/gretl/git/ci/master/tree/share/functions/gretlfunc.dtd

Chapter 1. Introduction 2

1.3 Using this document

Chapter 2 gives an account of function packages from the user’s point of view. Even those who are
familiar with packages might want to take a look, since there are some finer points that might not
be totally evident. Moreover, there are several changes and enhancements in recent gretl versions.

Chapter 3 gives a walk-through of the means of creating, refining and publishing function packages,
both via the command-line and via the GUL

Chapters 4 and 5 provide reference material on the details of package specification and structure,
along with some tips on usage.

Chapter 2

For package users

2.1 The two package browsers

Since we’ll be referring to the “browsers” for function packages quite a lot in the following, let us
be clear up front about the two package browser windows in gretl and how they are accessed.

One of these windows shows the packages installed on your own computer. To open it, either select
the menu item “File, Function packages, On local machine” or use the short-cut button labeled “fx”
on the toolbar at the foot of the main gretl window. With a new installation of gretl there will not
be much to see in this window at first.

The other browser shows all the packages available from the gretl server. It can be opened via
the menu item “File, Function packages, On server.” The same listing can be accessed via a web
interface,! but for most purposes it will be more convenient to work from within gretl.

The two browsers are interconnected: from the “local machine” window you can open the “on
server” one by clicking on the Network button in the toolbar (tooltip, “Look on server”), while from
the latter you can open or focus the “local machine” window by clicking the Home button (tooltip,
“Local machine”). They are also connected via drag-and-drop: one way of installing a package from
the server is by selecting it in the server window and dragging it onto the local one.

When we use the term “package browser” below we will generally mean the local window; we’ll
add the qualification “on server” when we’re talking about the other one. For screenshots of both
browsers see section 2.2.1 below.

That said, let’s move on to the business of getting hold of a function package of interest.

2.2 Acquiring a package

We’ll focus here on packages available from the gretl server. These have passed a minimal checking
procedure on the part of the gretl development team, designed to ensure that they are usable with
the current version of gretl. This does not mean, however, that they are guaranteed to be bug-free,
or to deliver accurate results; those responsibilities rest on the shoulders of the package authors.

Some authors may choose to make their packages available via other means. In that case, once the
user has the package file available, either as a gfn file or a zip file (see section 1.2), the package can
be installed using the instructions below (section 2.2.2).

2.2.1 Installing a package via the GUI

We’ll use as an example Ignacio Diaz-Emparanza’s GHegy package. Suppose you've read Ignacio’s
excellent paper on seasonal unit-root tests (Diaz-Emparanza, 2014) and you’d like to use his results.
You were told a gretl package is available. Here’s what you do. (We assume you have an Internet
connection.)

Open gretl, and select “File, Function packages, On server”. Since the package deals with seasonal
unit roots, you'll probably want to look for the word “seasonal”. After typing seasonal in the
top-right search box and hitting the Enter key a few times, you find what looks like it (Figure 2.1).

ISee http://gretl.sourceforge.net/cgi-bin/gretldata.cgi?opt=SHOW_FUNCS.

http://gretl.sourceforge.net/cgi-bin/gretldata.cgi?opt=SHOW_FUNCS

Chapter 2. For package users

Package
FMOLS 1.0
getQuandl 0.62

s = f Al packages

Version

Date

2017-03-
2014-10-

2017-06-1¢

gretl: function packages on server

Author

et —

Stefano Fachin and Ricc...
Yi-Nung Yang
Ignacio Diaz-Emparanza

v filter

Summary

Fully Modified Least Squares Estimation for I...

Download data frorm Quandl.com, a "data platfo
s (HEGY) and ...

General seasonal unit roots t

seasonal

X
el ®

Local status

Not installed
Not installed
Not up to date

GJR-garchm 1.1 2010-01-25 Yi-MNung Yang GJR-GARCH in Mean Up to date
gnuplot_piechart 1.0 2014-10-23 Ignacio Diaz-Emparanza A simple 2D pie chart Mot installed
gatest 0.20 2016-04-04 Oleh Komashko Golfeld - Quandt heteroskedasticity test Not installed I
gregory_hansen 0.61 2017-05-01 Artur Tarassow Residual-based tests for cointegration in mod... Not installed
heckprobit 0.1 2015-05-12 Claudia Pigini Probit model with sample selection Mot installed
hetero 1.0 2012-12-12 Yi-Mung Yang Heterosckedasticity tests in Asteriou & Hall Up to date
HIP 0.41 2015-05-19 Riccardo "Jack" Lucchet... Heteroskedastic IV Probit Up to date
Haolt 1.0 2015-10-05 Ignacio Diaz-Emparanza Holt's local linear trend Not installed
jvintreg 1.1 2017-04-29 Riccardo "Jack" Lucchetti Instrumental-variable Interval Regression Mot installed
johansensmall 2.6 2017-07-04 Sven Schreiber and Andr... Small-sample Johansen coint. rank tests (boot.. Mot installed
KaoTest 2.0 2013-03-06 Uriel Rodriguez Ramirez Cointegration Test of Panel Data Not installed
lagreg 0.61 2017-02-13 0Oleh Komashko regressions with lagged variables Not installed

Network status: OK

Figure 2.1: Finding GHegy among the packages on the gretl server

Skipping ahead a little, Figure 2.2 shows, for reference, the browser for installed packages —which
we’ll be mentioning from time to time —after GHegy has been installed.

pcny gretl: function packages on myrtle x
g B @ = & B
Package v Version Date Author Summary
Telogit 1.5 2014-05-02 Hiccardo "Jack" Lucchett Fixed-effects logit
FEPoisson 1.1 2016-01-13 Riccardo "Jack" Lucchetti Fixed-Effects Poisson
fgls 1.0 2011-01-03 Yi-Nung Yang feasible GLS in Wocldridge

GHegy 2015-03-10 Ignacio Diaz-Emparanza General nal unit roots t

gig 2.21 2016-07-07 Riccardo "Jack" Lucchet... An assortment of univariate GARCH mor
GJR-garchm 1.1 2010-01-25 yinung yang GJR-GARCH in Mean

hausman_taylor 0.2 2015-12-09 Allin Cottrell Hausman-Taylor panel model

hetero 1.1 2017-07-02 Yi-Nung Yang Heterosckedasticity tests in Asteriou &
HIP 0.41 2015-03-19 Riccardo "Jack" Lucchet... Heteroskedastic IV Probit

ivpanel 0.5 2015-10-18 Allin Cottrell Within and Between TSLS models plus ©
justtesting 1.0 2016-11-04 Allin Cottrell none

lomackinlay 1.1 2009-08-19 Allin Cottrell Lo-Mackinlay variance ratio test

Ip-rfx 0.1 2012-05-08 Allin Cottrell logit/probit marginal effects

maraeff el 0.52 2016-10-20 Oleh Knmashko mara. effects. elasticities. orediction in ¢

Figure 2.2: Browser for installed packages. It’s quite easy to tell this apart from the “on server” window.
Apart from their title-bars, this one has a lot more toolbar buttons (you can do more with a package once it
is installed).

Returning to the installation process, to make sure what you’'ve found is really what you want,
you can get more information on the package, either by clicking on the “Info” icon (top-left in
Figure 2.1), or by right-clicking on the package entry and selecting Info from the context menu.
You’'ll be presented with a window like Figure 2.3.

Yes, this definitely looks like it. At this point, all you have to do is install the package: click on
the “Install” icon in the browser window, or, again, right-click on the package entry. Gretl will now

Chapter 2. For package users 5

Package: GHegy 1.1 (2015-03-10)

Author: Ignacio Diaz-Emparanza

Email: ignacio.diaz-emparanza@ehu.es

Reguired gret! version: 1.10.0

Data requirement: Time-series data

Description: General seasonal unit roots tests (HEGY) and P-values

Public interfaces:
GHegy_test()
GHegy_bundle_print()
GHegy_test_plot()
Help text:
Seasonal unit roots tests, based on Hylleberg, Engle, Granger and Yoo,
"Seasonal integration and cointegration", Journal of Econometrics,

vol. 44, 1990, pp. 215-238 ("HEGY")

For any seasonal periodicity and AR order the P-values are obtained
via a surface regression.

Figure 2.3: Get more info on GHegy

download the package from the server at Wake Forest University and install it.

The package GHegy can be attached to the gretl menus
as "Variable/Unit root tests/HEGY" in the main window.
Do you want to do this?

eYes .No

Figure 2.4: Let GHegy attach to a menu?

The final step of your installation is shown in Figure 2.4. Function packages may offer the option
of integrating into gretl’s GUI menus: in this case, the author chose to make it available among
the other unit-root tests that gretl provides natively. You may choose to accept this option (which
makes it handy to use the package from gretl’s graphical interface) or not, if you don’t want to
clutter up your menus with anything more than the essential entries. Even if you say “No” here,
however, the package will still be available to you from the GUI interface—it just won’t have a
dedicated menu entry. But note, this is not just a one-time option; see section 2.4.1 for an account
of how to add or remove installed packages from gretl’s menus.

Suppose, for now, you say “Yes” to GHegy’s offer of a menu attachment. Then the HEGY unit-root
test should be available where you’d expect to find it (Figure 2.5).2

2.2.2 Installing a package via the command line

An alternative mechanism is provided by gretl’s pkg command, which can be invoked in the gretl
console or in the command-line program gretlcli. In its “install” mode this command has three
variants:

1. If you just type, for example,
pkg install GHegy

the presumption is that you mean to install a package named GHegy (either .gfn or .zip,
that will be determined automatically) from the gretl server. So, another way of doing what
we just walked through, if you know in advance exactly what you want.

2You used to have to restart the program to get such dynamic menu items to appear, but from gretl 1.10.2 that’s no
longer necessary.

Chapter 2. For package users 6

gretl

File Tools Data View Add Sample Variable Model Help

denmark.gdt Display values
ID # Variable name Descriptiv. Edit attributes

0 const Set missing value code...
summary saisses |
2 LRY log of real i Normality test
3 IBO bond rate Frequency distribution...
4 IDE bank depos Estimated density plot...
Boxplot
Mormal Q-0 plot...
Gini coefficient
Range-mean graph

Time series plot

Unit root tests > Augmented Dickey-Fuller test

Correlogram ADF-GLS test
Periodogram KPSS test
Quarterly: Ful Filter
il fx @ ¥ § 3 X-12-ARIMA analysis Fractional integration
TRAMO analysis Phillips-Perron test
Hurst exponent

Figure 2.5: The added menu item

2. Suppose a colleague has given you a link to a function package that’s not on the gretl server.
Then you can download and install it on your own machine using the full URL, as in

pkg install http://somewhere.net/gretl/splendid.gfn

3. Finally, suppose you have somehow got a copy of a function package independently of gretl:
it’s on your computer but not installed. Then, to install it you want the --Tocal option (and
you need to know the path to the file). So you might type

pkg install /Users/Me/Downloads/splendid.gfn --local

We have illustrated variants 2 and 3 of the pkg command with gfn files, but note that they will also
work for packages in zip format.

2.2.3 Updating a package

Updating packages is easily done via the GUIL Look back at Figure 2.1: in the rightmost column
of the browser for packages on the server you’ll see a note of the local status of each available
package, either “Up to date,” “Not installed” or “Not up to date.” (It may be necessary to expand
the browser window or scroll to the right in order to see this column.) It’s a good idea to visit this
listing from time to time; if an installed package is marked as not up to date, just click the Install
button to update it.

2.2.4 Uninstalling a package

This is also easily and intuitively done via the GUI From the browser for locally-installed packages,
select the package you want to get rid of and click on the “Unload/delete” icon, or right-click to the
same effect.

You will be asked if you want to (a) unload the package from memory (only) or (b) remove it from
your system. The former might be useful during an interactive session in which you want to clear
up all the functions you have in memory and start from scratch with no possible confusion between

Chapter 2. For package users 7

functions you have written and those provided by a package. The latter is of course more radical,
and requires you to reinstall the package if you change your mind.

Packages can also be removed via the command line: use the pkg command with the name of an
installed package plus --unTload or --remove. The former option unloads a package from memory
and also removes its menu attachment, if any (see section 2.4.1); the latter option performs these
actions but also deletes the package file(s).

2.3 Using function packages: the basics

The browser window for installed packages has quite a rich set of toolbar buttons and right-click
context menu choices. If you're not sure what a button might do, try mousing over it to get a
“tooltip.” If you’re still not sure, you might just try clicking it—gretl won’t do anything destructive
without asking for confirmation first!

We’ll discuss some of the less obvious choices in the window later, but we would encourage you to
explore.

2.3.1 Using packages via scripting

If you're interested in calling a function package via script you'll probably want to examine its
“sample script.” Hopefully this should provide a useful template. Opening the sample script is one
of the options on right-clicking an installed package in the local package browser. Of course you
should also read the help text for the function you want to call.

You’ll want to start your script by using the include command to load the package in question, as
in

include GHegy.gfn

Note that even if a package comes in zip format, it’s the gfn file (which will be unpacked on
installation) that you need to include. It will always have the same basename as the zip package
that contained it.

The only effect of the include command above is to make the functions contained in the package
available to you. To use them, you call them as if they were native gretl functions. So, for example,
the sample script for GHegy contains the following commands:

include GHegy.gfn
open data9-3.gdt

Tests with constant + dums + trend and fixed AR order 4,
without printing the regression
bundle H1 = GHegy_test(reskwh, 0, 4, 3, 0)

Tests with constant + dums, AR order determined by BIC with
a maximum of 10, printing the regression
bundle H2 = GHegy_test(reskwh, 2, 10, 2, 1)

The purpose of the first two commands is obvious and needs no comment. However, the two invo-
cations of the GHegy_test function may not be totally transparent. In general you should expect
some documentation on (a) which functions are contained in the package and (b) their syntax: the
parameters they accept, what they do, what they return.> To find this, go to the list of locally-
installed packages and click on the “Info” icon. A text box will appear showing the documentation

3This is something that the package authors are completely in charge of: we, as the gretl development team, try to
ensure that packages obtained via the gretl server contain at least minimal documentation, but we cannot guarantee
anything more.

Chapter 2. For package users 8

provided by the package author. In the GHegy case, for example, not only are we told all we need
to know about the GHegy_test function, but we also discover that the package contains two addi-
tional functions we can use, namely GHegy_bundle_print and GHegy_test_pTot. So, for example,
we could use the latter to enhance Ignacio’s sample script, appending the line

GHegy_test_plot(&H2)

Running it will then produce a graphic similar to the one displayed in Figure 2.6.

reskwh0_1 reskwhal_1
6000 \ \ 3(5)8 I L \ T \
5500 |- e o I , ‘ .
i /vff 150 | b ;lw‘“‘\ l
5000 . 00 LA M T
yd \‘\H\‘U\\‘U/H\‘.\\\”\H‘H‘\]
4500 + s N 50 + \‘\‘\Hm\\“‘;w“w‘m‘mu‘wu‘\“m\M\f
20001 ~—] oL \lew‘w\s\w‘\c‘WH\M
3500 - /] oo Y i ‘\ [V H"v‘\‘\‘\f‘ Hw ‘W“\ i
3000 . 150l || | T
2500 | | | | 200 o | | L
1973 1978 1983 1988 1993 1973 1978 1983 1988 1993
reskwhpi_1
400 T T T
300 - H
200 | M h MMU\ ‘A
100 - I 1 MM M h AM ‘HH ‘H>
0 = MVIMARANA ‘\C\J‘\‘H\”‘ \“\\”“\J‘“\JU‘ \‘\‘”\‘\“ﬁ i
100 | 1] v‘vv‘wvw‘\u‘\“”uv“‘v“' “‘\‘M‘”\"\w“\\‘\‘\”\\‘h"‘“\\#
200 - l ‘“‘v N\H\ |4
2300 + VVVV v
-400 | \ ! \
1973 1978 1983 1988 1993

Figure 2.6: Output of the GHegy_test_plot function

Some more complex packages offer help documentation in PDF format, for example the DPB pack-
age (see Lucchetti and Pigini, 2015). If such documentation is available for a given package, the PDF
button on the local package browser toolbar becomes active when the package is selected; clicking
it will display the file in your default PDF reader.

Other than that, there’s not much to say here. For help on scripting in general, see the Hansl Primer
(Cottrell and Lucchetti, 2016).

2.3.2 Using packages via the GUI

Of course, if a package offers to attach to a gretl menu, and you accepted that offer when you
installed the package (see p. 5) then you should know where to find it. But if a package doesn’t
have its own place in the menus, the package browser is the place to go to invoke it by GUI means.

You can launch a package by double-clicking on it. What exactly happens here depends on whether
the package’s data requirement is met. Most packages require that a dataset is open, and some
have more specific requirements (time series data, or panel data).

If you have a suitable dataset in place you will get a dialog box to specify arguments to the function,
much as you would with a built-in gretl procedure. (However, if the package offers more than one
public interface you may get an initial dialog asking you to choose a particular function to call.) If
the package’s data requirement is not met, you'll be told what’s wrong and asked if you'd like to
run the sample script. This should load suitable data and “demo” the package.*

4By the way, if a package’s sample script does not run correctly you are encouraged to report that to the author of
the package or the gret1-users mailing list. Although gretl function packages carry no warranty it is supposed to be an
absolute requirement that the sample script runs OK.

Chapter 2. For package users 9

gretl: GHegy 1.1

HEGY

Select arguments:

Dependent variable (series) v B
Automatic selection of AR lags? | Yes (Determined by BIC) hd

Maximum (if auto=yes) or fixed AR lags (scalar) |0 gk
Deterministic component | Constant + trigonometric terms v

Print auxiliary regression

@ close this dialog on "OK"

@Help wclose QﬂOK

Figure 2.7: GUI call to the GHegy package

Figure 2.7 illustrates a function-call dialog, this one put up by the GHegy package. Each argument
to the function is represented by either a drop-down selector or a check box. Note that the “+”
button next to a selector allows you to define a new variable as an argument if you wish. Figure 2.8
then shows part of the output from this call.

seasonal unit roots for series QNC:
AR order = 8 (determined by BIC with max.order=8)
Deterministic component: constant + (s-1) trigonometric terms
Dof (T-k) = 52

Statistic p-value Ang. Frequency Period

tl= -1.56 1.00008 Zero infinity

Fl= 18.40 0.97130 +-pi/2 4

t2= -2.98 l1.00000 pi 2

Fs= 19.08 0.13675 All the seasonal cycles

Ft= 15.24 0.080123 Delta_s {all the seas. + zero freq.)

Figure 2.8: Output window from call to GHegy

We have moved the mouse pointer over the “bundle” icon in the toolbar of this window to reveal the
tooltip, “Save bundle content.” What’s going on here is that GHegy has constructed a gretl bundle
containing various details of the unit root test, and we can extract these details if we wish. Package
authors: for an account of how to do this sort of thing see section 3.4.

2.4 Some finer points
2.4.1 Managing menu attachments

We mentioned above that you can revise your initial choice of whether or not to have a function
package insert itself into the gretl menus. We’ll now explain how.

Again, start from the browser for installed packages. One of the buttons on the toolbar is a “+”
icon (with tooltip “Add to menu”). This button should be active when you select a package which

Chapter 2. For package users 10

offers a menu attachment but is not currently attached. Click it and you’ll get the sort of dialog
shown above in Figure 2.4; say “Yes” to attach the package to the specified menu.

To go the other way—that is, remove a package from a menu—use the button with the “Prefer-
ences” icon (tooltip “Package registry”). This brings up a window showing the packages that are
currently attached to menus (Figure 2.9). For each package you can see whether its attachment is
in the main gretl window or in model windows (at present these are the only two possibilities), as
well as the specific “path” to the menu item. To remove a package from the menus, use the delete
button or the right-click menu. Removing a package from the menu system does not delete or
disable the package, it just means it won’t have its own menu item —which is easily reversed, as we
have just seen.

gretl: packages on menus

5] & B
Package Window Menu

Ip-mifx Model Analysis/Marginal effects

PPtest Main Variable/Unit root tests/Phillips-Perron test

HIP Main Model/Limited dependent variable/IV/Heteroskedastic

felogit Main Model/Limited dependent variable/Fixed-effects logit

GHegy Main Variable/Unit root tests/HEGY

oddsratios Model Analysis/Logit odds ratios

Figure 2.9: The GUI package “registry”: from here you can remove dynamic menu items

Changes made in this way will have immediate effect on main-window menus; the effect on model-
window menus will be apparent only for newly opened windows.

2.4.2 What does “installed” mean?

We’ve talked about installing packages, but what exactly does it mean for a package to be installed?
Basically, it means that the package file(s) are placed in one or other of two standard locations
where gretl should always be able to find them automatically—for example, in response to the
command “include mypkg.gfn” without any path specification.

These two standard locations are the “system” and “per-user” gretl function directories. In each
case we're talking about a subdirectory named functions, the actual path to which differs by
platform (and on MS Windows, by national language).

On an English-language Windows installation typical values are, for the system and per-user paths
respectively,

C:\Program Files\gretl\functions
C:\Users\Togin\AppData\Roaming\gretl\functions

where “login” is a placeholder for your username. On Linux they are likely to be

/usr/share/gretl/functions
$HOME/ .gretl1/functions

and on Mac OS X

/AppTlications/Gretl.app/Contents/Resources/share/gretl/functions
$HOME/Library/Application Support/gretl/functions

Chapter 2. For package users 11

where $HOME is your “home” directory, which is always defined on Linux and OS X.

However, you don’t need to guess at these locations: in the gretl console you can do

eval $gretidir
eval $dotdir

to get the respective base directories on your system: append “functions” and you’ll have the
canonical package paths.’

When you install a package via gretl it will go to one of these locations, depending on the platform
and whether or not you have permission to write to the “system” directory.

We said gretl will automatically find packages in these places. Well, there’s one possible catch to
look out for. The gfn file for a package may be placed in the functions directory itself, or in a
subdirectory with the same name as the package; that is, on one or other of the following patterns:

functions/mypkg.gfn
functions/mypkg/mypkg.gfn

Here’s the thing: if a package includes PDF documentation, or any other files besides the gfn, it
must be in its own subdirectory (the second pattern). If the package consists of a gfn file only, then
in general it should go directly into the functions directory (the first pattern). Gretl should get
this right when installing a package for you but if you install a package by hand, copying it to the
functions directory yourself, you need to pay attention to this point.

2.4.3 Examining a package in depth

Suppose you get interested in some function package to the point where you don’t just want to
use it—you want to see how it works, maybe borrow ideas from it, even fix bugs in the package or
modify it for your own purposes.b

Once again, you can start from the browser window for packages “on local machine.” The View
code button or right-click menu item brings up a window showing all the function code. From here
you may copy material and paste it into a script of your own.

Making changes to an existing package, however, cannot be done via the package browser window:
it’s necessary to go via the main-window menu item “File, Function packages, Edit package.” This
route will let you edit a package only if you have write permission on the file in question. Here’s a
plausible scenario: you have package XYZ installed, and you don’t want to (or don’t have permission
to) mess with the installed version, but at the same time you’d like to do some exploration and/or
experimentation. Solution: go to the web interface to gretl packages mentioned in section 2.1
and download a copy of XYZ, placing it somewhere other than one of the standard gretl function
directories. Then go to “File, Function packages, Edit package...” and navigate to find the gfn file.
(If the package is in zip format you’ll have to unzip it first.)

In the package editor window, the button labeled Edit function code takes you into the hansl code
(function by function, if the package contains more than one function). With a complex, multi-
function package it may be difficult to get a good overview of the package in this way but here’s
an alternative: click the Save... button and select Save as script. This enables you to write out a
gretl inp file containing all the functions in the package, which you can then open in gretl’s script
editor—or, of course, the text editor of your choice.

An alternative way of opening a specific package for editing, via the command line in a terminal
window, is to invoke gretl with the flag -p plus the name of the package, as in

SOK, there’s an exception here: on Mac OS X the path to the per-user functions directory, which is shown above, is not
the same as the $dotdir path.
61f you do come up with any fixes or enhancements, then naturally we ask that you share them with the package author.

Chapter 2. For package users 12

cd XYZ_work_dir
gretl -p XYZ.gfn

Either way, opening the specified gfn file for editing has the effect of loading the package into
memory. Thereafter, operations related to XYZ will refer to the version you loaded initially.

2.4.4 Redirecting the package browser

Another way of getting at uninstalled gfn files is to redirect the function package browser. This
can be done via the directory button at the left-hand end of the toolbar, which calls up a selection
dialog. If you select a directory that turns out to contain no gfn files you just get a message to that
effect, otherwise you are given the option of replacing the original contents of the browser window
with the newly found packages.

When the browser is redirected in this way, clicking the directory button gives you two options:
choose another directory, or revert to displaying the installed packages (which may come from
more than one directory, as explained in section 2.4.2).

When the browser is newly opened it always shows the installed packages. However, gretl will
remember (during a given session) which alternative gfn directory you visited last, and will offer
that as the default selection on using the directory button.

Chapter 3

For package authors

Recall from section 1.2 that the core elements of a gretl function package are as follows:

1. One or more hansl functions;
2. the package metadata (author, version and so on);
3. documentation; and

4. an example script.

These elements are all contained in a gfn XML file. Optionally, you can ship additional material
with your package (PDF documentation, a richer assortment of sample scripts, and so forth), in
which case all the components including the gfn must be wrapped in a zip file.

In this chapter, we will go through the creation and maintenance of these basic ingredients, plus
the process of baking them together into a working function package. This result can be achieved
either by command-line methods or via gretl’s graphical interface.

We’ll start with the command line. Yes, we know that many readers may prefer to use a graphical
interface whenever possible, but we recommend that you at least skim this section rather than
skipping forward. The command-line approach is likely to pay off if you ever decide to tackle an
ambitious function-package project.

3.1 Building a package via the command line

Here we assume you are at least somewhat familiar with the shell —that is, the command processor
which awaits your input when you open a terminal window. So we assume you know how to perform
simple operating-system tasks such as copying/deleting files, listing the contents of a directory and
so on via the appropriate shell commands. A reminder of the basics is provided in Table 3.1. On
unix-type systems (such as Linux and OS X) you can get help on a command by typing man followed
by the command word, as in man cp. On windows, get help by typing the command word followed
by a slash and a question mark, as in copy /7.

action unix Windows
copy file(s) cp copy
move files(s) mv move
delete files(s) rm del
make a directory mkdir mkdir
change directory cd cd

list files 1s dir
emit a string echo echo

Table 3.1: Basic shell commands by platform

With the exception of subsection 3.1.3 all the commands used in this section have been tested on
Windows’ cmd.exe as well as the bash shell.

13

Chapter 3. For package authors 14

First of all, we strongly recommend that when starting work on a package you create a specific
directory to hold the makings of the package. For illustration we’ll suppose the package is called
“mypkg”. (Naturally, you should replace all occurrences of mypkg below with the actual name of
the package you're building.) So, starting from some suitable point in your file system, you might
begin with

mkdir mypkg
cd mypkg

Now, the minimum requirement for building your package (as a “simple package” or stand-alone
gfn file) is the following set of files:

1. At least one (for now, let’s just say one) hansl inp file containing definitions of the functions
you wish to package. Let’s call this mypkg.inp.

2. A spec file, which supplies metadata and tells gretl how the package should be assembled;
call this mypkg. spec.

3. A sample script (inp file) which exercises your package; call this mypkg_sample.inp.

4. A text file containing help on the packaged function(s). The filename should have suffix .md
if you’re using gretl’s markdown option (recommended: see Section 3.1.1 below).

The four files listed above are all UTF-8 text files that you can view and modify using any text editor
of your choice (no word processors, please). Each text file corresponds to one of the four basic
constituents of a gfn file. Therefore, once you have these four files ready, building the package is
simply a matter of transcribing their contents into XML and putting everything together into the
package file.

You will need to create such files in the current directory (or maybe copy or move them from
elsewhere if you've already made a start). It’s not absolutely necessary that all the filenames are
regimented as shown (starting with the name of the package in each case), but as we’ll see before
long this can make life easier.

The inp file containing your function definitions we won’t say much about here. If you're con-
templating writing a package you should already be pretty comfortable with hansl. See the Hansl
Primer (Cottrell and Lucchetti, 2016) if in doubt.

The requirements on the sample script and help text are set out in section 3.3. First we’ll deal with
the spec file. A simple case of this is shown in Listing 3.1.

Listing 3.1: Simple mypkg.spec

author = A. U. Thor

email = author@somewhere.net

version = 1.0

date = 2018-07-12

description = Suitable description goes here
tags = (13

public = myfunc

help = mypkg_help.md

sample-script = mypkg_sample.inp

min-version = 2017a

According to this spec, the package has a single public function, myfunc, and requires gretl 2017a
or higher to run properly. For details on the specification keys used here (e.g. tags or min-version)
see section 4.1.

Chapter 3. For package authors 15

In fact, writing a spec from scratch may be tricky. Some may prefer adapting a pre-existing tem-
plate spec file; you can find one at https://sourceforge.net/projects/gretl/files/misc/
tempTlate.spec. Regardless, you still may want to refer to chapter 4 for a fuller description of the
various entries.

Now, assuming all the required files are in place, how do we actually build the package? Simple:
the shell command

gretlcli --makepkg mypkg.inp

tells gretlcli to run mypkg.inp, hence loading your function definitions into memory; process the
corresponding spec file (which must have the same basename as the inp file); load the auxiliary files
(help, sample script); and, if all goes well, write out mypkg.gfn. For reference, using the --makepkg
flag with gretlcli is just a convenient shorthand: it’s equivalent to running the following script,
using the makepkg command.

include mypkg.inp
makepkg mypkg.gfn

You can further abbreviate the above by using the “short” syntax for options, as in
gretlcli -m mypkg.inp

We’ve said this package offers a single public function, myfunc: that’s the only function that will be
made directly available to users. However, you may want to include one or more private “helper”
functions, designed to be called only by myfunc. To do so, just put definitions of these functions
into mypkg.inp; gretlcli will pick them up and, seeing that they don’t appear in the pubT1 c listing,
will mark them as private.!

3.1.1 The markdown option

As mentioned above, a simple function package includes documentation in the form of a text
file. Since gretl 2023b you can employ a simple variant of markdown, and we encourage package
authors to do so. If you are unfamiliar with markdown you might want to take a look at https:
//en.wikipedia.org/wiki/Markdown.

Gretl’s markdown variant currently supports the following features.

e First and second-level headings: start a (single) line with # or ##, respectively
e Boldface: **text**

o [talic: *text* or _text_

e Monospace: ‘text‘ (enclosed in ASCII left quotes)

e Itemized list: each item starts with “~ ” on a new line

e Enumerated list: each item starts with (e.g.) “1. ” on a new line

e Code block: starts and ends with “ “ “ (three ASCII left quotes) on its own line

Note that itemized and enumerated lists cannot be nested.

URLs starting with http[s] automatically turn into hyperlinks. Paired ASCII straight double quotes
are replaced by left- and right-hand quotes.

1To be quite explicit, the makepkg mechanism includes in the output package all the functions that are currently in
memory—as package-private functions if they are not identified as public in the spec file. When using makepkg you
should always start with a clean workspace and load only the relevant functions.

https://sourceforge.net/projects/gretl/files/misc/template.spec
https://sourceforge.net/projects/gretl/files/misc/template.spec
https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/Markdown

Chapter 3. For package authors 16

3.1.2 Adding extra material

Suppose now that you want to include with your package some extra material (say, a specialized
data file). As explained earlier (again, see section 1.2), you will have to create a suitably organized
zip file.

The first thing is to update the spec file to refer to the extra content: you'll want to add a line like
data-files = somedata.gdt

where we assume that the file somedata.gdt file exists and is in the mypkg directory. See section 4.4
for more details.

Creating the zip file can be done “by hand” if the command-line zip program is available (or substi-
tute pkzip if it’s available):

cd ..
zip mypkg/mypkg.zip mypkg/ mypkg/mypkg.gfn mypkg/somedata.gdt

Or you can have gretl take care of everything for you, by using the makepkg command: you can
start gretlcli and issue the following command:

makepkg mypkg.zip
When the argument to makepkg is a filename with the zip extension, gretl will do one of two things:

o If a matching gfn file is found, this will be used the as the basis for the zipfile, with other
components pulled in as specified.

o Failing that, if a matching spec file is found (plus the other files that it references), gretl will
first build the gfn and then build the zipfile wrapper.

A neater way of doing this is to “pipe” the makepkg command into gretlcli directly from the com-
mand line, as in

echo makepkg mypkg.zip | gretlicli -b -

where the -b flag makes gretlcli operate non-interactively and the following dash tells the program
to read commands from “stdin” instead of an inp file.

3.1.3 Using a Makefile

If you're working on a platform that supports the make utility, you might find a Makefile helpful. It
is not obligatory to use this approach, but especially if your project is large, it can definitely make
your life easier. MS Windows does not provide make, but it can be installed; see Appendix A to this
chapter for some options.

Make is a program that gives you a consistent interface for performing complex tasks. Its useful-
ness is particularly evident when there is some dependency structure between the tasks you want
to perform. For example, when building a large software project, there is a series of operations that
must be performed in a certain order (compiling, linking, installing); or, as another example, when
you have a large KTgX document you have to compile it first, then run BIBTEX, then compile it again,
etc. Make is excellent at automating such tasks.

To run make you need a file, usually called Makef1i1e, which contains a sequence of rules to tell the
program “what to do when.”? Listing 3.2 shows a very simple instance, though it does illustrate a
small refinement in the package-building process.

2A complete tutorial on make can be found at http://www.gnu.org/software/make/manual/make.html.

http://www.gnu.org/software/make/manual/make.html

Chapter 3. For package authors 17

Listing 3.2: Makefile for simple package
PKG = mypkg

$(PKG) .gfn: $(PKG).inp $(PKG).spec $(PKG)_help.txt $(PKG)_sample.inp
gretlcli --makepkg $(PKG).inp

install: $(PKG).gfn
echo pkg install $(PKG).gfn --local | gretlcli -b -

clean:
rm -f $(PKG).gfn

Running “make” in your project directory will rebuild mypkg.gfn if and only any of the source files
have changed since the gfn was last produced; running “make clean” will delete the gfn. Here’s
the refinement: running “make install” will install the package (after rebuilding it, if required).

Warning: if you just copy and paste the example above into a text file, chances are it will not work.
Make is quite fussy about the structure of the Makefile, particularly about the use of tabs versus
spaces. Some details, and a more extended example, are provided in Appendix B to this chapter.

3.2 Building a package via the GUI

When you're building a package, it’s a good idea to ensure you have a “clean” workspace. So if
you’ve been running regressions, maybe using other packages, or whatever, we recommend sav-
ing your work, closing gretl, and restarting the program. That said, here’s a walk-through of the
process.

3.2.1 Load at least one function into memory

If you have a script file containing relevant function definitions, open that file and run it. Otherwise
you can create a script file from scratch in the GUI script editor: include at least one function
definition, and run the script.

For example, suppose you decide to package a function that returns the percentage change of a
time series.> Open the script editor window and type

function series pc(series y "Series to process")
series ret = 100 * diff(y)/y(-1)
string dsc = sprintf("Percentage change of %s", argname(y))
setinfo ret --description="@dsc"
return ret
end function

Note that we have appended a string to the function argument, so as to make our interface more
informative. This is not obligatory: if you omit the descriptive string, gretl will supply a predefined
one (in this case, series).

Now run your function. You may want to make sure it works properly by running a few tests. For
example, you may open the console and type

series x = uniform()
series dpcx = pc(x)
print x dpcx --byobs

3Strictly as an illustration, of course! Don’t expect something like this to pass muster for inclusion on the gretl server.

Chapter 3. For package authors 18

X dpcx

1 0.4428625
2 0.3737993 -15.5947
3 0.1570864 -57.9757
4 0.6896227 339.0086
5 0.8510148 23.4030
6 0.07757 -90.8851
7 0.1454557 87.5180
8 0.8260684 467.9174
9 0.4328073 -47.6064
10 0.3566473 -17.5967

Listing 3.3: Output of function check

You should see something similar to Listing 3.3. The function seems to work OK. Once your func-
tion is debugged, you may proceed to the next step.

3.2.2 Create your package

In the gretl main window, go to the “File, Function packages” menu, and select “New package.”
A first dialog should appear (see Figure 3.1), in which the left-hand panel lists all the functions
you have available for packaging; you must specify the name of the package, one or more public
functions to package, and zero or more “private” helper functions.

Select functions

Name for package: |pcchange

Public functions
pc
&
<
Helper functions
&
&

% Clear %Cancel -QBOK

Figure 3.1: Starting a new function package: you specify a name for the package and select the functions to
be included from the list on the left.

Public functions are directly available to users; private functions are part of the “behind the scenes”
mechanism in a function package. So, at this point, you select the pc function from the left-hand
panel and put it into the “Public functions” box. You also give the package a name. Leave off the
gfn extension, that will be added as required; here we name the package pcchange.

Chapter 3. For package authors 19

gretl: pcchange *

Author |A. U. Thor

Email

Version | 1.0
Date (YYYY-MM-DD) 2015-10-12
Package description
Tag none v
Tag 2 (optional)

Data requirement | No special requirement v

Minimum gretl version Help text
2011a * | (1.9.4) +) Plain text 2 Edit
PDF file Select
Edit function code Extra properties Save...
Edit sample script | | Add/remove functions W Close

Figure 3.2: The package editor window

On clicking OK a second dialog should appear (see Figure 3.2), where you get to enter the package
information (author, email, version, date, etc.). Unless you have a PDF file containing help, you
should also enter help text for the public interface: use the Edit button to open a text entry window.
(If you have documentation in PDF format, see section 3.2.3.) You have a further chance to edit the
code of the function(s) to be packaged, by clicking on Edit function code. (If the package contains
more than one function, a drop-down selector will be shown.)

And you get to (in fact, you must) add a sample script that exercises your package. This will be
helpful for potential users, and also for testing. For this package, a suitable sample script might
looks like this:

include pcchange.gfn
open denmark.gdt
series pcLRM = pc(LRM)
print LRM pcLRM --byobs

where (a) we've decided that the package is to be called pcchange, and (b) we're going to illus-
trate using Seren Johansen’s Danish macroeconomic data (included with the gretl package). See
section 3.3.2 for details on what’s required of a sample script.

At this point you should also consider the metadata items Minimum gretl version, Data requirement
and Tag. You can read all about these in section 4.1. For the moment, suffice it to say that since the
function code above doesn’t do anything exotic you may be OK leaving the minimum gretl version
at its default value, though if you want to check when some function or command was introduced
you can look at the gretl ChangeLog.* As for the data requirement, well, percentage changes from
observation to observation probably don’t make sense for cross-sectional data (which in most cases
can be ordered any old how, arbitrarily), so you might pull down the list of options and select “Time-
series data.” And as regards the tag for this package, the most general category, “C10 Econometric
and Statistical Methods: General” is probably the only one that’s applicable.

Clicking the Save button in the package editor window brings up a little menu. At this stage it’s just

4See http://gretl.sourceforge.net/ChangelLog.html.

http://gretl.sourceforge.net/ChangeLog.html

Chapter 3. For package authors 20

the first item, Save gfn, that’s relevant. If there’s something missing from your package specifica-
tion (e.g. no help text), you'll get a nag box when you select this item. Otherwise you'll see a dialog
where you get to choose whether to save the gfn file to an “installed” location (see section 2.4.2) or
in some other place (Figure 3.3).

Save gfn file

+) |Save the file to its standard "installed" location

Save it to a location of your own choosing

%Cancel ok

Figure 3.3: Where do you want your new package to go?

If you select the first option you will get feedback on where the gfn file was actually written;> if you
select the second you’ll get a regular File Save dialog box. The advantage of the first choice is that
the package will be found automatically by gretl. However, if you're just experimenting and don’t
want to “install” the package yet, by all means choose a different location.

Note that the dialog box shown in Figure 3.3 only appears when you are first saving a newly created
package. Thereafter, Save gfn simply saves the package using the existing path to the gfn file.

3.2.3 Adding PDF documentation

The prerequisite here is that you have available a suitable PDF file containing documentation for
your package. We can’t help you with that. But if you have such a file, then click on the PDF file
radio button to the right of the “Help text” field in the package editor. If you have already entered
plain-text help you will see a dialog box warning you that this will be lost (not right away, but if and
when you save the package). Otherwise you go straight to a file chooser window where you select
the PDF file.

To be included with your package, the PDF file must (a) be in the same location as the gfn file, and (b)
have the same “basename” (for example mypkg.pdf if the package is called mypkg). Nonetheless,
you can select a PDF file of any name from any location, and gretl will take care of copying it into
place under the correct name. But please note: if gretl has to copy the file into place, any changes
made to the PDF in its original location will not propagate to the copy included in the package.
Having selected PDF documentation, however, you can use the Select button (see Figure 3.2) to
check where gretl is finding the file, or to update it from another location.

Please note: PDF help is an alternative to plain text help; you cannot combine the two (not at
present, anyway).

3.2.4 Saving a zip file

In the little menu that is brought up by the Save button in the package editor window, one of
the items is “Save zip file...”. This item becomes active if and only if the following conditions are
satisfied:

e Your package offers PDF documentation and/or additional data files. That is, the specified
materials can’t all be packed into the straight gfn XML format.

e The gfn file is up-to-date with any current changes made in the package editor.

If you think you ought to be able to save a zip file but that option is not enabled, chances are the
gfn file needs to be saved first (to keep things in sync).

>Technical note: this option will take care of saving the gfn to a named subdirectory of the relevant functions
directory, if the specification includes PDF documentation or other additional files.

Chapter 3. For package authors 21

3.2.5 Check your package!

Before sharing your package with others, you must check that it actually works, outside of the
package-editing context. You need to emulate the context of somebody who has installed your
package from scratch.

First off, that means that if you didn’t choose to write your package into a standard location at the
step in section 3.2.2 you should do so now. Use the “Save...” button in the GUI package editor or
see section 2.2.2 for other options.

Once your package is in the right place, close gretl then reopen it. Now go to “File, Function
packages, On local machine”. If all has gone OK so far, you should see the file you packaged and
saved, with its short description. If you click on “Info” you get a window with all the information
gretl has gleaned from the package. If you click on the “View code” icon in the toolbar of this new
window, you get a script view window showing the actual function code. Fine.

Now, back to the “Function packages” window. Think for a moment: you required time-series data
(didn’t you?) so you should know that a double-click on your package will just offer the option of
running your sample script if time-series data are not loaded (section 2.3.2). And if you're following
directions you have no dataset open at present. OK, it’s worth trying that; your sample script really,
really should work regardless (section 3.3.2), so go ahead and double-click.b

Now, if that went OK, let’s next try a “clean” invocation of your function. (Close and restart gretl
if you've messed with your package at all in the interim.) First we’ll load suitable data— preferably
something different from the sample script, for example the file np.gdt (From Nelson and Plosser,
also supplied with gretl among the sample datasets, under the Gretl tab). We’ll compute the rate of
change for the variable iprod via your new function and store the result in a series named foo.

Return to “File, Function packages, On local machine,” find your package, and double-click on it. A
window similar to that shown in Figure 3.4 will appear. Notice that the description string “Series to
process,” supplied with the function definition, appears to the left of the top series chooser.

gretl: pcchange 1.0

pc
Select arguments:

Series to process (series) |iprod v | |dqp

Assign return value (optional):

selection (or new wvariable)

series |foo| v

v close this dialog on "OK"

E@Help ¥ close ok

Figure 3.4: Using your package

Click OK and the series foo will be generated. Yay! See Figure 3.5 (right-click on foo in the gretl
main window and choose Time series plot).

3.3 Common requirements

Whether you're building a function package from the command line or composing a package via
the gretl GUI, certain requirements must be met if your package is to be made available via the gretl
server. Here we spell out what’s needed in regard to the help text and the sample script.

6By the way, here’s another thing: after loading the function(s) from the package, open the GUI console. Try typing
help pc: the help text you entered should be presented.

Chapter 3. For package authors 22

m|

gretl: graph
30

20 | ' |'||'I|I' | -
| | | Vi

10 - !|| || [I

foo
[
T

20 | '

30 b 1]]
1860 1880 1900 1920

1940 1960

1918. -11.46 Right-click on graph for menu E o BERBRP@D

Figure 3.5: Percent change in industrial production

3.3.1 Help text

This must give a clear (if brief) account, in English, of what the package does, and also what each
parameter does, for each public function, insofar as explanation is reasonably required. (A boolean

verbose parameter probably doesn’t need much if any comment, but most parameters do need
comment.)

If the help is not in PDF format it must be encoded in UTF-8 (or plain ASCII, which is a proper
subset of UTF-8). Unless you use the markdown option (see section 3.1.1) we recommend that lines

of plain text are kept to around 70 characters in width: some people may like to run gretl windows
at full-screen size, but many of us do not!

3.3.2 Sample script

This is crucial. The sample script must work “out of the box” on all platforms, and must not take
too long to execute.

The sample script is what curious users are likely to run if they just want to see what a package
does and check that it’s not broken. It's what we gretl developers want to run for the same reasons,
but also in the process of regression-testing new gretl release candidates. It’s important that a gretl

release doesn’t break existing packages, but we can’t assess that if a package’s sample script is
broken in the first place.

Here are the key things to watch out for in relation to sample scripts:

Include yourself: Right at the top, the sample script must include the gfn file in question. This will
never do any harm, and is needed when the script is run “from scratch”, without the package being
already loaded. The name of the gfn file should be given without any added path, and without
quotation marks, as in

include mypkg.gfn

Chapter 3. For package authors 23

Dataset: If the package requires that a dataset be in place the sample script must arrange for this
in a portable manner. The options are as follows.

1. Open a data file that’s supplied with the gretl distribution (that is, under the Gretl, Greene or
Ramanathan tabs in the built-in datafile browser). But if none of the supplied data files are
suitable, then

2. construct an artificial dataset using the nulldata command and gretl’s random-number gen-
eration facilities, or

3. specify a downloaded data file using the http prefix with the open command, or

4. include a suitable data file in your package — this requires that the package be in zip format.

In the case of artificial data, the script should include a set seed command so that the results are
reproducible. In the case of downloaded data the URL should be reasonably stable, not something
that’s likely to disappear or be moved before long.

In no case should a datafile be specified with a full path, as in

open /usr/share/gretl/... # No!
open C:\Program Files\gretlI\... # No!

This is obviously not portable, and is never necessary when opening a supplied data file, given
gretl’s path-searching capability.

Execution time: Some packages carry out Monte Carlo analyses and/or bootstrapping and we all
know that such procedures are inherently time consuming. Nonetheless, a sample script should
execute on current hardware in a reasonably short time—preferably less than 15 seconds and
certainly less than a minute. Otherwise both casual users and testers will lose patience. If this
means that only a “toy” example can be run, that’s OK. The author can add comments to the script
saying that this is just an illustration, serious use requires many more iterations. And/or one
can add a more “realistic” invocation of the function(s), commented out, with a statement such as
“Uncomment this for a real test”.

Commenting out: In some cases an author may wish to indicate alternative ways of calling his or
her package. That’s fine, but if an alternative call requires a dataset other than the one opened by
the script it must be commented out; we don’t want any lines in the sample script that will generate
errors when the script is called “as is”.

The intent of the sample script in a gfn package is not just “a rough idea of how you might call this
package”, or “something that ran OK for the author on some machine at some time”, but something
that will run for any user of gretl on any platform, without modification, provided only that their
gretl installation satisfies the stated version requirement of the package.

3.4 Gretl package idioms

The previous section set out certain basic requirements that must be met if a package is to be
published (on which see section 3.5). Nothing in the present section is a requirement as such, but
we urge you to take a look at our discussion of the “idioms” that are found in many of the best
packages. If your package “speaks gretl” fluently that will give users a better experience and make
a more noteworthy contribution to the gretl ecosystem.

Two main points are considered here (they often, but do not have to, go together), namely offering
a gretl bundle as the return value from a packaged function, and offering placement of a function
package on one or other of the gretl menus.

Chapter 3. For package authors 24

3.4.1 Working with bundles

The use of a bundle as the return type for a function allows it to pass back a conveniently wrapped
collection of information of various kinds and dimensions. Furthermore, a package can contain
functions whose job is to access and process “its own” bundles, thereby offering convenient GUI or
scripting functionality for the user.

There’s a close analogy between this facility and the built-in handling of models in gretl. You
specify a model via a dialog box, and what happens? Execution burrows off into libgretl, where
the calculations are done and the results assembled into a data structure called a MODEL, which is
then returned to the GUIL The GUI program then puts up a window displaying various aspects of
the model. In the background the full MODEL is “attached” to the window, and the menu items in
the window call functions that access the underlying data structure to display things not shown by
default (e.g. the residuals), to make graphs (e.g. the residual correlogram), to carry out diagnostic
tests, and so on.

A function that returns a bundle can do just this sort of thing, and wherever it's appropriate we
recommend that this facility be exploited.

Let’s see how this works by constructing a little example. We could make a package containing just
this function,

function bundle bunret (scalar x)
bundle b
b.x = x
b.mat = I(3)*x
return b
end function

with the following sample script:

include bunret.gfn
bundle b = bunret(42)

Now this function and the bundle it returns are frankly silly, but that’s alright. Our focus is on
how gretl handles bundles and we don’t want to get distracted by interesting econometric content.
Let’s create a menu entry for the package, under gretl’s Tools menu. In the GUI package editor
you would go to “Extra properties”, open the “Menu attachment” tab, type in bunret for the label,
select “main window” in the Window selector, and in the pane below, select Tools. In CLI mode you
would add these lines to the project’s spec file:

Tabel = bunret
menu-attachment = MAINWIN/Tools

What happens when we call this function via the menu? In the first instance we get this dialog

gretl: bunret 1.0

bunret
Select arguments:

x (scalar) || aF

+ close this dialog on "OK"

@Help WQOSE -CEOK

Something may seem strange here: the function bunret returns a bundle, but we’re not seeing a
slot to specify assignment of the return value. But let’s continue. If we type some value into the x

Chapter 3. For package authors 25

argument selector and click OK we get the window shown in Figure 3.6, which gives two view of the
top part with two different menu buttons activated.

] bunret q

BEE&DQa =
mat (matrix)
x (scalar)

(] bunret 4

EEE&DBA =
Save text...

Sve bundle to session as icon

Figure 3.6: bunret output window

So although we didn’t get the option of assigning the bundle in the function-call dialog, gretl has
snagged the bundle on our behalf, and will let us save its contents individually (upper picture), or
the whole thing “as an icon” (lower picture).

Another thing is noteworthy about the output window: its text area is empty. That shouldn’t
be a surprise because the bunret function doesn’t print anything. Functions don’t have to print
anything, and gretl’s built-functions generally do not, they just return something useful. However,
if a function is intended for GUI use it probably should give some visible output, or in other words
it should be “command-like.”

So let’s revisit the package code. We could add suitable printing commands within the bunret
function itself, but for reasons that will become apparent shortly, let’s instead write a separate
printing function and add it to the package.

function void bunret_print (bundle *b)
printf "=== Hello from bunret_print ===\n\n"
printf "The x member of %s is %g\n\n", argname(b), b.x
printf "The matrix member is\n\n%10.3f\n", b.mat

end function

Having added this function (note, it should be public) we could then call it from the main bunret
function, but we won’t do that. Instead we’ll select this function for the bundle-print role in
our package. In the GUI, you go to the “Special functions” tab under “Extra properties” to do that.
And while we'’re at it, since the package now has two public functions, we’ll select bunret for the
gui-main role and in addition mark it as “no print,” because it’s not going to do any printing itself
(Figure 3.7). In CLI mode, this means adding three spec lines:

gui-main = bunret
bundle-print = bunret_print
no-print = bunret

Here’s how things will now work if we go back and call bunret from the menu: gretl will snag the
bundle as before, will notice that this function is no-print, and will see if the bunret package has
a bundle-printer function. Since it does, it will call that function on the bundle and put the result
into the output window, which will therefore no longer be blank. Your package’s bundle window is
now somewhat like a gretl model window: it shows you some stuff and allows you the possibility
of saving some or all of it.

Chapter 3. For package authors 26

gretl: extra properties

. . .. ! =
Special functions | Menu attachment | Data files

bundle-print | bunret_print v

bundle-plot | none v
bundle-test | none hd
bundle-fcast | none v
bundle-extra | none v
gui-main | bunret v | W |no-print menu-only

gui-precheck

@Help o Apply 3¢ close

Figure 3.7: Selecting functions for special roles

In addition, if the user decides to save your bundle “as an icon,” then subsequently double-clicking
on the icon will again invoke the bundle-print function, and re-create a window like the original
one.

== A word to the wise, in relation to the last Figure: clicking on Help in the “Extra properties” window brings
up help text that is both specific to the active tab and reasonably complete. 'Nuff said.

One more refinement here. This is a bit of a stretch when we’re looking at a little toy package, but
you probably want to think about both GUI users and users who may wish to call your package via
scripting. In the former case, as we’ve said, some visual feedback is wanted, but in the latter case
it should probably be optional (assuming your function returns something).

Listing 3.4 shows a modification of our toy package to accommodate this. Hopefully it should
be self-explanatory. We would now make GUI_bunret the gui-main function and mark it as
no-print. Plain bunret (now intended for script use) would not be “no-print” any more: it’s silent
by default but the user can make it print by supplying a non-zero value for the optional second
argument. In CLI mode the relevant spec file lines would be:

public = GUI_bunret bunret bunret_print
gui-main = GUI_bunret

bundle-print = bunret_print

no-print = GUI_bunret

Further reading: For more on the special roles for functions within packages see sections 4.2 and
4.3. In particular section 4.3 explains the requirements for a function to be a candidate for a “bundle
special” role. For a discussion of how a real package —gig, or GARCH in gretl, by Jack Lucchetti—
does this sort of thing see section 4 of Cottrell (2011), and for the internals of gig itself, find gig in
the browser for packages on your local machine and select “View code.”” The GUI-related functions
are found towards the end of the code listing: start from gig_bundle_print and GUI_gig_plot.
You can also open gig in the package editor and inspect its “Extra properties.” The chapter titled
“User-defined functions” in Cottrell and Lucchetti (2017), besides providing essential background
for package writers, details various refinements available when defining parameters to a function
for use in the GUL

"Depending on your platform, you may have to install gig first. Since gig is an official “addon” rather than a contributed
package, installation is via the menu item “Help, Check for addons” in the gretl main window.

Chapter 3. For package authors 27

Listing 3.4: Toy package with GUI-specific function

function void bunret_print (bundle *b)
printf "=== Hello from bunret_print ===\n\n"
printf "The x member of %s is %g\n\n", argname(b), b.x
printf "The matrix member 1is\n\n%10.3f\n", b.mat

end function

function bundle bunret (scalar x, bool verbose[0])
bundle b
b.x = x
b.mat = I(3)*x
if verbose
bunret_print(&b)
endif
return b
end function

function bundle GUI_bunret (scalar x)
return bunret(x)
end function

3.4.2 Model-related packages

The packages we've considered above offer “top-level” functionality, in the sense that if they are to
be shown in a menu they would naturally appear somewhere in gretl’s main window.

One can also write packages that do something interesting based on data embedded in a gretl
model —create a graph, run a test, do a piece of analysis. Such functions (which may, but are not
required to, return bundles) have their proper place in menus on a gretl model window, not the
main menus.

Here’s an overview of how such packages work.

1. The user estimates a model in the GUI and gretl constructs a window to show the output.

2. In the process of setting up the model-window menus, we check to see if any possibly relevant
model-related packages are available.

3. If so, we run a “pre-check” (see below) to determine if the package can handle the particular
sort of model in question.

4. If yes, we add a menu item for the package, and selecting this item pulls up a function call
dialog for the package.

5. The function is then executed in an environment in which gretl’s model-related accessors,
such as $uhat, target the displayed model.

Let’s consider this in some more detail. First, how do we tell if any possibly relevant packages
are available? The mechanism here relies on the package “registry” discussed in section 2.4. This
information is stored between gretl sessions in a file named packages.xml in the user’s gretl
functions directory, which is automatically read on start-up.

Second, how do we tell, for each model-related package, if it can actually do something with a
model that we’re displaying? Two criteria are relevant here, both under the control of the package
author.

Chapter 3. For package authors 28

First there’s the model-requirement field in the package spec file. Valid entries for the field are
the gretl command-words corresponding to the various built-in estimators (o1s, Togit, mle and so
on). So for a function specifically designed to handle logit models one could specify

model-requirement = logit

(or make the equivalent selection under the “Menu attachment” tab of the “Extra properties” win-
dow in the GUI package editor).

The above would imply that your package can handle all (and only) logit models. In some cases
you may want more fine-grained control (e.g. you can handle both logit and probit, but only the
binary variants of these estimators). In that case you can use a second mechanism, specifying a
gui-precheck function (section 4.2).

This special function should not be included in the listing of public interfaces; it is intended only
for internal use by gretl. It must take no arguments and must return a scalar, which is interpreted
as an error code (0 for OK, non-zero for not-OK). On execution it has access to the $-variables for
the model in question. Among these is the $command accessor, which gives the command-word
for the estimator. So, for example, the pre-check function for a package which targets binary logit
and probit models might look like Listing 3.5 (it could be written a good deal more tersely, but the
example shows the logic very explicitly).

function scalar lpbin_precheck (void)
string ¢ = $command
if ¢ = "logit" && c != "probit"
can’t handle this estimator
return 1
elif !isdummy($ylist[1])
logit/probit but non-binary, can’t handle it
return 1
endif
return 0
end function

Listing 3.5: GUI pre-check for binary logit or probit

Anything printed by a gui-precheck function goes to stderr. This can be useful for debugging,
but in the “production” version of a package the checker should operate silently.

3.4.3 Example: bandplot

For a simple but idiomatic example of a model-related package, you might take a look at bandplot
(version 0.3 or higher), which creates a plot displaying a confidence band for the effect of a selected
regressor in the context of a multiple regression. In GUI use, this package latches onto windows
displaying models estimated via OLS, attaching itself to the Graphs menu.

Here’s the relevant part of bandplot. spec:

description = Confidence band plot
min-version = 1.10.1

gui-main = GUI_bandplot

label = Confidence band plot
menu-attachment = MODELWIN/Graphs
model-requirement = ols

public = GUI_bandplot bandplot
no-print = GUI_bandplot bandplot
menu-only = GUI_bandplot

help = bandplot.help

gui-help = bpgui.help

Chapter 3. For package authors 29

The purpose of the optional gui-help keyword is to specify help text to be presented in response to
the Help button in a dialog box. Note that in the online help for core gretl commands, a distinction
is made (maybe not quite as consistently as it should be) between text to be shown for scripting use
and text to be shown if the user clicks on Help. The former may refer to option flags and arguments,
the latter to buttons and pull-down lists. The gui-help spec file item extends this possibility to
function packages. The string to the right of the equals sign should give the name of a plain text
(UTF-8) file containing the GUI-specific help text. In the GUI you can edit or add GUI help under
“Extra properties” via a button in the “Menu attachment” tab.

You may wonder, what happens if your package offers PDF documentation but you also choose to
give some gui-help text? Answer: when the user clicks on Help in your GUI function-call dialog,
she will see the GUI help text in the first instance, but the window showing this text will display a
hyperlink to the PDF doc.

This package also illustrates some special GUI-related inflections in the parameter listing for a
user-defined function. Here’s the signature of GUI_bandplot, designed to be called from a menu:

function void GUI_bandplot (int xvar[$x1ist] "x-axis variable",
scalar conf[0.5:0.99:0.95:.01] "confidence level")

Take the conf parameter first. Besides the usual [min:max:default] fields for a scalar parameter,
you can add a fourth field to specify a “step”. This is used only for non-integer scalar parameters.
To make the step value active, the other three numerical fields must also be given. In this case conf
will be represented by a “spin-button” with a minimum of 0.5, a maximum of 0.99, an initial value
of 0.95, and a step or increment of 0.01 when the button is clicked. The step specifier is ignored
outside the context of a GUI function-call dialog. (This is not specific to model-related packages.)

The xvar parameter above illustrates a a facility specific to model-related packages, and in par-
ticular to packages that target models carrying a list of regressors: you can replace the usual
[min:max:default] fields for an integer-valued parameter with a single special symbol, [$x1ist].
The effect is that in a GUI dialog the parameter is represented by a drop-down list showing the
names of the regressors (skipping the constant, if any). See Figure 3.8.

gretl: bandplot 0.3

Confidence band plot
Select arguments:

x-axis variable |CATHOL v

~

confidence level |0.95

bl

v’ close this dialog on "OK"

@Help Wclose @OK

Figure 3.8: Call to bandplot, with special parameter-list inflections. Note the spin-button selector for conf
(scalar) and the drop-down selector for xvar (int) as described in the text.

Based on the user’s selection from the list, the argument is filled out with the 1-based index of the
position of the selected regressor in the array of coefficients. For example, if the list of regressors
is const x1 x2 x3 then the drop-down list will show x1, x2 and x3, and if the user selects x2 the
value 3 will be given to xvar.

The idea is that if a package wants to single out a regressor, much the most user-friendly way of
conveying this to the user is to show a list of names. There is no way that a package can arrange
for this in advance, so we want a means of signaling to gretl that the list should be constructed

Chapter 3. For package authors 30

at runtime, based on the particular model. But please note, this special feature is not ignored in
non-GUI use; it will cause trouble. That’s one reason why, as we saw in the spec file extract above,
GUI_bandplot is marked as menu-only. Note that the menu-only attribute is also visible and
settable via the GUI package editor (Figure 3.7).

The other reason why GUI_bandpTot is “menu-only” is evident from the first line of code in the
function, namely

matrix b = $coeff

This assumes that the model-related $-accessors are primed to refer to a valid model that, more-
over, was estimated via OLS. That’s a safe assumption when coming off a model-window menu
(pre-screened by model-requirement and/or gui-precheck), but in general it’s not at all safe.

3.4.4 No-print, once again

We’ve already come across the no-print attribute of packaged functions, but it’s worth revisiting
this in the context of functions whose sole job is to produce a graph or plot of some kind (whether
or not they are model-related).

By default, when a packaged function is invoked via the GUI a window is opened showing the
command along with any printed output, but for graph-only output such a window is superfluous
and potentially confusing. You can suppress the text window by marking the function in question
as no-print. This applies to bandplot, but would also apply to a main-window function whose job
is just to produce a plot.

3.5 Publishing a package

If you decide that you'd like to publish a package—that is, make it available via the channels
described in section 2.2 —here’s the procedure.

Preliminary: please double-check your package to ensure you have met the requirements in sec-
tion 3.3. This will save everyone’s time.

3.5.1 Uploading to the gretl server

If you don’t already have a login to the gretl package server, you need to begin by creating one
(please note, this is not the same thing as a sourceforge login).8

With a login in hand, there are two ways of uploading a package using gretl. There’s also a way of
doing this independently of gretl, via the shell, though this may not be convenient on MS Windows.

First gretl method: open your package’s gfn file in the GUI package editor (you can get there via the
package browser, or via the main-window menu item “File, Function packages, Edit package”). On
clicking the Save... button you’ll find an item titled Upload to server. This will ask for your login
information then perform the upload. If your package specification is such that a zip package is
needed, gretl will take care of building an up-to-date zip file and uploading that.

Second gretl method: In the main gretl window, go to “File, Function packages, Upload package”
and choose the package to upload. The file selection dialog will offer a choice of looking for gfn
or zip files. If you select a gfn file and gretl determines that it’s actually a zip file that needs to be
uploaded, it will attempt to build the zip package first.

Shell method: Listing 3.6 shows two shell scripts, the first suitable for uploading a stand-alone gfn
package and the second for uploading a zip package. The first three lines of each would, of course,
have to be filled out appropriately for your case. These recipes rely on various components that

8The URL will be given to you by gretl if you go to upload a package via the GUI, but for reference it's http://gret1.
sourceforge.net/apply/.

http://gretl.sourceforge.net/apply/
http://gretl.sourceforge.net/apply/

Chapter 3. For package authors 31

are standard kit on unix-type systems such as Linux and OS X: a Bourne-type shell; the basic utility
programs basename and stat; and the curl program for doing the actual upload. See Appendix A
for some comments on doing this sort of thing on MS Windows.

Listing 3.6: Shell scripts for uploading packages

(1) simple gfn file variant
user=your_gretl_login

password=your_gretl_password
pkg=/path/to/your_package.gfn

savename=‘basename $pkg*

curl -F login="${user}" -F pass="${password}" \

-F "pkg=@${pkg};filename=${savename};type=text/plain;charset=utf-8" \
https://gretl.sourceforge.net/cgi-bin/gretldata.cgi

(2) zip file variant
user=your_gretl_login
password=your_gretl_password
pkg=/path/to/your_package.zip
bytes=‘stat $pkg --printf="%s""

savename=‘basename $pkg*

echo "Uploading $pkg ($bytes bytes) as $savename ...

curl -F login="${user}" -F pass="${password}" -F datasize="${bytes}" \
-F "pkg=@${pkg};filename=${savename};type=application/x-zip-compressed" \
https://gretl.sourceforge.net/cgi-bin/gretidata.cgi

3.5.2 Staging

When your package is successfully uploaded, it first goes into a “staging” area on the server, and
the gretl developers who are responsible for package-checking are notified by email. Before too
long, hopefully, you should hear from one of the developers, with a response of Accept, Reject, or
Revise and Resubmiit.

Typically, packages will be rejected only if they are considered too trivial, if it turns out that they're
really just duplicating functionality that’s already available in gretl, or if they clearly make no
attempt to comply with the stated requirements (section 3.3 again). Revise and Resubmit is a likely
response if your package seems basically sound but some improvements are warranted.

Once your package is accepted it is moved out of staging and will appear in the public package
listing, both within gretl (“On server”) and via the web interface.

3.6 Maintaining a package

Once you've uploaded a function package to the gretl server, hopefully that won’t be the end of the
story: unless your package was totally perfect on its first release (Ha!) you’ll want to revisit it from
time to time with fixes or enhancements in mind.

The question arises: if your initial work was via the GUI, or via the CLI, are you thereby committed to
that mode of operation forever? Certainly not. You can mix and match the two approaches, subject

Chapter 3. For package authors 32

to some basic requirements —although, if your package is truly complex, we advise sticking with
the commmand-line approach throughout.

Case 1: You started via the GUI but you’d like to explore maintaining your package by CLI means.
Fine, you can disassemble your gfn file by opening it in the GUI package editor, going to the “Save...”
button and selecting the options Save as script (decline the option to save the sample script along
with the packaged functions) and Write spec file (accept the options to save the auxiliary files). This
will create the source files you need to rebuild your package by CLI means (section 3.1).

Case 2: You started via the CLI but you’d like to explore maintaining your package by GUI means.
Fine, you know that the makepkg command will create a gfn file, which you can then open in the
GUI package editor to make changes. But you’d be wise to use the “Save...”-button options, as
described above, to keep your text-file sources in sync with your GUI-edited gfn File, so that on the
next revision it doesn’t matter where you start.

Chapter 3. For package authors 33

Appendix A: The CLI on Windows

If you would like to use the command-line approach under MS Windows you must make a prelimi-
nary choice: you can either

o stick to the native Windows way of doing things, or

¢ install software which mimics a unix environment on Windows.

The first option is simpler, and probably best for most users. In this case you will presumably be
using cmd.exe as your shell. The advantage of the second option is that it provides a much more
powerful and versatile shell, but if you just want to do the sorts of things discussed in section 3.1
cmd.exe is quite adequate, with some help from a few small additions. We offer some more detail
on the two options below.

Native Windows: cmd.exe

This supports all the commands shown in section 3.1 except that the make utility is not present.
But make for Windows can be downloaded from the GnuWin32 project on sourceforge: see http:
//gnuwin32.sf.net/packages/make.htm, which provides a nice easy self-installer. You may also
want command-line zip and unzip from GnuWin32: http://gnuwin32.sf.net/packages/zip.
htm. (In both cases you should select the option “Complete package, except sources”.)

For anyone who’s interested but not very familiar with cmd.exe, a basic guide follows. First, to get
easy access to the program go to the Windows desktop, right-click, and select New, Shortcut. You’ll
be asked for the location of the target for the shortcut. Most likely this should be

c:\windows\system32\cmd. exe

(but you can browse to find it if need be). Click Next, give the item a name, then Finish. Now
right-click on the new shortcut and select Properties: let’s make this dude a bit more functional.

1. Under the Shortcut tab, find “Start in:”; this is the directory in which the shell will start and
by default it’s the directory that contains cmd.exe, which is not a useful place to be for our
purposes. Change it to %userprofile% and it will open in your personal file space (make it
something more specific if you like).

2. Under the Font tab, choose a decent TrueType font in place of the primitive raster default, for
example Lucida Console at size 14.

3. Under the Layout tab, Window Size panel, give yourself a comfortable height for the window —
say, 35 lines.

4. If you like, under the Colors tab select black for “Screen text” and white for “Screen back-
ground” to get a more modern look.

Having fixed its properties, double-click on the new shortcut and you should have a fairly decent-
looking terminal window. The cmd.exe window is sometimes called a “DOS box.” In fact it has
nothing to do with DOS—a long-obsolete 16-bit operating system—but its default appearance is
indeed a nasty blast from the past. Hopefully we've improved on that.

A couple of other things are needed to get a usable shell: the programs we’ll be using have to be in
the PATH, and we need a decent text editor.

As regards the PATH, the gretl installer gives you the option of adding the directory holding gretl
and gretlcli, but that leaves the GnuWin32 utilities. In cmd.exe you can do something like

PATH %PATH%;c:\program files\gnhuwin32\bin

http://gnuwin32.sf.net/packages/make.htm
http://gnuwin32.sf.net/packages/make.htm
http://gnuwin32.sf.net/packages/zip.htm
http://gnuwin32.sf.net/packages/zip.htm

Chapter 3. For package authors 34

or on a 64-bit system
PATH %PATH%;c:\program files (x86)\gnuwin32\bin

(with any adjustment needed for the specifics of your system). That will work, but only for the
duration of your current shell session. You can add directories to the PATH permanently by diving
into “Advanced system settings” under Control Panel’s “System” item, but there’s another approach
that may be preferable, namely creating an AutoRun file for use with cmd.exe. This can handle PATH

as well as other things. Here’s an example:

@echo off

DOSKEY 1s=dir /B

DOSKEY edit="C:\Program Files\Notepad++\notepad++.exe" $*
DOSKEY profile=notepad %USERPROFILE%\profile.cmd

PATH %PATH%;c:\program files (x86)\gnuwin32\bin

To activate this you would type the above (or a variant that works for you) into Notepad and
save it as profile.cmd in the directory that corresponds to $USERPROFILE% for you. Then open
the Registry editor, regedit.exe, and navigate to HKEY_CURRENT_USER — Software — Microsoft —
Command Processor. Right-click in the right-hand pane and select Add String Value: give the new
entry the name AutoRun and the value

%USERPROFILE%\profile.cmd

This little file will then be run whenever you start cmd.exe.

The last line of profile.cmd puts the GnuWin32 programs into the path as promised. The other
lines are just illustrative of what’s possible. DOSKEY establishes an alias, so the first instance allows
you to type Ts to get a directory listing, the second allows you to type, e.g., “edit Makefile” and
have your Makefile opened by Notepad++, and the third lets you type profile to open your shell
AutoRun file in Notepad in case it needs updating.

Speaking of Notepad++, unless you already have a personal favorite text editor we strongly recom-
mend using this program. The notepad.exe supplied with Windows is a truly feeble piece of soft-
ware, easily confused by variant line-endings and inclined to hide or misconstrue the true content
of some text files. Notepad++ is very full-featured (it knows about the syntax of Makefiles, for ex-
ample) and also easy to use. It’s free under GPL and available from http://notepad-plus-plus.
org/.

One more point: it’s not always understood that you can launch GUI programs from cmd.exe. We've
alluded to one instance above —typing edit at the command prompt to open a file in Notepad++—
but here’s another that can be useful. Having built a gfn file using make under the shell (see
Figure 3.9) you can easily open it for inspection in the gretl GUI with

gret1 mypkg.gfn

No need to mess with File Open dialogs since you're already in the directory where mypkg.gfn is
located.

Alternative: a unix-type shell

There are two main packages which provide a unix-type shell on Windows, CygWin and MSYS2. Both
are likely to take some getting used to for anyone unfamiliar with unix idioms.

We won’t get into details here, but if you're interested in this approach we recommend trying
MSYS2. You can find an account of this software in section 2 of “Building gretl on MS Windows”

9You can determine this by typing “echo %USERPROFILE%” at the shell prompt (without the quotes).

http://notepad-plus-plus.org/
http://notepad-plus-plus.org/

Chapter 3. For package authors 35

e cmd.exe = B “

c:\Users'cottrell\pkgtest=make
gretlcli --makepkg foo.inp
gret] version 1.10.90cvs
c:\Users\cottrell\pkgtest'foo.inp
Done
Found spec file "foo.spec’
number of public interfaces = 3
fool
foo2
gui_foo
number of private functions = 1
foo_precheck
gui-main function is gui_foo, OK
gui-precheck function is foo_precheck, 0K
Recording help reference foo.pdf
Recording data-file Tist: somedata.gdt extra
Looking %OF sample script in foo_sample.inp... OK
Checking against C:“Program Files\gretl\functions\gretlfunc.dtd
foo.gfn: validated against DTD OK

c:\Usershcottrell\pkgtest>

Figure 3.9: Running make to build a gfn file on Windows

at https://gretl.sourceforge.net/winbuild/gretl-winbuild.pdf. For building function
packages (as opposed to building gretl itself) you'll just need a few packages beyond a basic MSYS2
install, namely make, zip and unzip.

As a final note, even if you decide not to go “all the way” with command-line methods, using gretlcli
under either cmd.exe or a unix-type shell is a nice way of exploiting certain gretl features (output
redirection, use of environment variables, etc.) and may be quite useful in it own right.

Appendix B: Makefile basics

Here we give a brief summary of some aspects of Makefile syntax and usage that are likely to be
useful for package-building with gretl.

A Makefile has (or can have) two main parts: a first section which defines variables, and a second
section which defines rules. The initial definition of variables is optional but it allows for convenient
shorthand when writing the rules, and also allows for easy “portability” (names can be changed in
just one place).

Each Makefile rule has (up to) three components: a target; zero or more dependencies; and zero
or more instructions for making the target. The target should be up against the left margin and
followed by a colon. The dependencies, if any, should be listed following the colon. The instruc-
tions should be listed directly below the target line, offset from the left margin with a single tab
character.!?

Listing 3.7 shows a variant of the simple Makefile from section 3.1.3, where we have added PDF
documentation to the package. In this example the initial section defines just one variable, PKG.
Note the special syntax for using the value of a Makefile variable in the rules: the name of the
variable must be placed in parentheses, preceded by a dollar sign: $(PKG).

This Makefile specifies five targets. The first target (in this case, the gfn file) is invoked if you simply
type “make”; to invoke the other targets you have to name them, as in “make install”.

If a target has no dependencies (like clean here) its associated instructions are carried out uncon-
ditionally, so “make cTlean” will always attempt to delete the three files that can be generated by
make. By the way, using the -f (“force”) flag with the rm (“remove”) command means that it will

10Explicit instructions are not always necessary, since make knows natively how to build certain kinds of targets.
However, it doesn’t know anything about gretl files.

https://gretl.sourceforge.net/winbuild/gretl-winbuild.pdf

Chapter 3. For package authors 36

Listing 3.7: Makefile for package with PDF documentation

PKG = mypkg

$(PKG) .gfn: $(PKG).inp $(PKG).spec $(PKG)_sample.inp
gretlcli --makepkg $(PKG).inp

$(PKG) .pdf: $(PKG).tex
pdflatex $<
bibtex $(PKG)
pdflatex $<
pdflatex $<

$(PKG).zip: $(PKG).gfn $(PKG).pdf
echo makepkg $(PKG).zip | gretlcli -b -

install: $(PKG).zip
echo pkg install $(PKG).zip --Tocal | gretlcli -b -

clean:
rm -f $(PKG).gfn $(PKG).pdf $(PKG).zip

not seek confirmation, nor will it complain if the file to be deleted doesn’t actually exist.!!

If the target of a Makefile rule is the name of a file, and the rule has dependencies, then the instruc-
tions will be carried out if and only if any of the dependencies were modified more recently than
the target file. So “make” (with this Makefile) will simply report

make: 'mypkg.gfn’ 1is up to date.

if the gfn file has already been built and nothing has changed since among the files listed as depen-
dencies.

On the other hand, if a target does not name a file, but is rather a generic identifier such as install,
it will get built regardless. So “make install” in this example will always (re-)install the package.

A couple of things should be noted about the $ (PKG) . pdf target: the bibtex instruction is wanted
only if the TgX source contains a bibliography (which it probably should); and we use here the
built-in Makefile variable “$<”, which refers to the first (or only) dependency of a rule.

Makefile rules are applied recursively —this is what makes make so powerful. So, for example,
“make install” will not fail just because the zip file has not yet been built, so long as the Makefile
contains a recipe for building the latter (which of course it does). By the same token, if you invoke
the install target when the zip file already exists, it will be checked automatically for up-to-
dateness and rebuilt if necessary—which also means that the gfn and PDF files will be checked and
possibly rebuilt.

Any files specified as dependencies must either (a) feature as the target of a rule, or (b) be provided
as “primitive” inputs. In this example the primitives are the inp file containing function defini-
tions, the spec file for the package, the sample script, and the TgX source for the documentation.
Everything else gets generated by make.

1 This rule contain the only unix-specific idiom in the Makefile: under cmd. exe you would substitute de1 for rm -f.

Chapter 4

Package specification details

Here we list and explain the usage of all the currently allowed elements in the specification of a
function package. We focus on the spec file (from which a gretl function package may be con-
structed by command-line means) but we also indicate the representation of each specification
element in the GUI package editor.

We begin with a few general points on the spec file. Each entry in this file takes the form
keyword = value(s)

Where multiple values are allowed, they should be separated by spaces. An entry can be continued
over more than one line if required, using a trailing backslash (\) as the continuation character.
Blank lines are ignored, as are lines beginning with the hash mark (#), which can be used to insert
comments. As usual with gretl files, any non-ASCII characters should be UTF-8 encoded.

4.1 Basic elements

The elements described in the section apply to all function packages, whether or not they offer
an interface specifically designed for use via the gretl GUI and whether or not the main public
function(s) return a gretl bundle.

Elements in the first block below are all represented in the upper panel of the GUI package editor
window (see Figure 3.2).

author (required): The name of the author of the package. Multiple names may be given, separated
by “and”, although note that this string may be truncated for presentation purposes in some
contexts.

example: author = Riccardo "Jack" Lucchetti and Allin Cottrell

email (required): The email address to which correspondence should be directed. Only one ad-
dress should be given.
example: email = cottrell@wfu.edu

version (required): The version number for the package release. This should be parseable as an

integer or floating-point number (in the C locale). That is, it should contain only digits and at
most one dot (.).

example: version = 1.2

date (required): The date on which the release was prepared, in ISO 8601 format, YYYY-MM-DD.
example: date = 2015-03-28

description (required): A short plain-text (UTF-8) string describing what the package does.
example: description = logit/probit marginal effects

data-requirement (optional): If this element is supplied, it must be one of the following strings:
no-data-ok, needs-time-series-data, needs-gm-data (meaning, quarterly or monthly

time-series data), or needs-panel-data. Note that the default requirement is that a dataset
of some sort is in place (cross sectional, time series or panel). If your function does not take

37

Chapter 4. Package specification details 38

any series or list arguments (for example, it does something with matrices), you should use
no-data-ok to indicate that a dataset is not required.

example: data-requirement = needs-panel-data

tags (required): Here you must specify at least one “tag” for your package based on the classifi-
cation developed by the American Economic Association for use with the Journal of Economic
Literature (hence known as JEL tags). This is to help users who are searching on the gretl
server for packages that will perform some specific function. If you supply more than one
tag, the tags should be separated by spaces. You can find a listing of the available tags at
http://gretl.sourceforge.net/cgi-bin/gretldata.cgi?opt=SHOW_TAGS.

example: tags = (C13

min-version (required): The identifier for the minimum gretl version on which the package is
supported. Ideally, this should truly be the first gretl version on which the package will run
OK, but if in doubt it is preferable to specify a later version (users can always update) rather
than an earlier one (on which the package might fail and give the user a bad impression). See
section 4.5 for further details.

example: min-version = 2018a
The remaining “basic” elements are represented in the GUI in various ways, as described below.

public (required): A list of names of the public interfaces offered by the package.

example: public = GUI_Tp_mfx Tp_mfx_print mlogit_mfx \
mlogit_dpj_dx ordered_mfx

GUI: this list can be accessed and modified via the Add/Remove functions button.

sample-script (required): the name of a hansl script (. inp) file that serves as exemplar for use
p p q p p p
of the package.

example: sample-script = keane-mfx.inp
GUI: access and edit via the Edit sample script button.

help (required): The name of the file in which Help for this package can be found. This must
be either a UTF-8 text file (with or without usage of markdown, see section 3.1.1) or a PDF
file. The basename of the file should be the same as that of the package (as in mypkg.gfn
and mypkg.pdf). The filename suffix must be .pdf for PDF or .md for markdown; for non-
markdown text the suffix is not crucial but . txt is suggested.

example: help = 1p-mfx_help.txt

4.2 GUl-related elements

The elements described in this section are applicable only if at least one function in the package is
designed to be called via gretl’s graphical interface. In the GUI package editor these elements are
shown in one or other tab of the the window that appears on clicking the Extra properties button.

menu-attachment (optional): Specifies a place within the gretl menu system under which the
package should be made available. At present packages can attach to menus (a) in the
main gretl window and (b) in windows displaying model estimates (only). In specifying a
menu-attachment these are represented by the strings MAINWIN and MODELWIN respectively.
The “path” to the entry for your package should start with one of these identifiers; this should
be followed by one or more slash-separated elements, using the internal representation of the
menu tree in gretImain.xml or gretTmodel.xm]l—these XML UI files can be found in the
gretl source package or in git.!

example: menu-attachment = MODELWIN/Analysis

1See http://sourceforge.net/p/gretl/git/ci/master/tree/qui/.

http://gretl.sourceforge.net/cgi-bin/gretldata.cgi?opt=SHOW_TAGS
http://sourceforge.net/p/gretl/git/ci/master/tree/gui/

Chapter 4. Package specification details 39

Tabel (conditionally required): A very short string that can be displayed in a GUI menu. This is
relevant only if the package specifies a menu-attachment, in which case it is required.

example: Tabel = Marginal effects

gui-main (optional): This entry is relevant only if a package offers more than one public interface.
Its effect is to select one particular interface when a user accesses the function package via the
gretl GUI (other public interfaces can be selected via the command line if the user so chooses).
If a package offers multiple public interfaces and gui-main is not specified, the user will be
given a choice of interfaces whenever he or she calls the package. (If a package offers only
one public interface, we can think of this as implicitly its “gui-main”.)

example: gui-main = GUI_Tp_mfx

gui-help (optional): The name of a UTF-8 file containing GUI-specific help text, to be shown
when the user clicks on Help in a dialog box representing the package. Such text may make
reference to buttons, pull-down lists and the like rather than using language appropriate to
command-line usage.

example: gui-help = bpgui.help

menu-only (optional): A list of public interfaces (in practice, probably only one) that are specifi-
cally designed to be called from a suitable GUI menu and that should not be offered via the
browser for installed packages. If any function falls in this category it’s likely to be the one
designated as gui-main.

example: menu-only = GUI_Tp_mfx

model-requirement (optional): When the “gui-main” function of a package is designed to be
called from a menu in a gretl model-output window, this element can be used to indicate that
only models of a certain type are supported (and therefore the package will shown only for
such models). The right-hand value should be the gretl command-word corresponding to the
supported estimator. See also gui-precheck.

example: model-requirement = tobit

gui-precheck (optional): Applies only when a menu-attachment is specified. This element iden-
tifies a function to be called to check whether the package is supported in context. It offers a
more flexible testing mechanism than mode1-requirement.

The gui-precheck function should not be included in the listing of public interfaces; it is
intended only for internal use by gretl. It must take no arguments and must return a scalar.
On execution it has access to all the $-accessors for the model in question. On this basis the
function should return 0 if the model is supported, non-zero otherwise.

example: gui-precheck = Tp_mfx_precheck

Tist-maker (optional): Applies only when a model-window menu-attachment is specified. This
element identifies a function to be called to construct a list of series bearing some specific
relationship to the gretl model which the package “targets,” from which the user is then
expected to select a member. This is a generalization of the $x11ist mechanism described in
section 3.4.3 above, and is best explained by example. In the exogtest package the designated
Tist-maker function reads as follows:

function Tist exogtest_listmaker (void)
bundle m = $model
Tist L = m.x1list - m.instlist
if nelem(L) ==
funcerr "No endogenous regressors were found"
endif
return L
end function

Chapter 4. Package specification details 40

This function constructs a list of endogenous regressors from a model estimated via gretl’s
ts1s command (details of which are presumed to be available as members of the $model bun-
dle). This then provides an automatic listing of candidate arguments for the xvar parameter
to the package’s GUI_exogtest function, the signature of which is

function bundle GUI_exogtest (int xvar[$mylist] "regressor to test")

The dummy default value of $myT1ist is understood by gretl to mean the user’s selection from
the list returned by the 1ist-maker function.

Note that the Tist-maker function must take no arguments (but can assume access to $modeT)
and must return a list (or fail with an error message if no suitable list members are available).
It should be a function private to the package.

example: Tist-maker = exogtest_1listmaker

ui-maker (optional): This element allows fine-tuning of the dialog box shown when a package is
called via gretl’s graphical interface. At present the following points can be configured (more
options may be added in future):

e A given parameter (of any type) can be marked as dependent on a specified boolean
parameter.

e A parameter of type int can be given a data-dependent default, minimum and/or maxi-
mum value, to be fixed at run time.

e A parameter of type Tist can be inflected in up to three ways (illustrated below).

These things are achieved by including in the package a private function which returns a
bundle, holding a sub-bundle for each parameter to be inflected. This is most easily explained
by example. Here’s the (slightly simplified) signature of the gui-main function for a package
currently in development:

function bundle GUI_rf (\
series y "dependent variable",
Tist X "independent variables",
int n_train[50::] "training observations",
bool use_seed[0] "set random seed",
int seed[0:2147483647:1234567])

Now consider the following private function, which is designed to inflect the GUI representa-
tion of the above:

function bundle rf_ui_maker (void)

maxstr = "ceil(0.9*$nobs)"

defstr = "ceil(0.65*%$nobs)"

bundle b

b["seed"] = _(depends="use_seed")

b["n_train"] = _(maximum=maxstr, default=defstr)
b["X"] = _(singleton=0, exclude="y", no_const=1)
return b

end function

In this example the parameters seed, n_train and X are inflected. For seed, the depends
keyword indicates that its sensitivity should depend on the boolean parameter use_seed: it
will be “grayed out” unless the use_seed check-box is checked. For n_train, its maximum
and default values are configured via the strings maxstr and defstr: these are treated as
expressions to be evaluated at run time, factoring in the size of the current dataset. Finally,
the list parameter X has three inflections: singleton=0 means that a list with a single series
member is not acceptable; exclude="y" means that if a given series is selected for the role of
y (the first parameter) it should not be shown as a candidate member of X; and no_const=1
says that the automatic const series should not be a candidate either.

Chapter 4. Package specification details 41

The ui-maker is called internally when the relevant dialog box is to be shown, and on suc-
cessful execution the directives in the returned bundle are followed.

example: ui-maker = rf_ui_maker

no-print (optional): A list of public interfaces that are not designed to print anything. Consider,
for example, a package whose job is to produce a special graph based on model data. By
default, when a packaged function is invoked via the GUI a window is opened showing the
command along with any printed output, but for graph-only output such a window is super-
fluous and potentially confusing. You can suppress the text output window by adding such a
function to the no-print list.

4.3 Bundle-related elements

The elements described below are applicable only if at least one public function in the package
returns a bundle. In the GUI package editor these appear under the Special functions tab in the
Extra properties window.

bundle-print (optional): Identifies a given function that can be used to print the content of a
bundle produced by the package.

example: bundle-print = oddsratios_print

bundle-plot (optional): Identifies a given function that can be used to produce some sort of plot
or graph using the content of a bundle produced by the package.
example: bundle-plot = Brown_print

bundle-fcast (optional): Identifies a function that generates a forecast based on a bundle’s con-
tent.
example: bundle-fcast = regls_fcast

Functions selected for the special bundle-related roles may be public (if it makes sense to allow
users to call them directly) or private (if they’re designed to be called only via GUI hooks). In either
case they must conform to certain rules, as follows.

¢ In all cases the first argument must be a bundle-pointer.

¢ In the case of bundTle-fcast this is followed by two mandatory integer arguments giving the
start and end of the sample range for the forecast. In other cases the second argument, if
present, must be an int that controls the function’s behavior in some way, and it must have
a specified default value.

e Any further arguments must have default values (meaning that they can be omitted).
Taking the gig package as an example, we have:
function void gig_bundle_print(bundle *model)
and

function void GUI_gig_plot(bundle *model, int ptype[0:1:0] \
"Plot type" {"Time series", "Density"})

That is, gig’s bundTe-print function has no options, but its bundle-plot function has a control
parameter ptype. Note how this parameter is set up: it has a minimum value of 0 and a maximum
of 1 (these options could be extended), and O is the default. Further, the parameter is given a name
for display in the GUI, “Plot type”, and it also has strings — “Time series” and “Density” —associated
with its two possible numerical values. The latter strings will be used to populate a menu on the
window displaying a gig bundle.

Chapter 4. Package specification details 42

4.4 Extra elements

At present there are five spec file entries in this category; in the GUI package editor they appear in
the Extra properties window under the tabs Data files, Dependencies, and Menu attachment.

data-fiTles: Specifies an extra file or subdirectory that should be included in the package. Use of
this option is valid only if the package takes the form of a zipfile. If just one extra file is to be
included you may give its name as the parameter to data-files (as in the example below);
if several extra files are to be packaged, put them into a subdirectory and give its name as
parameter. See chapter 5 for examples, and in particular section 5.4 for the special meaning
of including a subdirectory named examples.

example: data-files = special.gdt

depends: Specifies one or more packages upon which the given package depends. This informa-
tion should be added if the package calls functions that reside in other packages. Use of this
option ensures that when your package is loaded, any dependencies are also loaded. For ex-
ample, there’s a package named extra which provides various utility functions that are not
available as gretl built-ins. If your package uses functions from extra you should include the
following line in its spec file.

example: depends = extra

provider: This should be used if your package requires access to the private functions of another
package, a particularly close form of dependency. Only one package can be specified in this
way. In the GUI this feature is represented by a check box against the first entry under the
Dependencies tab. In the spec file, specifying a package as provider automatically includes it
as a dependency.

example: provider = extra

wants-data-access: In some cases your package may need to read data outside of the active
sample range. This could be pre-sample initial values in a dynamic model, or it could be post-
sample values of exogenous regressors used for out-of-sample (conditional) forecasting. But
since a user-written hansl function is normally restricted to the incoming sample specified
by the caller of the function, this would not be possible. In such situations, your package
should specify this switch, and if upon execution the gretl user agrees, your relevant packaged
function may use the smp1 command to reset the active sample inside the function even
beyond the incoming limits. (The original sample will be restored when exiting the function,
as always.) In the GUI package editor this item appears under Menu attachment.

example: wants-data-access = true

R-depends: This should be used if your package depends on R for its functionality. You should
give an R version with which the package is known to work, along with the names and known-
good version numbers of any R packages it requires. The example below might be suitable for
a package that requires R and its glmnet package. Multiple elements should be separated by
spaces

example: R-depends = R 3.5.3 glmnet 2.0-18

R-setup: This is specific to packages that call upon R. The required parameter is the name of a
private hansl function, whose role is to define an R function. The hansl function should take
no arguments and should not return anything (that is, be of type void). It should just be a
thin wrapper over a gretl foreign block, as illustrated in Listing 4.1.

This mechanism depends on access to the R shared library, which will usually be available
when R is installed. The idea is that the R function in question is “registered” with the R
library when your package is loaded, and can thereafter be called —with the prefix “R:” —as if
were a native gretl function, avoiding the need for further use of a foreign block. In relation
to Listing 4.1, once foo is registered with R, hansl code in your package can call R: foo (with

Chapter 4. Package specification details 43

suitable arguments, of course) and retrieve whetever it returns, without need for further use
of gretl’s foreign apparatus.

To gain a fuller understanding of this facility, please refer to Chapter 44 of the the Gretl
User’s Guide, in particular section 44.7, “Further use of the R library”. Here we’ll just note that
when a package includes an R-setup function it is tested for applicability when the package
is first loaded. If the R library cannot be found or the R code that defines a function is not
successfully executed, the problem should be quickly apparent.

example: R-setup = foo_setup

Listing 4.1: Example of an R-setup function

function void foo_setup (void)
foreign language=R --quiet
foo <- function(<args>) {
R code goes here

}
end foreign
end function

4.5 A note on gretl versioning

Since 2015 gretl version identifiers have taken the form “year of release plus sequential letter” —as
in 2018a, 2018b and so on—and this form should be used when specifying the minimum gretl
version required by a package via its spec file. Note that you can consult the gretl ChangelLog
(http://gretl.sourceforge.net/ChangelLog.html) to determine when commands or functions
of interest were introduced. A reasonable policy would be to specify a minimum gretl version dating
from, say, two or three years prior to the writing of your package, unless the package depends on
more recently added functionality.

http://gretl.sourceforge.net/ChangeLog.html

Chapter 5

Zip package details

5.1 Basic specification

At minimum, a zip package must contain a top-level directory with the same name as the package
itself, and this directory must contain the gfn file. Suppose the name of the package is mypkg; in
that case the minimal zipfile looks like this (as shown by the unzip program with its -1 option to
list the contents of an archive):

Archive: mypkg.zip
Length Date Time Name

0 2015-06-07 10:54 mypkg/
10708 2015-06-07 10:54 mypkg/mypkg.gfn

10708 2 files

There would be little point in creating a package with just the content shown above; the advantage
of the zipfile format lies in the possibility of including extra materials that cannot be stuffed into a
gfn file. Such materials fall into four main categories:

¢ PDF documentation. This should take the form of a pdf file with the same basename as the
package, included in the top-level package directory. Thus, to continue the example above,
the directory mypkg might contain mypkg.pdf as well as mypkg.gfn.

e Data to support a sample script. This answers the case where a package author wishes to
use specific data, not present in the gretl distribution, with his or her sample script. For ex-
ample, the almonreg package contains the datafile almon.gdt to permit replication of Shirley
Almon’s original modeling.

e Data for internal use. For example, gretl matrix files containing tables of critical value for
some hypothesis test implemented by the package.

e Extra examples: scripts and/or data files that go beyond the required sample script to give
users a full sense of the scope and usage of a complex package.

5.2 Example: almonreg

Here’s a fairly simple real case, the almonreg package:

Archive: almonreg.zip
Length Date Time Name
0 02-12-2015 13:27 almonreg/
55861 02-12-2015 13:27 almonreg/almonreg.pdf
4409 02-12-2015 13:27 almonreg/almonreg.gfn
1969 02-12-2015 13:27 almonreg/almon.gdt

62239 4 files

44

Chapter 5. Zip package details 45

The relevant portion of the almonreg spec file, calling for inclusion of the PDF and gdt files, reads
thus:

help = almonreg.pdf
data-files = almon.gdt

Note that when the almonreg sample script opens the data file almon.gdt it must employ the
--frompkg option to tell gretl where to find the file:

open almon.gdt --frompkg=almonreg

5.3 Example: GHegy

Another illustration: Ignacio Diaz-Emparanza’s GHegy package (abbreviated):

Archive: GHegy.zip
Length Date Time Name
0 2015-03-12 13:51 GHegy/
18610 2015-03-12 13:51 GHegy/GHegy.gfn
0 2015-03-12 13:51 GHegy/coeffs/
52960 2015-03-12 13:51 GHegy/coeffs/CFt_c_fijo.mat.gz
53276 2015-03-12 13:51 GHegy/coeffs/CFt_cD_fijo.mat.gz
42990 2015-03-12 13:51 GHegy/coeffs/Ct2_c_BIC.mat.gz
3798063 83 files

In this instance we don’t have PDF documentation, but we do have a large number of gzipped
gretl matrix files, holding response-surface coefficients by means of which the package is able to
compute P-values for the HEGY seasonal unit-root test. The relevant spec file clause is

data-files = coeffs

Note that putting coeffs (the name of a directory) into the data-files list ensures that all the con-
tents of this directory will be included in the zip package. At run time GHegy can access its matrix
files using the accessor variable $pkgdi r, which will expand to the appropriate platform-dependent
path, as in

string matname = sprintf("%s/coeffs/CFt_c_fijo.mat.gz", $pkgdir)
matrix C = mread(matname)

5.4 Example: HIP

Our final illustration is the HIP package (which now has official “addon” status), written by Jack
Lucchetti and Claudia Pigini. Looking in the zipfile we see:

Archive: HIP.zip
Length Date Time Name
0 03-19-2015 19:58 HIP/
0 03-19-2015 19:58 HIP/examples/
75210 03-19-2015 19:58 HIP/examples/camtriv_chapl4.gdtb
657 03-19-2015 19:58 HIP/examples/camtriv_chapl4.inp
1941 03-19-2015 19:58 HIP/examples/MonteCarlo.inp
383278 03-19-2015 19:58 HIP/HIP.pdf

Chapter 5. Zip package details 46

27691 03-19-2015 19:58 HIP/HIP.gfn

488777 7 files

We have PDF documentation plus an examples directory. The latter is special: if a zip package
contains a directory named examples (exactly that, in English and all lower case), then in the GUI
function package browser the “Resources...” button (open folder icon) and menu item become
active. Selecting this item opens a file dialog pointing at the examples directory, from which you
can open any scripts or datafiles that are provided. These are intended to supplement the required
sample script.

Bibliography

Cottrell, A. (2011) ‘Extending gretl: addons and bundles’. Presented at second gretl conference,
Torun. URL http://gretl.sourceforge.net/papers/addons.pdf.

Cottrell, A. and R. Lucchetti (2016) A Hansl Primer, gretl documentation. URL http://
sourceforge.net/projects/gretl/files/manual/.

(2017) Gretl User’s Guide, gretl documentation. URL http://sourceforge.net/
projects/gretl/files/manual/.

Diaz-Emparanza, I. (2014) ‘Numerical distribution functions for seasonal unit root tests’, Compu-
tational Statistics and Data Analysis 76: 237-247.

Lucchetti, R. and C. Pigini (2015) ‘DPB: Dynamic panel binary data models in gretl’. gretl working
papers 1, Universita Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
URL http://ideas.repec.org/p/anc/wgretl/1l.html.

47

http://gretl.sourceforge.net/papers/addons.pdf
http://sourceforge.net/projects/gretl/files/manual/
http://sourceforge.net/projects/gretl/files/manual/
http://sourceforge.net/projects/gretl/files/manual/
http://sourceforge.net/projects/gretl/files/manual/
http://ideas.repec.org/p/anc/wgretl/1.html

	Gretl Function Package Guide
	License
	Table of contents
	1 Introduction
	1.1 The purpose of function packages
	1.2 The form of function packages
	1.3 Using this document

	2 For package users
	2.1 The two package browsers
	2.2 Acquiring a package
	2.3 Using function packages: the basics
	2.4 Some finer points

	3 For package authors
	3.1 Building a package via the command line
	3.2 Building a package via the GUI
	3.3 Common requirements
	3.4 Gretl package idioms
	3.5 Publishing a package
	3.6 Maintaining a package
	Appendix A: The CLI on Windows
	Appendix B: Makefile basics

	4 Package specification details
	4.1 Basic elements
	4.2 GUI-related elements
	4.3 Bundle-related elements
	4.4 Extra elements
	4.5 A note on gretl versioning

	5 Zip package details
	5.1 Basic specification
	5.2 Example: almonreg
	5.3 Example: GHegy
	5.4 Example: HIP

	Bibliography

