
64tass v1.59 r3120 reference manual

This is the manual for 64tass, the multi pass optimizing macro assembler for the 65xx series of pro-
cessors. Key features:

• Open source portable C with minimal dependencies
• Familiar syntax to Omicron TASS and TASM
• Supports 6502, 65C02, R65C02, W65C02, 65CE02, 65816, DTV, 65EL02, 4510
• Arbitrary-precision integers and bit strings, double precision floating point numbers
• Character and byte strings, array arithmetic
• Handles UTF-8, UTF-16 and 8 bit RAW encoded source files, Unicode character strings
• Supports Unicode identifiers with compatibility normalization and optional case insensitivity
• Built-in “linker” with section support
• Various memory models, binary targets and text output formats (also Hex/S-record)
• Assembly and label listings available for debugging or exporting
• Conditional compilation, macros, structures, unions, scopes

Contrary how the length of this document suggests 64tass can be used with just basic 6502 assem-
bly knowledge in simple ways like any other assembler. If some advanced functionality is needed
then this document can serve as a reference.

This is a development version. Features or syntax may change as a result of corrections
in non-backwards compatible ways in some rare cases. It's difficult to get everything
“right” first time.

Project page: https://sourceforge.net/projects/tass64/

The page hosts the latest and older versions with sources and a bug and a feature request
tracker.

1 Table of Contents

1 Table of Contents

2 Usage tips

3 Expressions and data types
3.1 Integer constants
3.2 Bit string constants
3.3 Floating point constants
3.4 Character string constants
3.5 Byte string constants
3.6 Lists and tuples
3.7 Dictionaries
3.8 Code
3.9 Addressing modes
3.10 Uninitialized memory
3.11 Booleans
3.12 Types
3.13 Symbols

3.13.1 Regular symbols
3.13.2 Local symbols
3.13.3 Anonymous symbols
3.13.4 Constant and re-definable symbols
3.13.5 The star label

3.14 Built-in functions
3.14.1 Mathematical functions
3.14.2 Byte string functions
3.14.3 Other functions

3.15 Expressions
3.15.1 Operators
3.15.2 Comparison operators
3.15.3 Bit string extraction operators
3.15.4 Conditional operators
3.15.5 Address length forcing

64tass v1.59 r3120 reference manual

1 of 79

3.15.6 Compound assignment
3.15.7 Slicing and indexing

4 Compiler directives
4.1 Controlling the compile offset and program counter
4.2 Aligning data or code
4.3 Dumping data

4.3.1 Storing numeric values
4.3.2 Storing string values

4.4 Text encoding
4.5 Structured data

4.5.1 Structure
4.5.2 Union
4.5.3 Combined use of structures and unions

4.6 Macros
4.6.1 Parameter references
4.6.2 Text references

4.7 Custom functions
4.8 Conditional assembly

4.8.1 If, else if, else
4.8.2 Switch, case, default
4.8.3 Comment

4.9 Repetitions
4.10 Including files
4.11 Scopes
4.12 Sections
4.13 65816 related
4.14 Controlling errors
4.15 Target
4.16 Misc
4.17 Printer control

5 Pseudo instructions
5.1 Aliases
5.2 Always taken branches
5.3 Long branches

6 Original turbo assembler compatibility
6.1 How to convert source code for use with 64tass
6.2 Differences to the original turbo ass macro on the C64
6.3 Labels
6.4 Expression evaluation
6.5 Macros
6.6 Bugs

7 Command line options
7.1 Output options
7.2 Operation options
7.3 Diagnostic options
7.4 Target selection on command line
7.5 Symbol listing
7.6 Assembly listing
7.7 Other options
7.8 Command line from file

8 Messages
8.1 Warnings
8.2 Errors
8.3 Fatal errors

9 Credits

10 Default translation and escape sequences
10.1 Raw 8-bit source

10.1.1 The none encoding for raw 8-bit
10.1.2 The screen encoding for raw 8-bit

10.2 Unicode and ASCII source
10.2.1 The none encoding for Unicode

64tass v1.59 r3120 reference manual

2 of 79

10.2.2 The screen encoding for Unicode

11 Opcodes
11.1 Standard 6502 opcodes
11.2 6502 illegal opcodes
11.3 65DTV02 opcodes
11.4 Standard 65C02 opcodes
11.5 R65C02 opcodes
11.6 W65C02 opcodes
11.7 W65816 opcodes
11.8 65EL02 opcodes
11.9 65CE02 opcodes
11.10 CSG 4510 opcodes

12 Appendix
12.1 Assembler directives
12.2 Built-in functions
12.3 Built-in types

2 Usage tips

64tass is a command line assembler, the source can be written in any text editor. As a minimum the
source filename must be given on the command line. The “-a” command line option is highly recom-
mended if the source is Unicode or ASCII.

64tass -a src.asm

There are also some useful parameters which are described later.

For comfortable compiling I use such “Makefile”s (for make):

demo.prg: source.asm macros.asm pic.drp music.bin

64tass -C -a -B -i source.asm -o demo.tmp

pucrunch -ffast -x 2048 demo.tmp >demo.prg

This way “demo.prg” is recreated by compiling “source.asm” whenever “source.asm”,
“macros.asm”, “pic.drp” or “music.bin” had changed.

Of course it's not much harder to create something similar for win32 (make.bat), however this
will always compile and compress:

64tass.exe -C -a -B -i source.asm -o demo.tmp

pucrunch.exe -ffast -x 2048 demo.tmp >demo.prg

Here's a slightly more advanced Makefile example with default action as testing in VICE, clean tar-
get for removal of temporary files and compressing using an intermediate temporary file:

all: demo.prg

x64 -autostartprgmode 1 -autostart-warp +truedrive +cart $<

demo.prg: demo.tmp

pucrunch -ffast -x 2048 $< >$@

demo.tmp: source.asm macros.asm pic.drp music.bin

64tass -C -a -B -i $< -o $@

.INTERMEDIATE: demo.tmp

.PHONY: all clean

clean:

 $(RM) demo.prg demo.tmp

It's useful to add a basic header to your source files like the one below, so that the resulting file is
directly runnable without additional compression:

* = $0801

64tass v1.59 r3120 reference manual

3 of 79

.word (+), 2005 ;pointer, line number

.null $9e, format("%4d", start);will be sys 4096

+ .word 0 ;basic line end

* = $1000

start rts

A frequently coming up question is, how to automatically allocate memory, without hacks like *=*+1?
Sure there's .byte and friends for variables with initial values but what about zero page, or RAM
outside of program area? The solution is to not use an initial value by using “?” or not giving a fill
byte value to .fill.

* = $02

p1 .addr ? ;a zero page pointer

temp .fill 10 ;a 10 byte temporary area

Space allocated this way is not saved in the output as there's no data to save at those addresses.

What about some code running on zero page for speed? It needs to be relocated, and the length
must be known to copy it there. Here's an example:

ldx #size(zpcode)-1;calculate length

- lda zpcode,x

sta wrbyte,x

dex ;install to zero page

bpl -

jsr wrbyte

rts

;code continues here but is compiled to run from $02

zpcode .logical $02

wrbyte sta $ffff ;quick byte writer at $02

inc wrbyte+1

bne +

inc wrbyte+2

+ rts

.endlogical

The assembler supports lists and tuples, which does not seems interesting at first as it sound like
something which is only useful when heavy scripting is involved. But as normal arithmetic opera-
tions also apply on all their elements at once, this could spare quite some typing and repetition.

Let's take a simple example of a low/high byte jump table of return addresses, this usually in-
volves some unnecessary copy/pasting to create a pair of tables with constructs like >(label-1).

jumpcmd lda hibytes,x ; selected routine in X register

pha

lda lobytes,x ; push address to stack

pha

rts ; jump, rts will increase pc by one!

; Build a list of jump addresses minus 1

_ := (cmd_p, cmd_c, cmd_m, cmd_s, cmd_r, cmd_l, cmd_e)-1

lobytes .byte <_ ; low bytes of jump addresses

hibytes .byte >_ ; high bytes

There are some other tips below in the descriptions.

3 Expressions and data types

3.1 Integer constants

Integer constants can be entered as decimal digits of arbitrary length. An underscore can be used
between digits as a separator for better readability of long numbers. The following operations are
accepted:

64tass v1.59 r3120 reference manual

4 of 79

Table 1: Integer operators and functions

x + y add x to y 2 + 2 is 4

x - y subtract y from x 4 - 1 is 3

x * y multiply x with y 2 * 3 is 6

x / y integer divide x by y 7 / 2 is 3

x % y integer modulo of x divided by y 5 % 2 is 1

x ** y x raised to power of y 2 ** 4 is 16

-x negated value -2 is -2

+x unchanged +2 is 2

~x -x - 1 ~3 is -4

x | y bitwise or 2 | 6 is 6

x ^ y bitwise xor 2 ^ 6 is 4

x & y bitwise and 2 & 6 is 2

x << y logical shift left 1 << 3 is 8

x >> y arithmetic shift right -8 >> 3 is -1

Integers are automatically promoted to floats as necessary in expressions. Other types can be con-
verted to integer using the integer type int.

Integer division is a floor division (rounding down) so 7 / 4 is 1 and not 1.75. If ceiling division is
required (rounding up) that can be done by negating both the divident and the result. Typically it's
done like 0 - -5 / 4 which results in 2.

.byte 23 ; as unsigned

.char -23 ; as signed

; using negative integers as immediate values

ldx #-3 ; works as '#-' is signed immediate

num = -3

ldx #+num ; needs explicit '#+' for signed 8 bits

lda #((bitmap >> 10) & $0f) | ((screen >> 6) & $f0)

sta $d018

3.2 Bit string constants

Bit string constants can be entered in hexadecimal form with a leading dollar sign or in binary with
a leading percent sign. An underscore can be used between digits as a separator for better readabil-
ity of long numbers. The following operations are accepted:

Table 2: Bit string operators and functions

~x invert bits ~%101 is ~%101

y .. x concatenate bits $a .. $b is $ab

y x n repeat %101 x 3 is %101101101

x[n] extract bit(s) $a[1] is %1

x[s] slice bits $1234[4:8] is $3

x | y bitwise or ~$2 | $6 is ~$0

x ^ y bitwise xor ~$2 ^ $6 is ~$4

x & y bitwise and ~$2 & $6 is $4

x << y bitwise shift left $0f << 4 is $0f0

x >> y bitwise shift right ~$f4 >> 4 is ~$f

Length of bit string constants are defined in bits and is calculated from the number of bit digits
used including leading zeros.

Bit strings are automatically promoted to integer or floating point as necessary in expressions.
The higher bits are extended with zeros or ones as needed.

Bit strings support indexing and slicing. This is explained in detail in section “Slicing and index-
ing”.

Other types can be converted to bit string using the bit string type bits.

.byte $33 ; 8 bits in hexadecimal

64tass v1.59 r3120 reference manual

5 of 79

.byte %00011111 ; 8 bits in binary

.text $1234 ; $34, $12 (little endian)

lda $01

and #~$07 ; 8 bits even after inversion

ora #$05

sta $01

lda $d015

and #~%00100000 ;clear a bit

sta $d015

3.3 Floating point constants

Floating point constants have a radix point in them and optionally an exponent. A decimal exponent
is “e” while a binary one is “p”. An underscore can be used between digits as a separator for better
readability. The following operations can be used:

Table 3: Floating point operators and functions

x + y add x to y 2.2 + 2.2 is 4.4

x - y subtract y from x 4.1 - 1.1 is 3.0

x * y multiply x with y 1.5 * 3 is 4.5

x / y integer divide x by y 7.0 / 2.0 is 3.5

x % y integer modulo of x divided by y 5.0 % 2.0 is 1.0

x ** y x raised to power of y 2.0 ** -1 is 0.5

-x negated value -2.0 is -2.0

+x unchanged +2.0 is 2.0

~x almost -x ~2.1 is almost -2.1

x | y bitwise or 2.5 | 6.5 is 6.5

x ^ y bitwise xor 2.5 ^ 6.5 is 4.0

x & y bitwise and 2.5 & 6.5 is 2.5

x << y logical shift left 1.0 << 3.0 is 8.0

x >> y arithmetic shift right -8.0 >> 4 is -0.5

As usual comparing floating point numbers for (non) equality is a bad idea due to rounding errors.

The only predefined constant is pi.

Floating point numbers are automatically truncated to integer as necessary. Other types can be
converted to floating point by using the type float.

Fixed point conversion can be done by using the shift operators. For example an 8.16 fixed point
number can be calculated as (3.14 << 16) & $ffffff. The binary operators operate like if the floating
point number would be a fixed point one. This is the reason for the strange definition of inversion.

.byte 3.66e1 ; 36.6, truncated to 36

.byte $1.8p4 ; 4:4 fixed point number (1.5)

.sint 12.2p8 ; 8:8 fixed point number (12.2)

3.4 Character string constants

Character strings are enclosed in single or double quotes and can hold any Unicode character.

Operations like indexing or slicing are always done on the original representation. The current
encoding is only applied when it's used in expressions as numeric constants or in context of text
data directives.

Doubling the quotes inside string literals escapes them and results in a single quote.

Table 4: Character string operators and functions

y .. x concatenate strings "a" .. "b" is "ab"

y in x is substring of "b" in "abc" is true

a x n repeat "ab" x 3 is "ababab"

a[i] character from start "abc"[1] is "b"

64tass v1.59 r3120 reference manual

6 of 79

a[-i] character from end "abc"[-1] is "c"

a[:] no change "abc"[:] is "abc"

a[s:] cut off start "abc"[1:] is "bc"

a[:-s] cut off end "abc"[:-1] is "ab"

a[s] reverse "abc"[::-1] is "cba"

Character strings are converted to integers, byte and bit strings as necessary using the current en-
coding and escape rules. For example when using a sane encoding "z"-"a" is 25.

Other types can be converted to character strings by using the type str or by using the repr and
format functions.

Character strings support indexing and slicing. This is explained in detail in section “Slicing and
indexing”.

mystr = "oeU" ; character string constant

.text 'it''s' ; it's

.word "ab"+1 ; conversion result is "bb" usually

.text "text"[:2] ; "te"

.text "text"[2:] ; "xt"

.text "text"[:-1] ; "tex"

.text "reverse"[::-1]; "esrever"

3.5 Byte string constants

Byte strings are like character strings, but hold bytes instead of characters.

Quoted character strings prefixing by “b”, “l”, “n”, “p”, “s”, “x” or “z” characters can be used to
create byte strings. The resulting byte string contains what .text, .shiftl, .null, .ptext and .shift
would create. Direct hexadecimal entry can be done using the “x” prefix and “z” denotes a z85 en-
coded byte string. Spaces can be used between pairs of hexadecimal digits as a separator for better
readability.

Table 5: Byte string operators and functions

y .. x concatenate strings x"12" .. x"34" is x"1234"

y in x is substring of x"34" in x"1234" is true

a x n repeat x"ab" x 3 is x"ababab"

a[i] byte from start x"abcd12"[1] is x"cd"

a[-i] byte from end x"abcd"[-1] is x"cd"

a[:] no change x"abcd"[:] is x"abcd"

a[s:] cut off start x"abcdef"[1:] is x"cdef"

a[:-s] cut off end x"abcdef"[:-1] is x"abcd"

a[s] reverse x"abcdef"[::-1] is x"efcdab"

Byte strings support indexing and slicing. This is explained in detail in section “Slicing and index-
ing”.

Other types can be converted to byte strings by using the type bytes.

.enc "screen" ;use screen encoding

mystr = b"oeU" ;convert text to bytes, like .text

.enc "none" ;normal encoding

.text mystr ;text as originally encoded

.text s"p1" ;convert to bytes like .shift

.text l"p2" ;convert to bytes like .shiftl

.text n"p3" ;convert to bytes like .null

.text p"p4" ;convert to bytes like .ptext

Binary data may be embedded in source code by using hexadecimal byte strings. This is more com-
pact than using .byte followed by a lot of numbers. As expected 1 byte becomes 2 characters.

.text x"fce2" ;2 bytes: $fc and $e2 (big endian)

64tass v1.59 r3120 reference manual

7 of 79

If readability is not a concern then the more compact z85 encoding may be used which encodes 4
bytes into 5 characters. Data lengths not a multiple of 4 are handled by omitting leading zeros in
the last group.

.text z"FiUj*2M$hf";8 bytes: 80 40 20 10 08 04 02 01

For data lengths of multiple of 4 bytes any z85 encoder will do. Otherwise the simplest way to
encode a binary file into a z85 string is to create a source file which reads it using the line “label =
binary('filename')”. Now if the labels are listed to a file then there will be a z85 encoded definition
for this label.

3.6 Lists and tuples

Lists and tuples can hold a collection of values. Lists are defined from values separated by comma
between square brackets [1, 2, 3], an empty list is []. Tuples are similar but are enclosed in paren-
theses instead. An empty tuple is (), a single element tuple is (4,) to differentiate from normal nu-
meric expression parentheses. When nested they function similar to an array. Both types are im-
mutable.

Table 6: List and tuple operators and functions

y .. x concatenate lists [1] .. [2] is [1, 2]

y in x is member of list 2 in [1, 2, 3] is true

a x n repeat [1, 2] x 2 is [1, 2, 1, 2]

a[i] element from start ("1", 2)[1] is 2

a[-i] element from end ("1", 2, 3)[-1] is 3

a[:] no change (1, 2, 3)[:] is (1, 2, 3)

a[s:] cut off start (1, 2, 3)[1:] is (2, 3)

a[:-s] cut off end (1, 2.0, 3)[:-1] is (1, 2.0)

a[s] reverse (1, 2, 3)[::-1] is (3, 2, 1)

*a convert to arguments format("%d: %s", *mylist)

... op a left fold ... + (1, 2, 3) is ((1+2)+3)

a op ... right fold (1, 2, 3) - ... is (1-(2-3))

Arithmetic operations are applied on the all elements recursively, therefore [1, 2] + 1 is [2, 3], and
abs([1, -1]) is [1, 1].

Arithmetic operations between lists are applied one by one on their elements, so [1, 2] + [3, 4]
is [4, 6].

When lists form an array and columns/rows are missing the smaller array is stretched to fill in
the gaps if possible, so [[1], [2]] * [3, 4] is [[3, 4], [6, 8]].

Lists and tuples support indexing and slicing. This is explained in detail in section “Slicing and
indexing”.

mylist = [1, 2, "whatever"]

mytuple = (cmd_e, cmd_g)

mylist = ("e", cmd_e, "g", cmd_g, "i", cmd_i)

keys .text mylist[::2] ; keys ("e", "g", "i")

call_l .byte <mylist[1::2]-1; routines (<cmd_e-1, <cmd_g-1, <cmd_i-1)

call_h .byte >mylist[1::2]-1; routines (>cmd_e-1, >cmd_g-1, >cmd_i-1)

Although lists elements of variables can't be changed using indexing (at the moment) the same ef-
fect can be achieved by combining slicing and concatenation:

lst := lst[:2] .. [4] .. lst[3:]; same as lst[2] := 4 would be

Folding is done on pair of elements either forward (left) or reverse (right). The list must contain at
least one element. Here are some folding examples:

minimum = size([part1, part2, part3]) <? ...

maximum = size([part1, part2, part3]) >? ...

sum = size([part1, part2, part3]) + ...

64tass v1.59 r3120 reference manual

8 of 79

xorall = list_of_numbers ^ ...

join = list_of_strings

allbits = sprites.(left, middle, right).bits | ...

all = [true, true, true, true] && ...

any = [false, false, false, true] || ...

The range(start, end, step) built-in function can be used to create lists of integers in a range with a
given step value. At least the end must be given, the start defaults to 0 and the step to 1. Sounds
not very useful, so here are a few examples:

;Bitmask table, 8 bits from left to right

.byte %10000000 >> range(8)

;Classic 256 byte single period sinus table with values of 0–255.

.byte 128 + 127.5 * sin(range(256) * pi / 128)

;Screen row address tables

_ := $400 + range(0, 1000, 40)

scrlo .byte <_

scrhi .byte >_

3.7 Dictionaries

Dictionaries hold key and value pairs. Definition is done by collecting key:value pairs separated by
comma between braces {"key":"value", :"default value"}.

Looking up a non-existing key is normally an error unless a default value is given. An empty dic-
tionary is {}. This type is immutable. There are limitations what may be used as a key but the value
can be anything.

Table 7: Dictionary operators and functions

y .. x combine dictionaries {1:2, 3:4} .. {2:3, 3:1} is {1:2, 2:3, 3:1}

x[i] value lookup {"1":2}["1"] is 2

x.i symbol lookup {.ONE:1, .TWO:2}.ONE is 1

y in x is a key 1 in {1:2} is true

; Simple lookup

.text {1:"one", 2:"two"}[2]; "two"

; 16 element "fader" table 1->15->12->11->0

.byte {1:15, 15:12, 12:11, :0}[range(16)]

; Symbol accessible values. May be useful as a function return value too.

coords = {.x: 24, .y: 50}

ldx #coords.x

ldy #coords.y

3.8 Code

Code holds the result of compilation in binary and other enclosed objects. In an arithmetic opera-
tion it's used as the numeric address of the memory where it starts. The compiled content remains
static even if later parts of the source overwrite the same memory area.

Indexing and slicing of code to access the compiled content might be implemented dif-
ferently in future releases. Use this feature at your own risk for now, you might need to
update your code later.

Table 8: Label operators and functions

a.b b member of a label.locallabel

.b in a if a has symbol b .locallabel in label

a[i] element from start label[1]

a[-i] element from end label[-1]

a[:] copy as tuple label[:]

a[s:] cut off start, as tuple label[1:]

a[:-s] cut off end, as tuple label[:-1]

a[s] reverse, as tuple label[::-1]

64tass v1.59 r3120 reference manual

9 of 79

mydata .word 1, 4, 3

mycode .block

local lda #0

.endblock

ldx #size(mydata) ;6 bytes (3*2)

ldx #len(mydata) ;3 elements

ldx #mycode[0] ;lda instruction, $a9

ldx #mydata[1] ;2nd element, 4

jmp mycode.local ;address of local label

3.9 Addressing modes

Addressing modes are used for determining addressing modes of instructions.

For indexing there must be no white space between the comma and the register letter, otherwise
the indexing operator is not recognized. On the other hand put a space between the comma and a
single letter symbol in a list to avoid it being recognized as an operator.

Table 9: Addressing mode operators

immediate

#+ signed immediate

#- signed immediate

() indirect

[] long indirect

,b data bank indexed

,d direct page indexed

,k program bank indexed

,r data stack pointer indexed

,s stack pointer indexed

,x x register indexed

,y y register indexed

,z z register indexed

Parentheses are used for indirection and square brackets for long indirection. These operations are
only available after instructions and functions to not interfere with their normal use in expressions.

Several addressing mode operators can be combined together. Currently the complexity is
limited to 4 operators. This is enough to describe all addressing modes of the supported
CPUs.

Table 10: Valid addressing mode operator combinations

immediate lda #$12

#+ signed immediate lda #+127

#- signed immediate lda #-128

#addr,#addr move mvp #5,#6

addr direct or relative lda $12 lda $1234 bne $1234

bit,addr direct page bit rmb 5,$12

bit,addr,addr direct page bit relative jump bbs 5,$12,$1234

(addr) indirect lda ($12) jmp ($1234)

(addr),y indirect y indexed lda ($12),y

(addr),z indirect z indexed lda ($12),z

(addr,x) x indexed indirect lda ($12,x) jmp ($1234,x)

[addr] long indirect lda [$12] jmp [$1234]

[addr],y long indirect y indexed lda [$12],y

#addr,b data bank indexed lda #0,b

#addr,b,x data bank x indexed lda #0,b,x

#addr,b,y data bank y indexed lda #0,b,y

#addr,d direct page indexed lda #0,d

#addr,d,x direct page x indexed lda #0,d,x

#addr,d,y direct page y indexed ldx #0,d,y

(#addr,d) direct page indirect lda (#$12,d)

64tass v1.59 r3120 reference manual

10 of 79

(#addr,d,x) direct page x indexed indirect lda (#$12,d,x)

(#addr,d),y direct page indirect y indexed lda (#$12,d),y

(#addr,d),z direct page indirect z indexed lda (#$12,d),z

[#addr,d] direct page long indirect lda [#$12,d]

[#addr,d],y direct page long indirect y indexed lda [#$12,d],y

#addr,k program bank indexed jsr #0,k

(#addr,k,x) program bank x indexed indirect jmp (#$1234,k,x)

#addr,r data stack indexed lda #1,r

(#addr,r),y data stack indexed indirect y indexed lda (#$12,r),y

#addr,s stack indexed lda #1,s

(#addr,s),y stack indexed indirect y indexed lda (#$12,s),y

addr,x x indexed lda $12,x

addr,y y indexed lda $12,y

Direct page, data bank, program bank indexed and long addressing modes of instructions are intelli-
gently chosen based on the instruction type, the address ranges set up by .dpage, .databank and the
current program counter address. Therefore the “,d”, “,b” and “,k” indexing is only used in very
special cases.

The immediate direct page indexed “#0,d” addressing mode is usable for direct page access. The
8 bit constant is a direct offset from the start of actual direct page. Alternatively it may be written
as “0,d”.

The immediate data bank indexed “#0,b” addressing mode is usable for data bank access. The
16 bit constant is a direct offset from the start of actual data bank. Alternatively it may be written
as “0,b”.

The immediate program bank indexed “#0,k” addressing mode is usable for program bank jumps,
branches and calls. The 16 bit constant is a direct offset from the start of actual program bank.
Alternatively it may be written as “0,k”.

The immediate stack indexed “#0,s” and data stack indexed “#0,r” accept 8 bit constants as an
offset from the start of (data) stack. These are sometimes written without the immediate notation,
but this makes it more clear what's going on. For the same reason the move instructions are written
with an immediate addressing mode “#0,#0” as well.

The immediate (#) addressing mode expects unsigned values of byte or word size. Therefore it
only accepts constants of 1 byte or in range 0–255 or 2 bytes or in range 0–65535.

The signed immediate (#+ and #-) addressing mode is to allow signed numbers to be used as im-
mediate constants. It accepts a single byte or an integer in range −128–127, or two bytes or an inte-
ger of −32768–32767.

The use of signed immediate (like #-3) is seamless, but it needs to be explicitly written out for
variables or expressions (#+variable). In case the unsigned variant is needed but the expression
starts with a negation then it needs to be put into parentheses (#(-variable)) or else it'll change the
address mode to signed.

Normally addressing mode operators are used in expressions right after instructions. They can
also be used for defining stack variable symbols when using a 65816, or to force a specific address-
ing mode.

param = #1,s ;define a stack variable

const = #1 ;immediate constant

lda #0,b ;always "absolute" lda $0000

lda param ;results in lda #$01,s

lda param+1 ;results in lda #$02,s

lda (param),y ;results in lda (#$01,s),y

ldx const ;results in ldx #$01

lda #-2 ;negative constant, $fe

3.10 Uninitialized memory

There's a special value for uninitialized memory, it's represented by a question mark. Whenever it's
used to generate data it creates a “hole” where the previous content of memory is visible.

Uninitialized memory holes without previous content are not saved unless it's really necessary

64tass v1.59 r3120 reference manual

11 of 79

for the output format, in that case it's replaced with zeros.

It's not just data generation statements (e.g. .byte) that can create uninitialized memory, but
.fill, .align or address manipulation as well.

* = $200 ;bytes as necessary

.word ? ;2 bytes

.fill 10 ;10 bytes

.align 64 ;bytes as necessary

3.11 Booleans

There are two predefined boolean constant variables, true and false.

Booleans are created by comparison operators (<, <=, !=, ==, >=, >), logical operators (&&, ||, ^^, !),
the membership operator (in) and the all and any functions.

Normally in numeric expressions true is 1 and false is 0, unless the “-Wstrict-bool” command line
option was used.

Other types can be converted to boolean by using the type bool.

Table 11: Boolean values of various types

bits At least one non-zero bit

bool When true

bytes At least one non-zero byte

code Address is non-zero

float Not 0.0

int Not zero

str At least one non-zero byte after translation

3.12 Types

The various types mentioned earlier have predefined names. These can used for conversions or type
checks.

Table 12: Built-in type names

address Address type

bits Bit string type

bool Boolean type

bytes Byte string type

code Code type

dict Dictionary type

float Floating point type

gap Uninitialized memory type

int Integer type

list List type

str Character string type

tuple Tuple type

type Type type

Bit and byte string conversions can take a second parameter to specify and exact size. Values which
can fit in shorter space will be padded but longer ones give an error.

bits(<expression>[, <bit count>])

Convert to the specific number of bits. If the number of bits is negative then it's a signed.

bytes(<expression>[, <byte count>])

Convert to the specific number of bytes. If the number of bits is negative then it's a signed.

.cerror type(var) != str, "Not a string!"

.text str(year) ; convert to string

3.13 Symbols

64tass v1.59 r3120 reference manual

12 of 79

Symbols are used to reference objects. Regularly named, anonymous and local symbols are sup-
ported. These can be constant or re-definable.

Scopes are where symbols are stored and looked up. The global scope is always defined and it
can contain any number of nested scopes.

Symbols must be uniquely named in a scope, therefore in big programs it's hard to come up with
useful and easy to type names. That's why local and anonymous symbols exists. And grouping cer-
tain related symbols into a scope makes sense sometimes too.

Scopes are usually created by .proc and .block directives, but there are a few other ways.
Symbols in a scope can be accessed by using the dot operator, which is applied between the name
of the scope and the symbol (e.g. myconsts.math.pi).

3.13.1 Regular symbols

Regular symbol names are starting with a letter and containing letters, numbers and underscores.
Unicode letters are allowed if the “-a” command line option was used. There's no restriction on the
length of symbol names.

Care must be taken to not use duplicate names in the same scope when the symbol is used as a
constant as there can be only one definition for them.

Duplicate names in parent scopes are not a problem and this gives the ability to override names
defined in lower scopes. However this can just as well lead to mistakes if a lower scoped symbol
with the same name was meant so there's a “-Wshadow” command line option to warn if such ambigu-
ity exists.

Case sensitivity can be enabled with the “-C” command line option, otherwise all symbols are
matched case insensitive.

For case insensitive matching it's possible to check for consistent symbol name use with the
“-Wcase-symbol” command line option.

A regular symbol is looked up first in the current scope, then in lower scopes until the global
scope is reached.

f .block

g .block

n nop ;jump here

.endblock

.endblock

jsr f.g.n ;reference from a scope

f.x = 3 ;create x in scope f with value 3

3.13.2 Local symbols

Local symbols have their own scope between two regularly named code symbols and are assigned to
the code symbol above them.

Therefore they're easy to reuse without explicit scope declaration directives.

Not all regularly named symbols can be scope boundaries just plain code symbol ones without
anything or an opcode after them (no macros!). Symbols defined as procedures, blocks, macros,
functions, structures and unions are ignored. Also symbols defined by .var, := or = don't apply, and
there are a few more exceptions, so stick to using plain code labels.

The name must start with an underscore (_), otherwise the same character restrictions apply as
for regular symbols. There's no restriction on the length of the name.

Care must be taken to not use the duplicate names in the same scope when the symbol is used as
a constant.

A local symbol is only looked up in it's own scope and nowhere else.

incr inc ac

bne _skip

inc ac+1

_skip rts

64tass v1.59 r3120 reference manual

13 of 79

decr lda ac

bne _skip

dec ac+1

_skip dec ac ;symbol reused here

jmp incr._skip ;this works too, but is not advised

3.13.3 Anonymous symbols

Anonymous symbols don't have a unique name and are always called as a single plus or minus sign.
They are also called as forward (+) and backward (-) references.

When referencing them “-” means the first backward, “--” means the second backwards and so
on. It's the same for forward, but with “+”. In expressions it may be necessary to put them into
brackets.

ldy #4

- ldx #0

- txa

cmp #3

bcc +

adc #44

+ sta $400,x

inx

bne -

dey

bne --

Excessive nesting or long distance references create poorly readable code. It's also very easy to
copy-paste a few lines of code with these references into a code fragment already containing similar
references. The result is usually a long debugging session to find out what went wrong.

These references are also useful in segments, but this can create a nice trap when segments are
copied into the code with their internal references.

bne +

#somemakro ;let's hope that this segment does

+ nop ;not contain forward references...

Anonymous symbols are looked up first in the current scope, then in lower scopes until the global
scope is reached.

Anonymous labels within conditionally assembled code are counted even if the code itself is not
compiled and the label won't get defined. This ensures that anonymous labels are always at the
same "distance" independent of the conditions in between.

3.13.4 Constant and re-definable symbols

Constant symbols can be created with the equal sign. These are not re-definable. Forward referenc-
ing of them is allowed as they retain the objects over compilation passes.

Symbols in front of code or certain assembler directives are created as constant symbols too.
They are bound to the object following them.

Re-definable symbols can be created by the .var directive or := construct. These are also called
as variables. They don't carry their content over from the previous pass therefore it's not possible to
use them before their definition.

If the variable already exists in the current scope it'll get updated. If an existing variable needs
to be updated in a parent scope then the ::= variable reassign operator is able to do that.

Variables can be conditionally defined using the :?= construct. If the variable was defined already
then the original value is retained otherwise a new one is created with this value.

WIDTH = 40 ;a constant

lda #WIDTH ;lda #$28

variabl .var 1 ;a variable

64tass v1.59 r3120 reference manual

14 of 79

var2 := 1 ;another variable

variabl .var variabl + 1;update it verbosely

var2 += 1 ;compound assignment (add one)

var3 :?= 5 ;assign 5 if undefined

3.13.5 The star label

The “*” symbol denotes the current program counter value. When accessed it's value is the program
counter at the beginning of the line. Assigning to it changes the program counter and the compiling
offset.

3.14 Built-in functions

Built-in functions are pre-assigned to the symbols listed below. If you reuse these symbols in a scope
for other purposes then they become inaccessible, or can perform a different function.

Built-in functions can be assigned to symbols (e.g. sinus = sin), and the new name can be used as
the original function. They can even be passed as parameters to functions.

3.14.1 Mathematical functions

floor(<expression>)

Round down. E.g. floor(-4.8) is -5.0

round(<expression>)

Round to nearest away from zero. E.g. round(4.8) is 5.0

ceil(<expression>)

Round up. E.g. ceil(1.1) is 2.0

trunc(<expression>)

Round down towards zero. E.g. trunc(-1.9) is -1

frac(<expression>)

Fractional part. E.g. frac(1.1) is 0.1

sqrt(<expression>)

Square root. E.g. sqrt(16.0) is 4.0

cbrt(<expression>)

Cube root. E.g. cbrt(27.0) is 3.0

log10(<expression>)

Common logarithm. E.g. log10(100.0) is 2.0

log(<expression>)

Natural logarithm. E.g. log(1) is 0.0

exp(<expression>)

Exponential. E.g. exp(0) is 1.0

pow(<expression a>, <expression b>)

A raised to power of B. E.g. pow(2.0, 3.0) is 8.0

sin(<expression>)

Sine. E.g. sin(0.0) is 0.0

asin(<expression>)

Arc sine. E.g. asin(0.0) is 0.0

sinh(<expression>)

Hyperbolic sine. E.g. sinh(0.0) is 0.0

cos(<expression>)

Cosine. E.g. cos(0.0) is 1.0

acos(<expression>)

Arc cosine. E.g. acos(1.0) is 0.0

cosh(<expression>)

Hyperbolic cosine. E.g. cosh(0.0) is 1.0

tan(<expression>)

64tass v1.59 r3120 reference manual

15 of 79

Tangent. E.g. tan(0.0) is 0.0

atan(<expression>)

Arc tangent. E.g. atan(0.0) is 0.0

tanh(<expression>)

Hyperbolic tangent. E.g. tanh(0.0) is 0.0

rad(<expression>)

Degrees to radian. E.g. rad(0.0) is 0.0

deg(<expression>)

Radian to degrees. E.g. deg(0.0) is 0.0

hypot(<expression y>, <expression x>)

Polar distance. E.g. hypot(4.0, 3.0) is 5.0

atan2(<expression y>, <expression x>)

Polar angle in −pi to +pi range. E.g. atan2(0.0, 3.0) is 0.0

abs(<expression>)

Absolute value. E.g. abs(-1) is 1

sign(<expression>)

Returns the sign of value as −1, 0 or 1 for negative, zero and positive. E.g. sign(-5) is -1

3.14.2 Byte string functions

These functions return byte strings of various lengths for signed numbers, unsigned numbers and
addresses.

The naming of functions is not a coincidence and they return the bytes what the data directives
with the same names normally emit.

byte(<expression>)

char(<expression>)

Return a single byte string from a 8 bit unsigned (0–255) or signed number (−128–127). E.g.
byte(0) is x"00" and char(-1) is x"ff"

word(<expression>)

sint(<expression>)

Return a little endian byte string of 2 bytes from a 16 bit unsigned (0–65535) or signed num-
ber (−32768–32767). E.g. word(1024) is x"0004" and sint(-1) is x"ffff"

long(<expression>)

lint(<expression>)

Return a little endian byte string of 3 bytes from a 24 bit unsigned (0–16777216) or signed
number (−8388608–8388607). E.g. long(123456) is x"40E201" and lint(-1) is x"ffffff"

dword(<expression>)

dint(<expression>)

Return a little endian byte string of 4 bytes from a 32 bit unsigned (0–4294967296) or signed
number (−2147483648–2147483647). E.g. dword(123456789) is x"15CD5B07" and dint(-1) is
x"ffffffff"

addr(<expression>)

Return a little endian byte string of 2 bytes from an address in the current program bank.
E.g. addr(start) is x"0d08"

rta(<expression>)

Return a little endian byte string of 2 bytes from a return address in the current program
bank. E.g. rta(4096) is x"ff0f"

3.14.3 Other functions

all(<expression>)

Return truth for various definitions of “all”.

Table 13: All function

all bits set or no bits at all all($f) is true

all characters non-zero or empty string all("c") is true

64tass v1.59 r3120 reference manual

16 of 79

all bytes non-zero or no bytes all(x"ac24") is true

all elements true or empty list all([true, true, false]) is false

Only booleans in a list are accepted with the “-Wstrict-bool” command line option.

any(<expression>)

Return truth for various definitions of “any”.

Table 14: Any function

at least one bit set any(~$f) is false

at least one non-zero character any("c") is true

at least one non-zero byte any(x"ac24") is true

at least one true element any([true, true, false]) is true

Only booleans in a list are accepted with the “-Wstrict-bool” command line option.

binary(<string expression>[, <offset>[, <length>]])

Returns the binary file content as bytes.

This function reads the content of a binary file as a byte string. It also accepts optional offset
and length parameters.

Table 15: Binary function invocation types

Read everything binary(name)

Skip starting bytes binary(name, offset)

Some bytes from offset binary(name, offset, length)

sid = binary("music.sid"); read in the SID file as bytes

offs := sid[[$7, $6]] ; data offset (big endian)

load := sid[[$9, $8]] ; load address (big endian)

init = sid[[$b, $a]] ; init address (big endian)

play = sid[[$d, $c]] ; play address (big endian)

; if load address is zero then it's the first 2 bytes of data

.if load == 0

load := sid[offs:offs+2] ; load address (little endian)

offs += 2 ; skip load address bytes

.endif

* = load ; set pc to load address

.text sid[offs:] ; dump music data

format(<string expression>[, <expression>, …])

Create string from values according to a format string.

The format function converts a list of values into a character string. The converted values are
inserted in place of the % sign. Optional conversion flags and minimum field length may follow,
before the conversion type character. These flags can be used:

Table 16: Formatting flags

alternate form (-$a, ~$a, -%10, ~%10, -10.)

* width/precision from list

. precision

0 pad with zeros

- left adjusted (default right)

blank when positive or minus sign

+ sign even if positive

~ binary and hexadecimal as bits

The following conversion types are implemented:

Table 17: Formatting conversion types

b binary

64tass v1.59 r3120 reference manual

17 of 79

c Unicode character

d decimal

e E exponential float (uppercase)

f F floating point (uppercase)

g G exponential/floating point

s string

r representation

x X hexadecimal (uppercase)

% percent sign

.text format("%#04x bytes left", 1000); $03e8 bytes left

len(<expression>)

Returns the number of elements.

Table 18: Length of various types

bit string length in bits len($034) is 12

character string number of characters len("abc") is 3

byte string number of bytes len(x"abcd23") is 3

tuple, list number of elements len([1, 2, 3]) is 3

dictionary number of elements len({1:2, 3:4]) is 2

code number of elements len(label)

random([<expression>, …])

Returns a pseudo random number.

The sequence does not change across compilations and is the same every time. Different se-
quences can be generated by seeding with .seed.

Table 19: Random function invocation types

floating point number 0.0 <= x < 1.0 random()

integer in range of 0 <= x < e random(e)

integer in range of s <= x < e random(s, a)

integer in range of s <= x < e, step t random(s, a, t)

.seed 1234 ; default is boring, seed the generator

.byte random(256); a pseudo random byte (0–255)

.byte random([16] x 8); 8 pseudo random bytes (0–15)

range(<expression>[, <expression>, …])

Returns a list of integers in a range, with optional stepping.

Table 20: Range function invocation types

integers from 0 to e-1 range(e)

integers from s to e-1 range(s, a)

integers from s to e (not including e), step t range(s, a, t)

.byte range(16) ; 0, 1, ..., 14, 15

.char range(-5, 6); -5, -4, ..., 4, 5

mylist = range(10, 0, -2); [10, 8, 6, 4, 2]

repr(<expression>)

Returns a string representation of value.

.warn repr(var) ; pretty print value, for debugging

size(<expression>)

Returns the size of code, structure or union in bytes.

var .word 0, 0, 0

ldx #size(var) ; 6 bytes

var2 = var + 2 ; start 2 bytes later

ldx #size(var2) ; what remains is 4 bytes

64tass v1.59 r3120 reference manual

18 of 79

sort(<list expression>)

Returns a sorted list or tuple.

If the original list contains further lists then these must be all of the same length. In this case
the order of lists is determined by comparing their elements from the start until a difference
is found. The sort is stable.

; sort IRQ routines by their raster lines

sorted = sort([(60, irq1), (50, irq2)])

lines .byte sorted[:, 0] ; 50, 60

irqs .addr sorted[:, 1] ; irq2, irq1

3.15 Expressions

3.15.1 Operators

The following operators are available. Not all are defined for all types of arguments and their mean-
ing might slightly vary depending on the type.

Table 21: Unary operators

- negative + positive

! not ~ invert

* convert to arguments ^ decimal string

The “^” decimal string operator will be changed to mean the bank byte soon. Please up-

date your sources to use format("%d", xxx) instead! This is done to be in line with it's use in most
other assemblers.

Table 22: Binary operators

+ add - subtract

* multiply / divide

% modulo ** raise to power

| binary or ^ binary xor

& binary and << shift left

>> shift right . member

.. concat x repeat

in contains !in excludes

Spacing must be used for the “x” and “in” operators or else they won't be recognized as such. For
example the expression “[1,2]x2” should be written as “[1,2]x 2” instead.

Parenthesis (()) can be used to override operator precedence. Don't forget that they also denote
indirect addressing mode for certain opcodes.

lda #(4+2)*3

3.15.2 Comparison operators

Traditional comparison operators give false or true depending on the result.

The compare operator (<=>) gives −1 for less, 0 for equal and 1 for more.

Table 23: Comparison operators

<=> compare

== equals != not equal

< less than >= more than or equals

> more than <= less than or equals

=== identical !== not identical

3.15.3 Bit string extraction operators

These unary operators extract 8 or 16 bits. Usually they are used to get parts of a memory address.

64tass v1.59 r3120 reference manual

19 of 79

Table 24: Bit string extraction operators

< lower byte > higher byte

<> lower word >` higher word

>< lower byte swapped word ` bank byte

lda #<label ; low byte of address

ldy #>label ; high byte of address

jsr $ab1e

ldx #<>source ; word extraction

ldy #<>dest

lda #size(source)-1

mvn #`source, #`dest; bank extraction

Please note that these prefix operators are not strongly binding like negation or inversion. Instead
they apply to the whole expression to the right. This may be unexpected but is required for compati-
bility with old sources which expect this behaviour.

lda #<label+10 ;This is <(label+10) and not (<label)+10

;The check below is wrong and should be written as (>start) != (>end)

.cerror >start != >end;Effectively this is >(start != (>end))

3.15.4 Conditional operators

Boolean conditional operators give false or true or one of the operands as the result.

Table 25: Logical and conditional operators

x || y if x is true then x otherwise y

x ^^ y if both false or true then false otherwise x || y

x && y if x is true then y otherwise x

!x if x is true then false otherwise true

c ? x : y if c is true then x otherwise y

c ?? x : y if c is true then x otherwise y (broadcasting)

x <? y if x is smaller then x otherwise y

x >? y if x is greater then x otherwise y

;Silly example for 1=>"simple", 2=>"advanced", else "normal"

.text MODE == 1 && "simple" || MODE == 2 && "advanced" || "normal"

.text MODE == 1 ? "simple" : MODE == 2 ? "advanced" : "normal"

;Limit result to 0 .. 8

light .byte 0 >? range(-16, 101)/6 <? 8

Please note that these are not short circuiting operations and both sides are calculated even if
thrown away later.

With the “-Wstrict-bool” command line option booleans are required as arguments and only the
“?” operator may return something else.

3.15.5 Address length forcing

Special addressing length forcing operators in front of an expression can be used to make sure the
expected addressing mode is used. Only applicable when used directly at the mnemonic.

Table 26: Address size forcing

@b to force 8 bit address

@w to force 16 bit address

@l to force 24 bit address (65816)

lda @w $0000 ; force the use of 2 byte absolute addressing

bne @b label ; prevent upgrade to beq+jmp with long branches in use

lda @w #$00 ; use 2 bytes independent of accumulator size

64tass v1.59 r3120 reference manual

20 of 79

3.15.6 Compound assignment

These assignment operators are short hands for updating variables. Constants can't be changed of
course.

The variables on the left must be defined beforehand by “:=” or “.var”.

Compound assignment operators can modify variables defined in parent scopes as well.

Table 27: Compound assignments

+= add -= subtract

*= multiply /= divide

%= modulo **= raise to power

|= binary or ^= binary xor

&= binary and ||= logical or

&&= logical and <<= shift left

>>= shift right ..= concat

<?= smaller >?= greater

x= repeat .= member

v += 1 ; same as 'v ::= v + 1'

3.15.7 Slicing and indexing

Lists, character strings, byte strings and bit strings support various slicing and indexing possibili-
ties through the [] operator.

Indexing elements with positive integers is zero based. Negative indexes are transformed to posi-
tive by adding the number of elements to them, therefore −1 is the last element. Indexing with list
of integers is possible as well so [1, 2, 3][(-1, 0, 1)] is [3, 1, 2].

Slicing is an operation when parts of sequence is extracted from a start position to an end posi-
tion with a step value. These parameters are separated with colons enclosed in square brackets and
are all optional. Their default values are [start:maximum:step=1]. Negative start and end characters
are converted to positive internally by adding the length of string to them. Negative step operates in
reverse direction, non-single steps will jump over elements.

This is quite powerful and therefore a few examples will be given here:

Positive indexing a[x]
It'll simply extracts a numbered element. It is zero based, therefore "abcd"[1] results in "b".

Negative indexing a[-x]
This extracts an element counted from the end, −1 is the last one. So "abcd"[-2] results in "c".

Cut off end a[:to]
Extracts a continuous range stopping before “to”. So [10,20,30,40][:-1] results in [10,20,30].

Cut off start a[from:]
Extracts a continuous range starting from “from”. So [10,20,30,40][-2:] results in [30,40].

Slicing a[from:to]
Extracts a continuous range starting from element “from” and stopping before “to”. The two
end positions can be positive or negative indexes. So [10,20,30,40][1:-1] results in [20,30].

Everything a[:]
Giving no start or end will cover everything and therefore results in a complete copy.

Reverse a[::-1]
This gives everything in reverse, so "abcd"[::-1] is "dcba".

Stepping through a[from:to:step]
Extracts every “step”th element starting from “from” and stopping before “to”. So "abcdef"
[1:4:2] results in "bd". The “from” and “to” can be omitted in case it starts from the beginning
or end at the end. If the “step” is negative then it's done in reverse.

Extract multiple elements a[list]
Extract elements based on a list. So "abcd"[[1,3]] will be "bd".

64tass v1.59 r3120 reference manual

21 of 79

The fun start with nested lists and tuples, as these can be used to create a matrix. The examples will
be given for a two dimensional matrix for easier understanding, but this also works in higher dimen-
sions.

Extract row a[x]
Given a [(1,2),(3,4)] matrix [0] will give the first row which is (1,2)

Extract row range a[from:to]
Given a [(1,2),(3,4),(5,6),(7,8)] matrix [1:3] will give [(3,4),(5,6)]

Extract column a[x]
Given a [(1,2),(3,4)] matrix [:,0] will give the first column of all rows which is [1,3]

Extract column range a[:,from:to]
Given a [(1,2,3,4),(5,6,7,8)] matrix [:,1:3] will give [(2,3),(6,7)]

And it works for list of indexes, negative indexes, stepped ranges, reversing, etc. on all axes in too
many ways to show all possibilities.

Basically it's just the indexing and slicing applied on nested constructs, where each nesting level
is separated by a comma.

4 Compiler directives

4.1 Controlling the compile offset and program counter

Two counters are used while assembling.

The compile offset is where the data and code ends up in memory (or in image file).

The program counter is what labels get set to and what the special star label refers to.

Normally both are the same (code is compiled to the location it runs from) but it does not need to
be.

*= <expression>

The compile offset is adjusted so that the program counter will match the requested address
in the expression.

;Offset ;PC ;Hex ;Monitor ;Source

 * = $0800

.0800 label1

.logical $1000

.0800 1000 label2

 * = $1200

.0a00 1200 label3

.endlogical

.0a00 label4

.offs <expression>

Sets the compile offset relative to the program counter.

Popular in old TASM code where this was the only way to create relocated code, otherwise it's
use is not recommended as there are easier to use alternatives below.

;Offset ;PC ;Hex ;Monitor ;Source

 * = $1000

.1000 ea nop nop

.offs 100

.1065 1001 ea nop nop

.logical <expression>

Starts a relocation block

.here

.endlogical

Ends a relocation block

64tass v1.59 r3120 reference manual

22 of 79

Changes the program counter only, the compile offset is not changed. When finished all con-
tinues where it was left off before.

The naming is not logical at all for relocated code, but that's how it was named in old
6502tass.

It's used for code copied to it's proper location at runtime. Can be nested of course.

;Offset ;PC ;Hex ;Monitor ;Source

 * = $1000

.logical $300

.1000 0300 a9 80 lda #$80 drive lda #$80

.1002 0302 85 00 sta $00 sta $00

.1004 0304 4c 00 03 jmp $0300 jmp drive

.endlogical

.virtual [<expression>]

Starts a virtual block

.endv

.endvirtual

Ends a virtual block

Changes the program counter to the expression (if given) and discards the result of compila-
tion. This is useful to define structures to fixed addresses.

.virtual $d400 ; base address

sid .block

freq .word ? ; frequency

pulsew .word ? ; pulse width

control .byte ? ; control

ad .byte ? ; attack/decay

sr .byte ? ; sustain/release

.endblock

.endvirtual

Or to define stack "allocated" variables on 65816.

.virtual #1,s

p1 .addr ? ; at #1,s

tmp .byte ? ; at #3,s

.endvirtual

lda (p1),y ; lda ($01,s),y

4.2 Aligning data or code

Alignment is about constraining data/code placement in memory.

The processor architecture doesn't have hard constraints on instruction or data placement still
pages (256 bytes) come up quite often in instruction cycle times tables. Or even in errata like the in-
direct JMP bug which happens only if the word of the vector is crossing such page.

Other components like video chips can only display object if placed at an address divisible by 64
for example.

For code half of an address table might be spared if it's known that all the addresses have the
same high bytes. Or if all interrupt routines are on the same page then it's enough to change the
low byte of the vector when selecting another one.

Now it shouldn't come as a surprise that the following directives are mainly concerned about
how dividing the program counter address gives a certain remainder.

The divisor in this context is called the alignment interval and is usually a number which is a
power of two. Quite often 256, so that's the default.

The remainder is called offset and is by default 0. Negative offsets are a convenience feature and
are internally corrected by adding the interval to it.

An interval sized memory area is called a page. It's boundary is at it's start. If data spans more

64tass v1.59 r3120 reference manual

23 of 79

than one page it's known as a page boundary cross.

Having a non-zero offset effectively shifts the boundary of a page in memory further up or down
(if negative). An interval of 256 with offset of 8 gives page boundaries of $1008, $1108 or $1208 for ex-
ample.

If the alignment is not good enough some alignment directives might try to correct it by adding
padding. This is by default uninitialized (skip forward) but may be a fixed byte or anything more
complex similarly to what the .fill directive accepts.

When alignment is done within named structures then it's relative to the start of the structure.
This means the structure layout will always be the same independent of which address it's instanti-
ated at. Anonymous structures do not change the way the alignment works.

The “-Walign” command line option can be used to emit warnings on where and how much pad-
ding was necessary for alignment.

.page [<interval>[, <offset>]]

Start of page check block

.endp

.endpage

End of page check block

This directive is a passive assertion and checks for a page difference or page crossing.

By default or with a negative interval parameter it verifies that the start and end directives
are on the same page. This is what's needed to guard relative branches against jumping
across pages:

ldx #3

.page ;now this will execute

- dex ;in 14 cycles for sure

bne -

.endpage

With a positive size parameter it verifies that there's no page cross in the memory range be-
tween the directives. This is what's needed to guard against indexed access page cross cycle
penalties:

* = $10c0

.page 256

table .fill $40 ;table within the same page

.endpage ;different page here but no crossing

Normally a page check results in an error but the “-Wno-error=page” command line option can
reduce it into a warning.

Once this directive reports an error it's time to rearrange the source in a way that the
check passes. Or alternatively the alignment directives below can be used to avoid violating
the assertion.

.align [<interval>[, <fill>[, <offset>]]]

Align the program counter to a page boundary

This directive is useful when code/data needs to be placed exactly to a page boundary. If that's
not already the case sufficient padding is added until the next one is reached.

.align $40 ;sprite bitmap (64 byte aligned)

sprite .fill 63

.align $400 ;screen memory (1024 byte aligned)

screen .fill 1000

.align $400, ?, -8;sprite pointers (last 8 bytes)

spritep .fill 8

.align ; page sized buffer at page boundary

sendbuf .fill 256 ;to avoid indexing penalty cycles

.alignblk [<interval>[, <fill>[, <offset>]]]

64tass v1.59 r3120 reference manual

24 of 79

Starts alignment block.

.endalignblk

Ends alignment block.

Often the start address is not important only avoiding the page boundary matters.

This often can be achieved without any padding at all. If padding is necessary then this di-
rective works the same as .align including alignment within structures.

It's typically used to place tables so that absolute indexed read accesses won't suffer page
crossing cycle penalties.

.alignblk ;avoid page cross

table .byte 0, 1, 2, 3, 4, 5, 6, 7

.endalignblk

lda table,x ;no cycles wasted on access

In case the stronger guarantee of having both the start and the end directives in the same
page is required then the alignment interval needs to be given as a negative number (e.g.
−256). This may be necessary for aligning code with relative branches.

If the block size varies based on its memory location then doing the alignment may become
impossible.

.alignpageind <target>[, <interval>[, <fill>[, <offset>]]]

Alignment of a page block indirectly.

Using .alignblk in the middle of executable code is usually problematic as the alignment is
done there as well. This directive can do the alignment padding outside of the execution flow.

rts

.alignpageind pageblk;add alignment padding here

wait ldx #3

pageblk .page ;now this will execute

- dex ;in 14 cycles for sure

bne -

.endpage

By default and with a negative interval it tries to avoids page differences. With positive inter-
vals page crosses. Same as the .page assertion block.

It is assumed that the padding inserted will move the target block as if it'd be right in front
of it. If this isn't the case the alignment will fail.

If the block size varies based on its memory location then doing the alignment may become
impossible.

.alignind <target>[, <interval>[, <fill>[, <offset>]]]

Align the target location to a page boundary indirectly

This directive tries to align the target to a page boundary. If not already on one then sufficient
padding will be added until the next one is reached.

;Align "pos" to page boundary. It must come right after "neg".

.alignind pos

neg .fill 8

pos .fill 8

.cerror (<pos) != 0, "pos should be page aligned"

.cerror pos - neg != size(neg), "there should be no gap"

It is assumed that the padding inserted will move the target as if it'd be right in front of it. If
this isn't the case the alignment will fail.

.fill <length>

Usually the .fill directive is used to reserve space but it may be useful to do alignments as
well.

64tass v1.59 r3120 reference manual

25 of 79

;replacement for a .cerror overrun check and *= combo

.fill start_address - *

;align the vectors "block" so it ends at end_address

.fill end_address - size(vectors) - *

vectors .logical * ;dummy non-scoped block for size()

...

;screen memory is needed but if at $9xxx then take $a000 instead

.align $400 ;next 1024 byte alignment

.fill (* >> 12) == $9 ? ($a000 - *) : 0

screen .fill 1000

4.3 Dumping data

4.3.1 Storing numeric values

Multi byte numeric data is stored in the little-endian order, which is the natural byte order for 65xx
processors. Numeric ranges are enforced depending on the directives used. Signed numbers are
stored as two's complement.

When using lists or tuples their content will be used one by one. Uninitialized data (“?”) creates
holes of different sizes. Character string constants are converted using the current encoding.

Please note that multi character strings usually don't fit into 8 bits and therefore the .byte direc-
tive is not appropriate for them. Use .text instead which accepts strings of any length.

.byte <expression>[, <expression>, …]

Create bytes from 8 bit unsigned constants (0–255)

.char <expression>[, <expression>, …]

Create bytes from 8 bit signed constants (−128–127)

>1000 ff 03 .byte 255, $03

>1002 41 .byte "a"

>1003 .byte ? ; reserve 1 byte

>1004 fd .char -3

;Store 4.4 signed fixed point constants

>1005 c8 34 32 .char (-3.5, 3.25, 3.125) * 1p4

;Compact computed jumps using self modifying code

.1008 bd 0f 10 lda $1010,x lda jumps,x

.100b 8d 0e 10 sta $100f sta smod+1

.100e d0 fe bne $100e smod bne *

;Routines nearby (-128 to 127 bytes)

>1010 23 49 jumps .char (routine1, routine2)-smod-2

.word <expression>[, <expression>, …]

Create bytes from 16 bit unsigned constants (0–65535)

.sint <expression>[, <expression>, …]

Create bytes from 16 bit signed constants (−32768–32767)

>1000 42 23 55 45 .word $2342, $4555

>1004 .word ? ; reserve 2 bytes

>1006 eb fd 51 11 .sint -533, 4433

;Store 8.8 signed fixed point constants

>100a 80 fc 40 03 20 03 .sint (-3.5, 3.25, 3.125) * 1p8

.1010 bd 19 10 lda $1019,x lda texts,x

.1013 bc 1a 10 ldy $101a,x ldy texts+1,x

.1016 4c 1e ab jmp $ab1e jmp $ab1e

>1019 33 10 59 10 texts .word text1, text2

.addr <expression>[, <expression>, …]

Create 16 bit address constants for addresses (in current program bank)

.rta <expression>[, <expression>, …]

Create 16 bit return address constants for addresses (in current program bank)

64tass v1.59 r3120 reference manual

26 of 79

 * = $12000

.012000 7c 03 20 jmp ($012003,x) jmp (jumps,x)

>012003 50 20 32 03 92 15 jumps .addr $12050, routine1, routine2

;Computed jumps by using stack (current bank)

 * = $103000

.103000 bf 0c 30 10 lda $10300c,x lda rets+1,x

.103004 48 pha pha

.103005 bf 0b 30 10 lda $10300b,x lda rets,x

.103009 48 pha pha

.10300a 60 rts rts

>10300b ff ef a1 36 f3 42 rets .rta $10f000, routine1, routine2

.long <expression>[, <expression>, …]

Create bytes from 24 bit unsigned constants (0–16777215)

.lint <expression>[, <expression>, …]

Create bytes from 24 bit signed constants (−8388608–8388607)

>1000 56 34 12 .long $123456

>1003 .long ? ; reserve 3 bytes

>1006 eb fd ff 51 11 00 .lint -533, 4433

;Store 8.16 signed fixed point constants

>100c 5d 8f fc 66 66 03 1e 85 .lint (-3.44, 3.4, 3.52) * 1p16

>1014 03

;Computed long jumps with jump table (65816)

.1015 bd 2a 10 lda $102a,x lda jumps,x

.1018 8d 11 03 sta $0311 sta ind

.101b bd 2b 10 lda $102b,x lda jumps+1,x

.101e 8d 12 03 sta $0312 sta ind+1

.1021 bd 2c 10 lda $102c,x lda jumps+2,x

.1024 8d 13 03 sta $0313 sta ind+2

.1027 dc 11 03 jmp [$0311] jmp [ind]

>102a 32 03 01 92 05 02 jumps .long routine1, routine2

.dword <expression>[, <expression>, …]

Create bytes from 32 bit unsigned constants (0–4294967295)

.dint <expression>[, <expression>, …]

Create bytes from 32 bit signed constants (−2147483648–2147483647)

>1000 78 56 34 12 .dword $12345678

>1004 .dword ? ; reserve 4 bytes

>1008 5d 7a 79 e7 .dint -411469219

;Store 16.16 signed fixed point constants

>100c 5d 8f fc ff 66 66 03 00 .dint (-3.44, 3.4, 3.52) * 1p16

>1014 1e 85 03 00

.text bits(<expression>[, <bit count>])

Create bytes from arbitrary precision unsigned and signed numbers.

.text bytes(<expression>[, <byte count>])

Create bytes from arbitrary precision unsigned and signed numbers.

For cases not covered by the numeric store directives above it's possible to convert numbers
to byte or bit strings and store the resulting string. If the count expression of bytes() and
bits() is negative then the stored number is signed otherwise unsigned.

>1000 74 65 78 74 00 00 00 00 .text bytes("text", 8);pad up to 8 bytes

>1008 f4 ff ff ff ff ff ff ff .text bytes(-12, -8) ;8 bytes signed

>1010 00 04 00 00 00 00 .text bits(1024, 48) ;48 bits unsigned

>1016 f4 ff ff ff ff ff .text bits(-12, -48) ;48 bits signed

4.3.2 Storing string values

The following directives store strings of characters, bytes or bits as bytes. Small numeric constants

64tass v1.59 r3120 reference manual

27 of 79

can be mixed in to represent single byte control characters.

When using lists or tuples their content will be used one by one. Uninitialized data (“?”) creates
byte sized holes. Character string constants are converted using the current encoding.

.text <expression>[, <expression>, …]

Assemble strings into 8 bit bytes.

>1000 4f 45 d5 .text "oeU"

>1003 4f 45 d5 .text 'oeU'

>1006 17 33 .text 23, $33 ; bytes

>1008 0d 0a .text $0a0d ; $0d, $0a, little endian!

>100a 1f .text %00011111; more bytes

.fill <length>[, <fill>]

Reserve space (using uninitialized data), or fill with repeated bytes.

>1000 .fill $100 ;no fill, just reserve $100 bytes

>1100 00 00 00 .fill $4000, 0 ;16384 bytes of 0

...

>5100 55 aa 55 .fill 8000, [$55, $aa];8000 bytes of alternating $55, $aa

...

>7040 ff ff ff .fill $8000 - *, $ff;fill up rest of EPROM with $ff

...

.shift <expression>[, <expression>, …]

Assemble strings of 7 bit bytes and mark the last byte by setting it's most significant bit.

Any byte which already has the most significant bit set will cause an error. The last byte can't
be uninitialized or missing of course.

The naming comes from old TASM and is a reference to setting the high bit of alphabetic
letters which results in it's uppercase version in PETSCII.

.1000 a2 00 ldx #$00 ldx #0

.1002 bd 10 10 lda $1010,x loop lda txt,x

.1005 08 php php

.1006 29 7f and #$7f and #$7f

.1008 20 d2 ff jsr $ffd2 jsr $ffd2

.100b e8 inx inx

.100c 28 plp plp

.100d 10 f3 bpl $1002 bpl loop

.100f 60 rts rts

>1010 53 49 4e 47 4c 45 20 53 txt .shift "single", 32, "string"

>1018 54 52 49 4e c7

.shiftl <expression>[, <expression>, …]

Assemble strings of 7 bit bytes shifted to the left once with the last byte's least significant bit
set.

Any byte which already has the most significant bit set will cause an error as this is cut off on
shifting. The last byte can't be uninitialized or missing of course.

The naming is a reference to left shifting.

.1000 a2 00 ldx #$00 ldx #0

.1002 bd 0d 10 lda $100d,x loop lda txt,x

.1005 4a lsr a lsr a

.1006 9d 00 04 sta $0400,x sta $400,x ;screen memory

.1009 e8 inx inx

.100a 90 f6 bcc $1002 bcc loop

.100c 60 rts rts

.enc "screen"

>100d a6 92 9c 8e 98 8a 40 a6 txt .shiftl "single", 32, "string"

>1015 a8 a4 92 9c 8f .enc "none"

64tass v1.59 r3120 reference manual

28 of 79

.null <expression>[, <expression>, …]

Same as .text, but adds a zero byte to the end. An existing zero byte is an error as it'd cause a
false end marker.

.1000 a9 07 lda #$07 lda #<txt

.1002 a0 10 ldy #$10 ldy #>txt

.1004 20 1e ab jsr $ab1e jsr $ab1e

>1007 53 49 4e 47 4c 45 20 53 txt .null "single", 32, "string"

>100f 54 52 49 4e 47 00

.ptext <expression>[, <expression>, …]

Same as .text, but prepend the number of bytes in front of the string (pascal style string).
Therefore it can't do more than 255 bytes.

.1000 a9 1d lda #$1d lda #<txt

.1002 a2 10 ldx #$10 ldx #>txt

.1004 20 08 10 jsr $1008 jsr print

.1007 60 rts rts

.1008 85 fb sta $fb print sta $fb

.100a 86 fc stx $fc stx $fc

.100c a0 00 ldy #$00 ldy #0

.100e b1 fb lda ($fb),y lda ($fb),y

.1010 f0 0a beq $101c beq null

.1012 aa tax tax

.1013 c8 iny - iny

.1014 b1 fb lda ($fb),y lda ($fb),y

.1016 20 d2 ff jsr $ffd2 jsr $ffd2

.1019 ca dex dex

.101a d0 f7 bne $1013 bne -

.101c 60 rts null rts

>101d 0d 53 49 4e 47 4c 45 20 txt .ptext "single", 32, "string"

>1025 53 54 52 49 4e 47

4.4 Text encoding

64tass supports sources written in UTF-8, UTF-16 (be/le) and RAW 8 bit encoding. To take advan-
tage of this capability custom encodings can be defined to map Unicode characters to 8 bit values
in strings. Even in plain ASCII sources it could be useful to define escape sequences for control
codes.

.enc <expression>

Selects text encoding by a character string name or from an encoding object

Predefined encodings names are “none” and “screen” (screen code), anything else is user de-
fined. All user encodings start without any character or escape definitions, add some as re-
quired. Please note that the encoding names are global.

This directive changes the text encoding after it therefore it's usually placed somewhere at
the beginning of the source to make sure everything is covered.

While it is possible to juggle with multiple encodings throughout the source code using the
.enc directive this is not recommended. For such use case .encode is better suited.

.enc "screen";screen code mode

>1000 13 03 12 05 05 0e 20 03 .text "screen codes"

>1008 0f 04 05 13

.100c c9 15 cmp #$15 cmp #"u" ;compare screen code

.enc "none" ;normal mode again

.100e c9 55 cmp #$55 cmp #"u" ;compare PETSCII

.encode [<expression>]

Encoding area start

.endencode

64tass v1.59 r3120 reference manual

29 of 79

Encoding area end

This directive either creates a new text encoding (if used without a parameter) or makes the
one in the parameter effective within the enclosed area.

The text encoding can be assigned to a symbol in front of the directive so it can be reused
whenever it's needed. This symbol can also act as a conversion function which converts a
character string to a byte string using the encoding.

.encode ;starts anonymous local encoding scope

.enc "titlefont";special character set

.text "game title"

.endencode ;restores original encoding

vt100 .encode ;define custom encoding

.cdef " ~", 32

.edef "{esc}", 27;add escape codes

.edef "{moff}", [27, "[", "m"]

.edef "{bold}", [27, "[", "1", "m"]

.endencode

.encode vt100 ;use custom encoding from here

.text "{bold}bold{moff} text"

lda #"{esc}"

.endencode ;restores original encoding

cmp #vt100("{esc}");conversion when not in scope

.enc vt100 ;select custom encoding (at start of source)

.cdef <start>, <end>, <coded> [, <start>, <end>, <coded>, …]

.cdef "<start><end>", <coded> [, "<start><end>", <coded>, …]

Assigns characters in a range to single bytes.

This is a simple single character to byte translation definition. It's useful to map a range of
Unicode characters to a range of bytes. The start and end positions are Unicode character
codes either by numbers or by typing them. Overlapping ranges are not allowed.

.enc "ascii" ;define an ascii encoding

.cdef " ~", 32 ;identity mapping for printable

.tdef <expression>, <expression> [, <expression>, <expression>, …]

Assign single characters to byte values.

Similar to .cdef it is a single character to byte translation definition. It's easier to use when
the character codes are not consecutive. Overlapping ranges with the former and itself are
not allowed.

It tries to assign Unicode character codes from the first expression to byte values from the
second. More than one pair of such assignments can be given.

If the byte value expression is not iterable then it will get incremented for each character
definition. This allows easy assignment of randomly scattered Unicode values to a consecutive
range of bytes values.

.tdef "A", 65 ;A -> 65

.tdef "ACX", 65 ;A -> 65, C-> 66, X -> 67

.tdef "ACX", [65, 33, 11];A -> 65, C-> 33, X -> 11

.edef "<escapetext>", <value> [, "<escapetext>", <value>, …]

Assigns strings to byte sequences as a translated value.

When these substrings are found in a text they are replaced by bytes defined here. When
strings with common prefixes are used the longest match wins. Useful for defining non-
typeable control code aliases, or as a simple tokeniser.

.edef "\n", 13 ;one byte control codes

.edef "{clr}", 147

64tass v1.59 r3120 reference manual

30 of 79

.edef "{crlf}", [13, 10];two byte control code

.edef "<nothing>", [];replace with no bytes

The example below shows how all this fits together:

petscii .namespace

common .segment;common definitions

.cdef " @", $20;32-64 is identical

.tdef "[£]↑←", $5b, "┼🮌🭳", $db

.edef "{clr}", 147, "{cr}", 13

.endsegment

upper .encode;uppercase PETSCII

#common

.cdef "AZ", $41

.tdef "▌▄▔▁▏▒▕🮏◤🮇├▗└┐▂┌┴┬┤▎▍🮈🮂🮃▃🭿▖▝┘▘▚🭹", $a1

.tdef "♠🭲🭸🭷🭶🭺🭱🭴╮╰╯🭼╲╱🭽🭾●🭻♥🭰╭╳○♣🭵♦", $c1

.tdef "◥π─│", [$df, $ff, $c0, $dd]

.endencode

lower .encode;lowercase PETSCII

#common

.cdef "az", $41, "AZ", $c1;the easy ranges

.tdef "▌▄▔▁▏▒▕🮏🮙🮇├▗└┐▂┌┴┬┤▎▍🮈🮂🮃▃✓▖▝┘▘▚🭹", $a1

.tdef "🮘🮕─│", [$df, $ff, $c0, $dd];random one to ones

.endencode

.endnamespace

.encode petscii.lower

>1000 93 d4 45 58 54 20 49 4e .text "{clr}Text in PETSCII{cr}"

>1008 20 d0 c5 d4 d3 c3 c9 c9 0d

.endencode

4.5 Structured data

Structures and unions can be defined to create complex data types. The offset of fields are available
by using the definition's name. The fields themselves by using the instance name.

The initialization method is very similar to macro parameters, the difference is that unset param-
eters always return uninitialized data (“?”) instead of an error.

4.5.1 Structure

Structures are for organizing sequential data, so the length of a structure is the sum of lengths of
all items.

.struct [<name>][=<default>]][, [<name>][=<default>] …]

Begins a structure block

.ends [<result>][, <result> …]

.endstruct [<result>][, <result> …]

Ends a structure block

Structure definition, with named parameters and default values

.dstruct <name>[, <initialization values>]

.<name> [<initialization values>]

Create instance of structure with initialization values

.struct ;anonymous structure

x .byte 0 ;labels are visible

y .byte 0 ;content compiled here

.endstruct ;useful inside unions

nn_s .struct col, row;named structure

x .byte \col ;labels are not visible

64tass v1.59 r3120 reference manual

31 of 79

y .byte \row ;no content is compiled here

.endstruct ;it's just a definition

nn .dstruct nn_s, 1, 2;structure instance (within label)

lda nn.x ;direct field access

ldy #nn_s.x ;get offset of field

lda nn,y ;and use it indirectly

nnarray .brept 4 ;4 element "array" here

.dstruct nn_s ;fields directly here (without a label)

.endrept

lda nnarray[0].y;access of "array" field

coords2 .bfor x2, y2 in (1,3),(4,2),(7,5)

.dstruct nn_s, x2, y2

.next ;initialized "array" from list

4.5.2 Union

Unions can be used for overlapping data as the compile offset and program counter remains the
same on each line. Therefore the length of a union is the length of it's longest item.

.union [<name>][=<default>]][, [<name>][=<default>] …]

Begins a union block

.endu

.endunion

Ends a union block

Union definition, with named parameters and default values

.dunion <name>[, <initialization values>]

.<name> [<initialization values>]

Create instance of union with initialization values

.union ;anonymous union

x .byte 0 ;labels are visible

y .word 0 ;content compiled here

.endunion

nn_u .union ;named union

x .byte ? ;labels are not visible

y .word \1 ;no content is compiled here

.endunion ;it's just a definition

nn .dunion nn_u, 1 ;union instance here

lda nn.x ;direct field access

ldy #nn_u.x ;get offset of field

lda nn,y ;and use it indirectly

4.5.3 Combined use of structures and unions

The example below shows how to define structure to a binary include.

.union

.binary "pic.drp", 2

.struct

color .fill 1024

screen .fill 1024

bitmap .fill 8000

backg .byte ?

64tass v1.59 r3120 reference manual

32 of 79

.endstruct

.endunion

Anonymous structures and unions in combination with sections are useful for overlapping memory
assignment. The example below shares zero page allocations for two separate parts of a bigger pro-
gram. The common subroutine variables are assigned after in the “zp” section.

* = $02

.union ;spare some memory

.struct

.dsection zp1 ;declare zp1 section

.endstruct

.struct

.dsection zp2 ;declare zp2 section

.endstruct

.endunion

.dsection zp ;declare zp section

4.6 Macros

Macros can be used to reduce typing of frequently used source lines. Each invocation is a copy of
the macro's content with parameter references replaced by the parameter texts.

.segment [<name>][=<default>]][, [<name>][=<default>] …]

Start of segment block

.endsegment [<result>][, <result> …]

End of segment block

Copies the code segment as it is, so symbols can be used from outside, but this also means
multiple use will result in double defines unless anonymous labels are used.

.macro [<name>][=<default>]][, [<name>][=<default>] …]

Start of macro block

.endmacro [<result>][, <result> …]

End of macro block

The code is enclosed in it's own block so symbols inside are non-accessible, unless a label is
prefixed at the place of use, then local labels can be accessed through that label.

#<name> [<param>][[,][<param>] …]

.<name> [<param>][[,][<param>] …]

Invoke the macro after “#” or “.” with the parameters. Normally the name of the macro is
used, but it can be any expression.

.endm [<result>][, <result> …]

Closing directive of .macro and .segment for compatibility.

;A simple macro

copy .macro

ldx #size(\1)

lp lda \1,x

sta \2,x

dex

bpl lp

.endmacro

#copy label, $500

;Use macro as an assembler directive

lohi .macro

lo .byte <(\@)

hi .byte >(\@)

.endmacro

64tass v1.59 r3120 reference manual

33 of 79

var .lohi 1234, 5678

lda var.lo,y

ldx var.hi,y

4.6.1 Parameter references

The first 9 parameters can be referenced by “\1”–“\9”. The entire parameter list including separa-
tors is “\@”.

name .macro

lda #\1 ;first parameter 23+1

.endmacro

#name 23+1 ;call macro

Parameters can be named, and it's possible to set a default value after an equal sign which is used
as a replacement when the parameter is missing.

These named parameters can be referenced by \name or \{name}. Names must match completely, if
unsure use the quoted name reference syntax.

name .macro first, b=2, , last

lda #\first ;first parameter

lda #\b ;second parameter

lda #\3 ;third parameter

lda #\last ;fourth parameter

.endmacro

#name 1, , 3, 4 ;call macro

4.6.2 Text references

In the original turbo assembler normal references are passed by value and can only appear in place
of one. Text references on the other hand can appear everywhere and will work in place of e.g.
quoted text or opcodes and labels. The first 9 parameters can be referenced as text by @1–@9.

name .macro

jsr print

.null "Hello @1!";first parameter

.endm

#name "wth?" ;call macro

4.7 Custom functions

Beyond the built-in functions mentioned earlier it's possible to define custom ones for frequently
used calculations.

.sfunction [<name>[:<expression>][=<default>], …][*<name>,] <expression>

Defines a simple function to return the result of a parametrised expression

.function <name>[:<expression>][=<default>]], <name>[=<default>] …][, *<name>]

Defines a multi line function

.endf [<result>][, <result> …]

.endfunction [<result>][, <result> …]

End of a multi line function

#<name> [<param>][[,][<param>] …]

.<name> [<param>][[,][<param>] …]

<name> [<param>][[,][<param>] …]

Invoke a multi line function like a macro, directive or pseudo instruction

Function parameters are assigned to comma separated variable names on invocation. These vari-

64tass v1.59 r3120 reference manual

34 of 79

ables are visible in the function scope.

Parameter values may be converted using a function whose name can be given after a colon fol-
lowing the variable name.

Default values may be supplied for each parameter after an equal sign. These values are calcu-
lated at function definition time only and are used when a parameter was not specified.

Extra parameters are not accepted, unless the last parameter symbol is preceded with a star, in
this case these parameters are collected into a tuple.

Only those external variables and functions are available which were accessible at the place of
definition, but not those at the place of invocation.

vicmem .sfunction _font, _scr=0, ((_font >> 10) & $0f) | ((_scr >> 6) & $f0)

lda #vicmem($2000, $0400); calculate constant

sta $d018

If a multi line macro is used in an expression only the returned result is used. If multiple values are
returned these will form a tuple.

If a multi line function is used as macro, directive or pseudo instruction and there's a label in
front then the returned value is assigned to it. If nothing is returned then it's used as regular label.

mva .function value, target

lda value

sta target

.endfunction

mva #1, label

4.8 Conditional assembly

To prevent parts of source from compiling conditional constructs can be used. This is useful when
multiple slightly different versions needs to be compiled from the same source.

Anonymous labels are still recognized in the non-compiling parts even if they won't get defined.
This ensures consistent relative referencing across conditionally compiled areas with such labels.

4.8.1 If, else if, else

.if <condition>

Compile if condition is true

.elsif <condition>

Compile if previous conditions were not met and the condition is true

.else

Compile if previous conditions were not met

.ifne <value>

Compile if value is not zero

.ifeq <value>

Compile if value is zero

.ifpl <value>

Compile if value is greater or equal zero

.ifmi <value>

Compile if value is less than zero

The .ifne, .ifeq, .ifpl and .ifmi directives exists for compatibility only, in practice it's better to
use comparison operators instead.

.if wait==2 ;2 cycles

nop

.elsif wait==3 ;3 cycles

bit $ea

64tass v1.59 r3120 reference manual

35 of 79

.elsif wait==4 ;4 cycles

bit $eaea

.else ;else 5 cycles

inc $2

.endif

.fi

.endif

End of conditional compilation.

.elif <condition>

Same as .elsif because it's a popular typo and it's difficult to notice.

4.8.2 Switch, case, default

Similar to the .if, .elsif, .else, .endif construct, but the compared value needs to be written only
once in the switch statement.

.switch <expression>

Evaluate expression and remember it

.case <expression>[, <expression> …]

Compile if the previous conditions were all skipped and one of the values equals

.default

Compile if the previous conditions were all skipped

.switch wait

.case 2 ;2 cycles

nop

.case 3 ;3 cycles

bit $ea

.case 4 ;4 cycles

bit $eaea

.default ;else 5 cycles

inc $2

.endswitch

.endswitch

End of .switch conditional compilation block.

4.8.3 Comment

.comment

Never compile.

.comment

 lda #1 ;this won't be compiled

 sta $d020

.endcomment

.endc

.endcomment

End of .comment block.

4.9 Repetitions

The following directives are used to repeat code or data.

The regular non-scoped variants cover most cases except when normal labels are required as
those will be double defined.

Scoped variants (those starting with the letter b) create a new scope for each iteration. This al-
lows normal labels without collision but it's a bit more resource intensive.

If the scoped variant is prefixed with a label then the list of individual scopes for each iteration
will be assigned to it. This allows accessing labels within.

64tass v1.59 r3120 reference manual

36 of 79

.for [<assignment>], [<condition>], [<assignment>]

.bfor [<assignment>], [<condition>], [<assignment>]

Assign initial value, loop while the condition is true and modify value.

First a variable is set, usually this is used for counting. This is optional, the variable may be
set already before the loop.

Then the condition is checked and the enclosed lines are compiled if it's true. If there's no
condition then it's an infinite loop and .break must be used to terminate it.

After an iteration the second assignment is calculated, usually it's updating the loop
counter variable. This is optional as well.

ldx #0

lda #32

lp .for ue := $400, ue < $800, ue += $100

sta ue,x ;do $400, $500, $600 and $700

.endfor

dex

bne lp

.for <variable>[, <variable>, …] in <expression>

.bfor <variable>[, <variable>, …] in <expression>

Assign variable(s) to values in sequence one-by-one in order.

The expression is usually the range function or some sort of list.

.for col in 0, 11, 12, 15, 1

lda #col ;0, 11, 12, 15 and 1

sta $d020

.endfor

.endfor

End of a .for or .bfor loop block

.rept <expression>

.brept <expression>

Repeat enclosed lines the specified number of times.

.rept 100

- inx

bne -

.endrept

lst .brept 100 ;each iteration into a tuple

label jmp label ;not a duplicate definition

.endrept

jmp lst[5].label ;use label of 6th iteration

.endrept

End of a .rept or .brept block

.while <condition>

.bwhile <condition>

Repeat enclosed lines until the condition holds.

Works as expected however the scoped variant might be tricky to use as variables of the con-
dition are usually part of the parent scope. So modifying them in the loop body should be done
with compound assignments or the reassign operator (::=).

.endwhile

End of a .while or .bwhile loop block

.break

Exit current repetition loop immediately.

.breakif <condition>

Exit current repetition loop immediately if the condition holds.

64tass v1.59 r3120 reference manual

37 of 79

It's a shorthand for a .if, .break, .endif sequence.

.continue

Continue current repetition loop's next iteration.

.continueif <condition>

Continue current repetition loop's next iteration if the condition holds.

It's a shorthand for a .if, .continue, .endif sequence.

.next

Closing directive of .for, .bfor, .rept, .brept, .while and .bwhile loop for compatibility.

.lbl

Creates a special jump label that can be referenced by .goto

.goto <labelname>

Causes assembler to continue assembling from the jump label. No forward references of
course, handle with care. Should only be used in classic TASM sources for creating loops.

i .var 100

loop .lbl

nop

i .var i - 1

.ifne i

.goto loop ;generates 100 nops

.endif ;the hard way ;)

4.10 Including files

Longer sources are usually separated into multiple files for easier handling. Precomputed binary
data can also be included directly without converting it into source code first.

Search path is relative to the location of current source file. If it's not found there the include
search path is consulted for further possible locations.

To make your sources portable please always use forward slashes (/) as a directory separator
and use lower/uppercase consistently in file names!

.include <filename>

Include source file here.

.binclude <filename>

Include source file here in it's local block. If the directive is prefixed with a label then all la-
bels are local and are accessible through that label only, otherwise not reachable at all.

.include "macros.asm" ;include macros

menu .binclude "menu.asm" ;include in a block

jmp menu.start

.binary <filename>[, <offset>[, <length>]]

Include raw binary data from file.

By using offset and length it's possible to break out chunks of data from a file separately, like
bitmap and colors for example. Negative offsets are calculated from the end of file.

.binary "stuffz.bin" ;simple include, all bytes

.binary "stuffz.bin", 2 ;skip start address

.binary "stuffz.bin", 2, 1000;skip start address, 1000 bytes max

4.11 Scopes

Scopes may contain symbols or further nested scopes. The same symbol name can be reused as long
as it's in a different scope.

A symbol is looked up in the local scope first. If it's a non-local symbol then parent scopes and
the global scope may be searched in addition. This means that a symbol in a parent or global scope

64tass v1.59 r3120 reference manual

38 of 79

may be “shadowed”.

Symbols of a named scope can be looked up using the “.” operator. The searched symbol stands
on the right and it's looked up in the scope on the left. More than one symbol may be looked up at
the same time and the result will be a list or tuple.

lda #0

sta vic.sprite.enable

; same as .byte colors.red, colors.green, colors.blue

ctable .byte colors.(red, green, blue)

.proc

Start of a procedure block

.pend

.endproc

End of a procedure block

If the symbol in front is not referenced anywhere then the enclosed source won't be compiled.

Symbols inside are enclosed in a scope and are accessible through the symbol of the proce-
dure using the dot notation. This forces compilation of the whole procedure of course.

ize .proc

nop

cucc nop

.endproc

jsr ize

jmp ize.cucc

The “compilation only if used” behaviour of .proc eases the building of “libraries” from a col-
lection of subroutines and tables where not everything is needed all the time.

Alternative dead-code reduction techniques I encountered:

Separate source files
This potentially results in a lot of small files and manually managed include directives.
This is popular on external linker based systems where object files may be excluded if
unused.

Conditional compilation
Few larger files with conditional compilation directives all over the place to exclude or
include various parts. The source which does the include manually declares somewhere
what's actually needed or not. There may be a lot of options if it's fine grained enough.

Wrap parts with macros
If a part is needed then a single macro call is placed somewhere to “include” that part.
Much better than conditional compilation but these macro calls still need to be manually
managed.

.block

Block scoping area start

.bend

.endblock

Block scoping area end

All symbols inside a block are enclosed in a scope. If the block had a symbol then local sym-
bols are accessible through that using the dot notation.

.block

inc count + 1

count ldx #0

.endblock

.namespace [<expression>]

Namespace area start

64tass v1.59 r3120 reference manual

39 of 79

.endn

.endnamespace

Namespace area end

This directive either creates a new scope (if used without a parameter) or activates the one in
the parameter.

The scope can be assigned to a symbol in front of the directive so that it can be reactivated
later. This enables label definitions into the same scope in different files.

colors .namespace

red = 2

blue = 6

.endnamespace

lda #colors.red

.weak

.endweak

Weak symbol area

Any symbols defined inside can be overridden by “stronger” symbols in the same scope from
outside. Can be nested as necessary.

This gives the possibility of giving default values for symbols which might not always exist
without resorting to .ifdef/.ifndef or similar directives in other assemblers.

symbol = 1 ;stronger symbol than the one below

.weak

symbol = 0 ;default value if the one above does not exists

.endweak

.if symbol ;almost like an .ifdef ;)

Other use of weak symbols might be in included libraries to change default values or replace
stub functions and data structures.

If these stubs are defined using .proc/.endproc then their default implementations will not
even exists in the output at all when a stronger symbol overrides them.

Multiple definition of a symbol with the same “strength” in the same scope is of course not
allowed and it results in double definition error.

Please note that .ifdef/.ifndef directives are left out from 64tass for of technical reasons,
so don't wait for them to appear anytime soon.

.with <expression>

.endwith

Namespace access

This directive is similar to .namespace but it gives access to another scope's variables without
leaving the current scope. May be useful to allow a short hand access in some situations.

It's advised to use the “-Wshadow” command line option to warn about any unexpected sym-
bol ambiguity.

4.12 Sections

Sections can be used to collect data or code into separate memory areas without moving source
code lines around. This is achieved by having separate compile offset and program counters for
each defined section.

.section <name>

Starts a segment block

.send [<name>]

.endsection [<name>]

Ends a segment block

Defines a section fragment. The name at .endsection must match but it's optional.

64tass v1.59 r3120 reference manual

40 of 79

.dsection <name>

Collect the section fragments here.

All .section fragments are compiled to the memory area allocated by the .dsection directive.
Compilation happens as the code appears, this directive only assigns enough space to hold all the
content in the section fragments.

The space used by section fragments is calculated from the difference of starting compile offset
and the maximum compile offset reached. It is possible to manipulate the compile offset in frag-
ments, but putting code before the start of .dsection is not allowed.

* = $02

.dsection zp ;declare zero page section

.cerror * > $30, "Too many zero page variables"

* = $334

.dsection bss ;declare uninitialized variable section

.cerror * > $400, "Too many variables"

* = $0801

.dsection code ;declare code section

.cerror * > $1000, "Program too long!"

* = $1000

.dsection data ;declare data section

.cerror * > $2000, "Data too long!"

;--------------------

.section code

.word ss, 2005

.null $9e, format("%4d", start)

ss .word 0

start sei

.section zp ;declare some new zero page variables

p2 .addr ? ;a pointer

.endsection zp

.section bss ;new variables

buffer .fill 10 ;temporary area

.endsection bss

lda (p2),y

lda #<label

ldy #>label

jsr print

.section data ;some data

label .null "message"

.endsection data

jmp error

.section zp ;declare some more zero page variables

p3 .addr ? ;a pointer

.endsection zp

.endsection code

The compiled code will look like:

>0801 0b 08 d5 07 .word ss, 2005

>0805 9e 32 30 36 31 00 .null $9e, format("%4d", start)

>080b 00 00 ss .word 0

.080d 78 start sei

>0002 p2 .addr ? ;a pointer

64tass v1.59 r3120 reference manual

41 of 79

>0334 buffer .fill 10 ;temporary area

.080e b1 02 lda (p2),y

.0810 a9 00 lda #<label

.0812 a0 10 ldy #>label

.0814 20 1e ab jsr print

>1000 6d 65 73 73 61 67 65 00 label .null "message"

.0817 4c e2 fc jmp error

>0004 p2 .addr ? ;a pointer

Sections can form a hierarchy by nesting a .dsection into another section. The section names must
only be unique within a section but can be reused otherwise. Parent section names are visible for
children, siblings can be reached through parents.

In the following example the included sources don't have to know which “code” and “data” sec-
tions they use, while the “bss” section is shared for all banks.

;First 8K bank at the beginning, PC at $8000

* = $0000

.logical $8000

.dsection bank1

.cerror * > $a000, "Bank1 too long"

.endlogical

bank1 .block ;Make all symbols local

.section bank1

.dsection code ;Code and data sections in bank1

.dsection data

.section code ;Pre-open code section

.include "code.asm"; see below

.include "iter.asm"

.endsection code

.endsection bank1

.endblock

;Second 8K bank at $2000, PC at $8000

* = $2000

.logical $8000

.dsection bank2

.cerror * > $a000, "Bank2 too long"

.endlogical

bank2 .block ;Make all symbols local

.section bank2

.dsection code ;Code and data sections in bank2

.dsection data

.section code ;Pre-open code section

.include "scr.asm"

.endsection code

.endsection bank2

.endblock

;Common data, avoid initialized variables here!

* = $c000

.dsection bss

.cerror * > $d000, "Too much common data"

;------------- The following is in "code.asm"

code sei

.section bss ;Common data section

buffer .fill 10

64tass v1.59 r3120 reference manual

42 of 79

.endsection bss

.section data ;Data section (in bank1)

routine .addr print

.endsection bss

4.13 65816 related

.as

.al

Select short (8 bit) or long (16 bit) accumulator immediate constants.

.al

lda #$4322

.xs

.xl

Select short (8 bit) or long (16 bit) index register immediate constants.

.xl

ldx #$1000

.autsiz

.mansiz

Select automatic adjustment of immediate constant sizes based on SEP/REP instructions.

.autsiz

rep #$10 ;implicit .xl

ldx #$1000

.databank <expression>

Data bank (absolute) addressing is only used for addresses falling into this 64 KiB bank. The
default is 0, which means addresses in bank zero.

When data bank is switched off only data bank indexed (,b) addresses create data bank ac-
cessing instructions.

.databank $10 ;data bank at $10xxxx

lda $101234 ;results in $ad, $34, $12

.databank ? ;no data bank

lda $1234 ;direct page or long addressing

lda #$1234,b ;results in $ad, $34, $12

.dpage <expression>

Direct (zero) page addressing is only used for addresses falling into a specific 256 byte ad-
dress range. The default is 0, which is the first page of bank zero.

When direct page is switched off only the direct page indexed (,d) addresses create direct
page accessing instructions.

.dpage $400 ;direct page $400-$4ff

lda $456 ;results in $a5, $56

.dpage ? ;no direct page

lda $56 ;data bank or long addressing

lda #$56,d ;results in $a5, $56

4.14 Controlling errors

.option allow_branch_across_page

Switches error generation on page boundary crossing during relative branch. Such a condi-
tion on 6502 adds 1 extra cycle to the execution time, which can ruin the timing of a carefully
cycle counted code.

64tass v1.59 r3120 reference manual

43 of 79

.option allow_branch_across_page = 0

bcc + ;same execution time

inx ;needed in both cases

+ bcs +

dex

+ .option allow_branch_across_page = 1

.error <message> [, <message>, …]

.cerror <condition>, <message> [, <message>, …]

Exit with error or conditionally exit with error

.error "Unfinished here..."

.cerror * > $1200, "Program too long by ", * - $1200, " bytes"

.warn <message> [, <message>, …]

.cwarn <condition>, <message> [, <message>, …]

Display a warning message always or depending on a condition

.warn "FIXME: handle negative values too!"

.cwarn * > $1200, "This may not work!"

4.15 Target

.cpu <expression>

Selects CPU according to the string argument.

.cpu "6502" ;standard 65xx

.cpu "65c02" ;CMOS 65C02

.cpu "65ce02" ;CSG 65CE02

.cpu "6502i" ;NMOS 65xx

.cpu "65816" ;W65C816

.cpu "65dtv02" ;65dtv02

.cpu "65el02" ;65el02

.cpu "r65c02" ;R65C02

.cpu "w65c02" ;W65C02

.cpu "4510" ;CSG 4510

.cpu "default" ;cpu set on command line

4.16 Misc

.end

Terminate assembly. Any content after this directive is ignored.

.eor <expression>

XOR output with an 8 bit value. Useful for reverse screen code text for example, or for silly
“encryption”.

.seed <expression>

Seed the pseudo random number generator with an unsigned integer of maximum 128 bits to
make the generated numbers less boring.

.var <expression>

Defines a variable identified by the label preceding, which is set to the value of expression or
reference of variable.

counter .var 0 ;define, same as :=

counter .var counter + 1 ;redefine, same as += 1

.from <scope>

Defines a symbol to the value of the same symbol from another scope.

This directive looks up the symbol name to be defined in the other scope for its value. Useful
for shorthand definitions without repeating the name if it's unchanged.

red .from vic.colors ;same as red = vic.colors.red

64tass v1.59 r3120 reference manual

44 of 79

init .from + ;expose these symbols publicly

play .from +

+ .block ;other symbols hidden in block

init sei

...

.assert

.check

Do not use these, the syntax will change in next version!

4.17 Printer control

.pron

.proff

Turn on or off source listing on part of the file.

.proff ;Don't put filler bytes into listing

* = $8000

.fill $2000, $ff ;Pre-fill ROM area

.pron

* = $8000

.addr reset, restore

.text "CBM80"

reset cld

.hidemac

.showmac

Ignored for compatibility.

5 Pseudo instructions

5.1 Aliases

For better code readability BCC has an alias named BLT (Branch Less Than) and BCS one named BGE
(Branch Greater Equal).

cmp #3

blt exit ; less than 3?

For similar reasons ASL has an alias named SHL (SHift Left) and LSR one named SHR (SHift Right).
This naming however is not very common.

The implied variants LSR, ROR, ASL and ROL are a shorthand for LSR A, ROR A, ASL A and ROL A. Using
the implied form is considered poor coding style.

For compatibility INA and DEA is a shorthand of INC A and DEC A. Therefore there's no “implied”
variants like INC or DEC. The full form with the accumulator is preferred.

The longer forms of INC X, DEC X, INC Y, DEC Y, INC Z and DEC Z are available for INX, DEX, INY, DEY, INZ
and DEZ. For this to work care must be taken to not reuse the “x”, “y” and “z” single letter register
symbols for other purposes. Same goes for “a” of course.

Load instructions with registers are translated to transfer instructions. For example LDA X be-
comes TXA.

Store instructions with registers are translated to transfer instructions, but only if it involves the
“s” or “b” registers. For example STX S becomes TXS.

Many illegal opcodes have aliases for compatibility as there's no standard naming convention.

5.2 Always taken branches

For writing short code there are some special pseudo instructions for always taken branches. These
are automatically compiled as relative branches when the jump distance is short enough and as JMP
or BRL when longer.

64tass v1.59 r3120 reference manual

45 of 79

The names are derived from conditional branches and are: GEQ, GNE, GCC, GCS, GPL, GMI, GVC, GVS, GLT
and GGE.

.0000 a9 03 lda #$03 in1 lda #3

.0002 d0 02 bne $0006 gne at ;branch always

.0004 a9 02 lda #$02 in2 lda #2

.0006 4c 00 10 jmp $1000 at gne $1000 ;branch farther

If the branch would skip only one byte then the opposite condition is compiled and only the first
byte is emitted. This is now a never executed jump, and the relative distance byte after the opcode
is the jumped over byte. If the CPU has long conditional branches (65CE02/4510) then the same
method is applied to two byte skips as well.

There's a pseudo opcode called GRA for CPUs supporting BRA, which is expanded to BRL (if avail-
able) or JMP. A one byte skip will be shortened to a single byte if the CPU has a NOP immediate in-
struction (R65C02/W65C02).

If the branch would not skip anything at all then no code is generated.

.0009 geq in3 ;zero length "branch"

.0009 18 clc in3 clc

.000a b0 bcs gcc at2 ;one byte skip, as bcs

.000b 38 sec in4 sec ;sec is skipped!

.000c 20 0f 00 jsr $000f at2 jsr func

.000f func

Please note that expressions like Gxx *+2 or Gxx *+3 are not allowed as the compiler can't figure out if
it has to create no code at all, the 1 byte variant or the 2 byte one. Therefore use normal or anony-
mous labels defined after the jump instruction when jumping forward!

5.3 Long branches

To avoid branch too long errors the assembler also supports long branches. It can automatically
convert conditional relative branches to it's opposite and a JMP or BRL. This can be enabled on the
command line using the “--long-branch” option.

.0000 ea nop nop

.0001 b0 03 bcs $0006 bcc $1000 ;long branch (6502)

.0003 4c 00 10 jmp $1000

.0006 1f 17 03 bbr 1,$17,$000c bbs 1,23,$1000 ;long branch (R65C02)

.0009 4c 00 10 jmp $1000

.000c d0 04 bne $0012 beq $10000 ;long branch (65816)

.000e 5c 00 00 01 jmp $010000

.0012 30 03 bmi $0017 bpl $1000 ;long branch (65816)

.0014 82 e9 lf brl $1000

.0017 ea nop nop

Please note that forward jump expressions like Bxx *+130, Bxx *+131 and Bxx *+132 are not allowed as
the compiler can't decide between a short/long branch. Of course these destinations can be used,
but only with normal or anonymous labels defined after the jump instruction.

In the above example extra JMP instructions are emitted for each long branch. This is suboptimal
and wasting space if there are several long branches to the same location in close proximity.
Therefore the assembler might decide to reuse a JMP for more than one long branch to save space.

6 Original turbo assembler compatibility

6.1 How to convert source code for use with 64tass

Currently there are two options, either use “TMPview” by Style to convert the source file directly, or
do the following:

• load turbo assembler, start (by SYS 9*4096 or SYS 8*4096 depending on version)
• ← then l to load a source file

64tass v1.59 r3120 reference manual

46 of 79

• ← then w to write a source file in PETSCII format
• convert the result to ASCII using petcat (from the vice package)

The resulting file should then (with the restrictions below) assemble using the following command
line:

64tass -C -T -a -W -i source.asm -o outfile.prg

6.2 Differences to the original turbo ass macro on the C64

64tass is nearly 100% compatible with the original “Turbo Assembler”, and supports most of the
features of the original “Turbo Assembler Macro”. The remaining notable differences are listed
here.

6.3 Labels

The original turbo assembler uses case sensitive labels, use the “--case-sensitive” command line op-
tion to enable this behaviour.

6.4 Expression evaluation

There are a few differences which can be worked around by the “--tasm-compatible” command line
option. These are:

The original expression parser has no operator precedence, but 64tass has. That means that you
will have to fix expressions using braces accordingly, for example 1+2*3 becomes (1+2)*3.

The following operators used by the original Turbo Assembler are different:

Table 28: TASM Operator differences

. bitwise or, now |

: bitwise eor, now ^

! force 16 bit address, now @w

The default expression evaluation is not limited to 16 bit unsigned numbers anymore.

6.5 Macros

Macro parameters are referenced by “\1”–“\9” instead of using the pound sign.

Parameters are always copied as text into the macro and not passed by value as the original
turbo assembler does, which sometimes may lead to unexpected behaviour. You may need to make
use of braces around arguments and/or references to fix this.

6.6 Bugs

Some versions of the original turbo assembler had bugs that are not reproduced by 64tass, you will
have to fix the code instead.

In some versions labels used in the first .block are globally available. If you get a related error
move the respective label out of the .block.

7 Command line options

Short command line options consist of “-” and a letter, long options start with “--”.

If “--” is encountered then further options are not recognized and are assumed to be file names.

Options requiring file names are marked with “<filename>”. A single “-” as name means stan-
dard input or output. File name quoting is system specific.

7.1 Output options

-o <filename>, --output <filename>

Place output into <filename>. The default output filename is “a.out”. This option changes it.

64tass v1.59 r3120 reference manual

47 of 79

64tass a.asm -o a.prg

This option may be used multiple times to output different sections in different formats of a
single compilation.

For multiple outputs the format options and output section selection must be placed before
this option. The format selection will be unchanged if no new selection was made but the out-
put section selection and the map file must be repeated for each output. The maximum image
size will be the smallest of all selected formats. Using the same name multiple times is not a
good idea.

--output-append <filename>

Same as the --output option but appends instead of overwrites.

Normally output files are overwritten but in some cases it's useful to append them instead.

--no-output

No output file will be written.

Useful for test compiles.

--map <file>

Specify memory map output file.

Normally the memory map is displayed on the standard output together with other messages.
It's possible to write it to a file or to the standard output by using “-” as the file name.

--map-append <filename>

Same as the --map option but appends instead of overwrites.

--no-map

Do not display or record the memory map.

--output-section <sectionname>

Specify which section to write in the output.

By default all sections go into the output file. Using this option limits the output to specific
section and it's children. This is useful to split a larger program into several files.

64tass a.asm --output-section main -o main.prg \

 --output-section loader -o loader.prg

--output-exec <expression>

Sets execution address for output formats which support this.

While it's possible to enter the address as a number it's recommended to use a label instead.

-X, --long-address

Use 3 byte address/length for CBM and nonlinear output instead of 2 bytes. Also increases the
size of raw output to 16 MiB.

64tass --long-address --m65816 a.asm

--cbm-prg

Generate CBM format binaries (default)

Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory before the first and after the last valid bytes are not saved. Up to
64 KiB or 16 MiB with long address.

Used for C64 binaries. The first 2 bytes are the little endian address of the first valid byte
(load address). This is followed by the data.

64tass --cbm-prg a.asm

* = $2000

start rts

64tass v1.59 r3120 reference manual

48 of 79

Table 29: Example CBM format binary output

00 20 load to $2000

60 data

-b, --nostart

Output raw binary data.

Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory before the first and after the last valid bytes are not saved. Up to
64 KiB or 16 MiB with long address.

Useful for small ROM files.

64tass --nostart a.asm

* = $2000

rts

Table 30: Example raw output

60 data

-f, --flat

Flat address space output mode.

Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory after the last valid byte is not saved. Up to 4 GiB.

Useful for creating huge multi bank ROM files. See sections for an example.

-n, --nonlinear

Generate nonlinear output file.

Overlapping blocks are flattened. Blocks are saved in sorted order and uninitialized memory is
skipped. Up to 64 KiB or 16 MiB with long address.

Used for linkers and downloading. Before writing each memory block the length and the
memory address is saved in a little endian order. Once everything was saved a zero length
block is written without an address or data. These zeros serve as an end marker.

64tass --nonlinear a.asm

* = $1000 ;1st segment

lda #2

* = $2000 ;2nd segment

rts

Table 31: Example 64 KiB nonlinear output

02 00 load 2 bytes

00 10 to $1000

a9 02 data

01 00 load 1 byte

00 20 to $2000

60 data

00 00 load 0 bytes, end marker

--atari-xex

Generate an Atari XEX output file.

Overlapping blocks are kept, continuing blocks are concatenated. Saving happens in the defi-
nition order without sorting, and uninitialized memory is skipped in the output. Up to 64 KiB.

Used for Atari executables. First 2 bytes of signature is written. Then before saving each
memory block the words of load address and last byte address is written in little endian for-
mat.

If the --output-exec command line parameter was given then a 6 byte run block is added to
the end of the output.

64tass --output-exec=start --atari-xex a.asm

* = $2000

64tass v1.59 r3120 reference manual

49 of 79

start rts

Table 32: Example Atari XEX format output

ff ff header

00 20 load to $2000

00 20 until $2000

60 data

e0 02 e1 02 run marker

00 20 run address ($2000)

--apple-ii

Generate an Apple II output file (DOS 3.3).

Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory before the first and after the last valid bytes are not saved. Up to
64 KiB.

Used for Apple II executables. First the load address and the data length words are written
in little endian format. This is followed by the data.

64tass --apple-ii a.asm

* = $0c00

rts

Table 33: Example of Apple II format output

00 0c load to $0c00

01 00 length is 1 byte

60 data

--c256-pgx

Generate C256 Foenix PGX output file.

Overlapping blocks are flattened and uninitialized memory is filled up with zeros.
Uninitialized memory before the first and after the last valid bytes are not saved. Up to
16 MiB.

Used for single segment C256 Foenix executables. After the PGX signature a four byte little
endian load address is written. This is followed by the data.

64tass --c256-pgx a.asm

* = $1000

rts

Table 34: Example PGX format output

50 47 58 01 PGX signature

00 10 00 00 load to $1000

60 data

--c256-pgz

Generate C256 Foenix PGZ output file.

Overlapping blocks are flattened. Blocks are saved in sorted order and uninitialized memory is
skipped. Up to 16 MiB.

Used for multi segment C256 Foenix binaries. It starts with a single byte signature. Then
before each memory block a three byte load address and length is written in little endian for-
mat.

If the --output-exec command line parameter was given then a 6 byte execution block is
added to the end of the output.

64tass --output-exec=start --c256-pgz a.asm

* = $1000

start rts

64tass v1.59 r3120 reference manual

50 of 79

Table 35: Example PGZ format output

5a PGZ signature byte

00 10 00 load to $1000

01 00 00 length is 1 bytes

60 data

00 10 00 execute at $1000

00 00 00 execution marker

--intel-hex

Use Intel HEX output file format.

Overlapping blocks are kept, data is stored in the definition order, and uninitialized areas are
skipped. I8HEX up to 64 KiB, I32HEX up to 4 GiB.

Used for EPROM programming or downloading. Data bytes are written using 00 records. If
the file is larger than 64 KiB then 04 records are used as needed. The output ends with a 01
record.

If the --output-exec command line parameter was given then a 05 record is added with the
execution address right before the end 01 record.

64tass --intel-hex a.asm

* = $0c00

rts

Example Intel HEX output:

:010C00006093

:00000001FF

--mos-hex

Use MOS Technology output file format. Also known as Paper Tape Format.

Overlapping blocks are kept, data is stored in the definition order, and uninitialized areas are
skipped. Up to 64 KiB.

64tass --mos-hex a.asm

* = $0c00

rts

Example MOS Technology output:

;010C0060006D

;0000010001

--s-record

Use Motorola S-record output file format.

Overlapping blocks are kept, data is stored in the definition order, and uninitialized memory
areas are skipped. S19 up to 64 KiB, S28 up to 16 MiB and S37 up to 4 GiB.

Used for EPROM programming or downloading. First a S0 header record is written which is
followed by S1, S2, or S3 data records. Then an S5 or S6 count record comes and a S9, S8 or S7
termination record.

If the --output-exec command line parameter was given then the termination record will use
this address. Without this the address of the first data record is used.

64tass --s-record a.asm

* = $0c00

rts

Example Motorola S-record output:

S00600004844521B

S1040C00608F

64tass v1.59 r3120 reference manual

51 of 79

S5030001FB

S9030C00F0

7.2 Operation options

-a, --ascii

Use ASCII/Unicode text encoding instead of raw 8-bit

Normally no conversion takes place, this is for backwards compatibility with a DOS based
Turbo Assembler editor, which could create PETSCII files for 6502tass. (including control
characters of course)

Using this option will change the default “none” and “screen” encodings to map 'a'–'z' and
'A'–'Z' into the correct PETSCII range of $41–$5A and $C1–$DA, which is more suitable for an
ASCII editor. It also adds predefined petcat style PETSCII literals to the default encodings,
and enables Unicode letters in symbol names.

For writing sources in UTF-8/UTF-16 encodings this option is required!

64tass a.asm

.0000 a9 61 lda #$61 lda #"a"

>0002 31 61 41 .text "1aA"

>0005 7b 63 6c 65 61 72 7d 74 .text "{clear}text{return}more"

>000e 65 78 74 7b 72 65 74 75

>0016 72 6e 7d 6d 6f 72 65

64tass --ascii a.asm

.0000 a9 41 lda #$41 lda #"a"

>0002 31 41 c1 .text "1aA"

>0005 93 54 45 58 54 0d 4d 4f .text "{clear}text{return}more"

>000e 52 45

-B, --long-branch

Automatic BXX *+5 JMP xxx. Branch too long messages are usually solved by manually rewriting
them as BXX *+5 JMP xxx. 64tass can do this automatically if this option is used. BRA is of course
not converted.

64tass a.asm

* = $1000

bcc $1233 ;error...

64tass a.asm

* = $1000

bcs *+5 ;opposite condition

jmp $1233 ;as simple workaround

64tass --long-branch a.asm

* = $1000

bcc $1233 ;no error, automatically converted to the one above

bcs @b $1233 ;keep this one short regardless and fail if too far

-C, --case-sensitive

Make all symbols (variables, opcodes, directives, operators, etc.) case sensitive. Otherwise ev-
erything is case insensitive by default.

64tass v1.59 r3120 reference manual

52 of 79

64tass a.asm

label nop

Label nop ;double defined...

64tass --case-sensitive a.asm

label nop

Label nop ;Ok, it's a different label...

-D <label>=<value>

Command line definition.

Same syntax is allowed as in source files. Be careful with strings, the shell might eat the
quotes unless escaped.

Using hexadecimal numbers might be tricky as the shell might try to expand them as vari-
ables. Either quoting or backslash escaping might help.

In Makefiles all $ signs need to be escaped by doubling them. This needs to be done over
the normal shell escaping. For example “$1000” becomes “\$$1000”.

64tass -D ii=2 -D var=\"string\" -D FAST:=true a.asm

lda #ii ;result: $a9, $02

FAST :?= false ;define if undefined

-q, --quiet

Suppress messages. Disables header and summary messages.

64tass --quiet a.asm

-T, --tasm-compatible

Enable TASM compatible operators and precedence

Switches the expression evaluator into compatibility mode. This enables “.”, “:” and “!” oper-
ators and disables 64tass specific extensions, disables precedence handling and forces 16 bit
unsigned evaluation (see “differences to original Turbo Assembler” below)

-I <path>

Specify include search path

If an included source or binary file can't be found in the directory of the source file then this
path is tried. More than one directories can be specified by repeating this option. If multiple
matches exist the first one is used.

-M <file>, --dependencies <file>

Specify make rule output file

Writes a dependency rules suitable for “make” from the list of files used during compilation.

Please choose source file names which are compatible with Makefiles as there are very lit-
tle escaping possibilities.

--dependencies-append <file>

Same as the --dependencies option but appends instead of overwrites.

--make-phony

Enable phony targets for dependencies

This is useful for automatic dependency generation to avoid missing target errors on file re-
name.

The following Makefile uses the rules generated by 64tass (in “.dep”) to achieve automatic
dependency tracking:

64tass v1.59 r3120 reference manual

53 of 79

demo: demo.asm .dep

64tass --make-phony -M.dep $< -o $@

.dep:

-include .dep

7.3 Diagnostic options

Diagnostic message switched start with a “-W” and can have an optional “no-” prefix to disable them.
The options below with this prefix are enabled by default, the others are disabled.

-E <file>, --error <file>

Specify error output file

Normally compilation errors a written to the standard error output. It's possible to redirect
them to a file or to the standard output by using “-” as the file name.

--error-append <filename>

Same as the --error option but appends instead of overwrites.

--no-error

Do not output any error messages, just count them.

-w, --no-warn

Suppress warnings.

Disables warnings during compile. For fine grained diagnostic message suppression see the
diagnostic options section.

64tass --no-warn a.asm

--no-caret-diag

Suppress displaying of faulty source line and fault position after fault messages.

This is for cases where the fault log is automatically processed and no one ever looks at it and
therefore there's no point to display the source lines.

64tass --no-caret-diag a.asm

--macro-caret-diag

Restrict source line and fault position display to macro expansions only.

This is for cases where the fault log is processed by an editor which also displays the compila-
tion output somewhere. Only lines which are the result of macro processing will be output to
aid debugging. Those which would just duplicate what's in the source editor window will be
not.

64tass --macro-caret-diag a.asm

-Wall

Enable most diagnostic warnings, except those individually disabled. Or with the “no-” prefix
disable all except those enabled.

-Werror

Make all diagnostic warnings to an error, except those individually set to a warning.

-Werror=<name>

Change a diagnostic warning to an error.

For example “-Werror=implied-reg” makes this check an error. The “-Wno-error=” variant is use-
ful with “-Werror” to set some to warnings.

-Walias

Warns about alias opcodes.

There are several opcodes for the same task, especially for the "6502i" target. This warning
helps to find where their use.

64tass v1.59 r3120 reference manual

54 of 79

-Walign

Warns when padding bytes were used for alignment.

Can be used to see where space is wasted for alignment.

-Waltmode

Warn about alternative address modes.

Sometimes alternative addressing modes are used as the fitting one is not available. For ex-
ample there's no lda direct page y so instead data bank y is used with a warning.

-Wbranch-page

Warns if a branch is crossing a page.

Page crossing branches execute with a penalty cycle. This option helps to locate them easily.

-Wcase-symbol

Warn if symbol letter case is used inconsistently.

This option can be used to enforce letter case matching of symbols in case insensitive mode.
This gives similar results to the case sensitive mode (symbols must match exactly) with the
main difference of disallowing symbol name definitions differing only in case (these are re-
ported as duplicates).

-Wimmediate

Warns for cases where immediate addressing is more likely.

It may be hard to notice if a “#” was missed. The code still compiles but there's a huge differ-
ence between “cpx #const” and “cpx const”. Unless the right sort of garbage was on zero page
at the time of testing...

This check might have a lot of false positives if zero page locations are accessed by using
small numbers, which is a popular coding style. But there are ways to reduce them.

For "known" fixed locations address(x) can be used, preferably bound to a symbol.
Automatic allocation of zero page variables works too (e.g. zpstuff .byte ?). And basically ev-
erything which is a traditional "label" or derived from a label with an offset.

-Wimplied-reg

Warns if implied addressing is used instead of register.

Some instructions have implied aliases like “asl” for “asl a” for compatibility reasons, but this
shorthand is not the preferred form.

-Wleading-zeros

Warns if about leading zeros.

A leading zero could be a prefix for an octal number but as octals are not supported the result
will be decimal.

-Wlong-branch

Warns when a long branch is used.

This option gives a warning for instructions which were modified by the long branch function.
Less intrusive than disabling long branches and see where it fails.

-Wmacro-prefix

Warn about macro call without prefix.

Such macro calls can easily be mistaken to be labels if invoked without parameters. Also it's
hard to notice that an unchanged call turned into label after the definition got renamed. This
warning helps to find such calls so that prefixes can be added.

-Wno-deprecated

Don't warn about deprecated features.

Unfortunately there were some features added previously which shouldn't have been in-
cluded. This option disables warnings about their uses.

64tass v1.59 r3120 reference manual

55 of 79

-Wno-float-compare

Don't warn if floating point comparisons are only approximate.

Floating point numbers have a finite precision and comparing them might give unexpected re-
sults.

For example 2.1 + 0.2 == 2.3 is true but gives a warning as the left side is actually bigger
by approximately 4.44E−16.

Normally this is solved by rounding or changing the comparison values.

-Wfloat-round

Warn when floating point numbers are implicitly rounded.

A lot of parameters and the data dumping directives need integers but floating point numbers
are accepted as well. The style of rounding used may or may not be what you wanted.

By default floor rounding (to lower) is used and not truncate (towards zero). The reason for
this is to enable calculation of fixed point integers by using floating point.

The difference is subtle and only noticable for negative numbers. The division of -300/256 is
-2 which matches floor(-300/256.0) but not trunc(-300/256.0).

To get symmetric sine waves around zero trunc() needs to be used. Some other calculation
might result in 126.9999997 due to inaccuracies in logarithm which would need round().

To avoid unexpected rounding this option helps to find those places where no explicit
rounding was done.

-Wno-ignored

Don't warn about ignored directives.

-Wno-jmp-bug

Don't warn about the jmp ($xxff) bug.

With this option it's fine that the high byte is read from the “wrong” address on a 6502,
NMOS 6502 and 65DTV02.

jmp (vector)

.alignpageind vector, 256; jmp bug workaround

vector .addr ? ; by avoiding page cross

-Wno-label-left

Don't warn about certain labels not being on left side.

You may disable this if you use labels which look like mistyped versions of implied addressing
mode instructions and you don't want to put them in the first column.

This check is there to catch typos, unsupported implied instructions, or unknown aliases
and not for enforcing label placement.

-Wno-page

Ignore page assertion failures

Can be used to ignore .page assertion block failures. As a middle ground “-Wno-error=page” can
turn the assertion to a warning only.

-Wno-pitfalls

Don't note about common pitfalls.

There are some common mistakes, but experts and those who read this don't need extra notes
about them. These are:

Use multi character strings with “.byte” instead of “.text”.
This fails because “.byte” enforces the 0–255 range for each value.

Using “label *=*+1” style space reservations.
Warns as “*=” is also the compound multiply operator. The “*=*+1” needs to be on a sepa-
rate line without a label. A better alternatively is to use “.fill 1” or “.byte ?”.

Negative numbers with “.byte” or “.word”

64tass v1.59 r3120 reference manual

56 of 79

There are other directives which accept them with proper range checks like “.char”,
“.sint”.

Negative numbers with “lda #xxx”
There's a signed variant for the immediate addressing so “lda #+xx” will make it work

-Wno-portable

Don't warn about source portability problems.

These cross platform development annoyances are checked for:

• Case insensitive use of file names or use of short names.
• Use of backslashes for path separation instead of forward slashes.
• Use of reserved characters in file names.
• Absolute paths

-Wno-priority

Don't warn about operator priority problems.

Not all of the unary operators are strongly binding and this may cause surprises. This warning
is intended to catch mistakes like this:

.cerror >start != >end; possibly wrong it's >(start != (>end))

.cerror (>start) != >end; correct high byte check

-Wno-size-larger

Don't warn if size is larger due to negative offset

size() and len() can be used to measure a memory area. Normally there's no offset used but a
positive offset may be used to reduce available space up until nothing remains.

On the other hand if a negative offset is used then more space will be available (ahead of
the area) which may or may not be desired.

var .byte ?, ?, ?

var2 = var - 2 ; start 2 bytes earlier

ldx #size(var2) ; size is 5 bytes as it's 2 bytes ahead

-Wno-star-assign

Don't warn about ignored compound multiply.

Normally “symbol *= ...” means compound multiply of the variable in front. Unfortunately this
looks the same a “label *=*+x” which is an old-school way to allocate space.

If the symbol was a variable defined earlier then the multiply is performed without a warn-
ing. If it's a new label definition then this warning is used to note that possibly a variable defi-
nition was missed earlier.

If the intention was really a label definition then the “*=” can be moved to a separate line,
or in case of space allocation it could be improved to use “.byte ?” or “.fill x”.

-Wno-wrap-addr

Don't warn about memory location address space wrap around.

Applying offsets to memory locations may result in addresses which end up outside of the pro-
cessors address space.

For example "tmp" is at $1000 and then it's addressed as lda tmp-$2000 then the result will be
lda $f000 or lda $fff000 depending on the CPU. If this is fine then this warning can be disabled
otherwise it can be made into an error by using -Werror=wrap-addr.

-Wno-wrap-bank0

Don't warn for bank 0 wrap around.

Adding an offset to a bank 0 address may end up outside of bank 0. If this happens a warning
is issued and the address wraps around.

The warning may be ignored using this command line parameter. Alternatively it could be
turned into an error by using -Werror=wrap-bank0.

64tass v1.59 r3120 reference manual

57 of 79

-Wno-wrap-dpage

Don't warn for direct page wrap around.

Adding an offset to a direct page address may end up outside of the direct page. For a 65816
or 65EL02 an alternative addressing mode is used but on other processors if this happens a
warning is issued and the address wraps around.

The warning may be ignored using this command line parameter. Alternatively it could be
turned into an error by using -Werror=wrap-dpage.

-Wno-wrap-mem

Don't warn for compile offset wrap around.

While assembling the compile offset may reach the end of memory image. If this happens a
warning is issued and the compile offset is set to the start of image.

The warning may be ignored using this command line parameter. Alternatively it could be
turned into an error by using -Werror=wrap-mem.

The image size depends on the output format. See the Output options section above.

-Wno-wrap-pc

Don't warn for program counter bank crossing.

While assembling the program counter may reach the end of the current program bank. If this
happens a warning is issued as a real CPU will not cross the bank on execution. On the other
hand some addressing modes handle bank crosses so this might not be actually a problem for
data.

The warning may be ignored using this command line parameter. Alternatively it could be
turned into an error by using -Werror=wrap-pc.

-Wno-wrap-pbank

Don't warn for program bank address calculation wrap around.

Adding an offset to a program bank address may end up outside of the current program bank.
If this happens a warning is issued and the address wraps around.

The warning may be ignored using this command line parameter. Alternatively it could be
turned into an error by using -Werror=wrap-pbank.

-Wold-equal

Warn about old equal operator.

The single “=” operator is only there for compatibility reasons and should be written as “==”
normally.

-Woptimize

Warn about optimizable code.

Warns on things that could be optimized, at least according to the limited analysis done.
Currently it's easy to fool with these constructs:

• Self modifying code, especially modifying immediate addressing mode instructions or
branch targets

• Using .byte $2c and similar tricks to skip instructions.
• Using *+5 and similar tricks to skip instructions, or to loop like *-1.
• Any other method of flow control not involving referenced labels. E.g. calculated re-

turns.
• Register re-mappings on 65DTV02 with SIR and SAC.

It's also rather simple and conservative, so some opportunities will be missed. Most CPUs are
supported with the notable exception of 65816 and 65EL02, but this could improve in later
versions.

-Wshadow

Warn about symbol shadowing.

Checks if local variables “shadow” other variables of same name in upper scopes in ambigu-

64tass v1.59 r3120 reference manual

58 of 79

ous ways.

This is useful to detect hard to notice bugs where a new local variable takes the place of a
global one by mistake.

bl .block

a .byte 2 ;'a' is a built-in register

x .byte 2 ;'x' is a built-in register

asl a ; accumulator or the byte above?

.end

asl bl.x ; not ambiguous

-Wstrict-bool

Warn about implicit boolean conversions.

Boolean values can be interpreted as numeric 0/1 and other types as booleans. This is conve-
nient but may cause mistakes.

To pass this option the following constructs need improvements:

• “1” and “0” as boolean constants. Use the slightly longer “true” and “false”.
• Implicit non-zero checks. Write it out like “.if (lbl & 1) != 0”.
• Zero checks with “!”. Write it out like “lbl == 0”.
• Binary operators on booleans. Use the proper “||”, “&&” and “^^” operators.
• Numeric expressions like “1 + (lbl > 3)”. It's better as “(lbl > 3) ? 2 : 1”.

-Wunused

Warn about unused constant symbols.

Symbols which have no references to them are likely redundant. Before removing them check
if there's any conditionally compiled out code which might still need them.

The following options can be used to be more specific:

-Wunused-const

Warn about unused constants.

-Wunused-label

Warn about unused labels.

-Wunused-macro

Warn about unused macros.

-Wunused-variable

Warn about unused variables.

Symbols which appear in a default 64tass symbol list file and their root symbols are treated as
used for exporting purposes.

7.4 Target selection on command line

These options will select the default architecture. It can be overridden by using the “.cpu” directive
in the source.

--m65xx

Standard 65xx (default). For writing compatible code, no extra codes. This is the default.

64tass --m65xx a.asm

lda $14 ;regular instructions

-c, --m65c02

CMOS 65C02. Enables extra opcodes and addressing modes specific to this CPU.

64tass --m65c02 a.asm

stz $d020 ;65c02 instruction

--m65ce02

CSG 65CE02. Enables extra opcodes and addressing modes specific to this CPU.

64tass v1.59 r3120 reference manual

59 of 79

64tass --m65ce02 a.asm

inz

-i, --m6502

NMOS 65xx. Enables extra illegal opcodes. Useful for demo coding for C64, disk drive code,
etc.

64tass --m6502 a.asm

lax $14 ;illegal instruction

-t, --m65dtv02

65DTV02. Enables extra opcodes specific to DTV.

64tass --m65dtv02 a.asm

sac #$00

-x, --m65816

W65C816. Enables extra opcodes. Useful for SuperCPU projects.

64tass --m65816 a.asm

lda $123456,x

-e, --m65el02

65EL02. Enables extra opcodes, useful RedPower CPU projects. Probably you'll need
“--nostart” as well.

64tass --m65el02 a.asm

lda #0,r

--mr65c02

R65C02. Enables extra opcodes and addressing modes specific to this CPU.

64tass --mr65c02 a.asm

rmb 7,$20

--mw65c02

W65C02. Enables extra opcodes and addressing modes specific to this CPU.

64tass --mw65c02 a.asm

wai

--m4510

CSG 4510. Enables extra opcodes and addressing modes specific to this CPU. Useful for C65
projects.

64tass --m4510 a.asm

map

eom

7.5 Symbol listing

-l <file>, --labels=<file>

List symbols into <file>.

64tass -l labels.txt a.asm

* = $1000

label jmp label

result (labels.txt):

label = $1000

This option may be used multiple times. In this case the format and root scope options must
be placed before this option. Using the same name multiple times is not a good idea.

64tass v1.59 r3120 reference manual

60 of 79

64tass --vice-labels -l all.l --export-labels --labels-root=export -l myexport.inc source.asm

This writes symbols for VICE into “all.l” and symbols from scope “export” into “myexport.inc”.

--labels-append=<file>

Same as the --labels option but appends instead of overwrites.

--labels-root=<expression>

Specify the scope to list labels from

This option can be used to limit the output to only a subset of labels. The parameter is an ex-
pression which must resolve to a namespace. It's usually just the name of a label in the root
scope which contains the labels to be listed.

--labels-section=<sectionname>

Specify the section to list labels from

This option can be used to limit the output to a section which code labels refer to.

--labels-add-prefix=<string>

Add prefix to labels

If defined adds a prefix to labels for some formats.

--normal-labels

Lists labels in a 64tass readable format. (default)

List labels without any side effects. Usually for display purposes or for later include.

--export-labels

List labels for include in a 64tass readable format.

The difference to normal symbol listing is that 64tass assumes these symbols will be used in
another source. In practice this means that any .proc/.endproc blocks appearing in the symbol
file will always be compiled even if unused otherwise.

--vice-labels

List labels in a VICE readable format.

This format may be used to translate memory locations to something readable in VICE moni-
tor. Therefore simple numeric constants will not show up unless converted to an address first.

VICE symbols may only contain ASCII letters, numbers and underscore. Symbols not meet-
ing this requirement will be omitted.

There's a good chance VICE will complain about already existing labels on import. In the
past an attempt was made to filter out such duplicates to eliminate these warnings. However
soon it was pointed out that omitted labels are now unavailable for commands like setting
breakpoints. As the latter use case is rather more important than some bogus import warnings
one has to live with them.

64tass --vice-labels -l labels.l a.asm

* = $1000

label jmp label

result (labels.l):

al 1000 .label

For now colons are used as scope delimiter due to a VICE limitation, but this will be
changed to dots in the future.

--vice-labels-numeric

List address like symbols in a VICE readable format including numeric constants.

The normal VICE label list does not include symbols like chrout = $ffd2 or keybuff = 631 as
these are numeric constants and not memory addresses.

Of course there are ways around that. For example:

64tass v1.59 r3120 reference manual

61 of 79

chrout = address($ffd2)

keybuff = address(631)

* = $ffd2

chrout .fill 3

* = 631

keybuff .fill 10

For those who don't want to waste time on explicitly marking addresses as such there's an
easy way out by using this command line option.

The tradeoff is that depending on the coding style the label list will become polluted by
non-address constants to various degrees. However if one mostly uses numeric constants for
addresses only this may be acceptable.

--dump-labels

List labels for debugging.

The output will contain symbol locations and paths.

--simple-labels

List labels in a simple label = $x fashion for interoperatibility.

Somewhat limited but much easier to parse than the normal output with all it's data types.

--mesen-labels

List labels in Mesen format

It's a text file in the following format:

<type>:<range>:<name>

• type: the prefix set by the --labels-add-prefix command line option
• range: a single hexadecimal number or two with a dash for a multibyte range
• label: name of the label

If the --labels-section command line option was given then the range is relative to the section
start.

If more than one type of labels need to be listed then the --labels-append command line op-
tion can be used to append them.

64tass --mesen-labels @labeloptions.txt a.asm

Option file (labeloptions.txt):

--labels-section=rom --labels-add-prefix=P --labels labels.mlb

--labels-section=ram --labels-add-prefix=R --labels-append labels.mlb

--labels-section=save --labels-add-prefix=S --labels-append labels.mlb

--labels-section=work --labels-add-prefix=W --labels-append labels.mlb

--labels-section=registers --labels-add-prefix=G --labels-append labels.mlb

7.6 Assembly listing

-L <file>, --list=<file>

List into <file>. Dumps source code and compiled code into file. Useful for debugging, it's
much easier to identify the code in memory within the source files.

; 64tass Turbo Assembler Macro V1.5x listing file

; 64tass -L list.txt a.asm

; Fri Dec 9 19:08:55 2005

;Offset ;Hex ;Monitor ;Source

;****** Processing input file: a.asm

.1000 a2 00 ldx #$00 ldx #0

.1002 ca dex loop dex

64tass v1.59 r3120 reference manual

62 of 79

.1003 d0 fd bne $1002 bne loop

.1005 60 rts rts

;****** End of listing

--list-append=<file>

Same as the --list option but appends instead of overwrites.

-m, --no-monitor

Don't put monitor code into listing. There won't be any monitor listing in the list file.

; 64tass Turbo Assembler Macro V1.5x listing file

; 64tass --no-monitor -L list.txt a.asm

; Fri Dec 9 19:11:43 2005

;Offset ;Hex ;Source

;****** Processing input file: a.asm

.1000 a2 00 ldx #0

.1002 ca loop dex

.1003 d0 fd bne loop

.1005 60 rts

;****** End of listing

-s, --no-source

Don't put source code into listing. There won't be any source listing in the list file.

; 64tass Turbo Assembler Macro V1.5x listing file

; 64tass --no-source -L list.txt a.asm

; Fri Dec 9 19:13:25 2005

;Offset ;Hex ;Monitor

;****** Processing input file: a.asm

.1000 a2 00 ldx #$00

.1002 ca dex

.1003 d0 fd bne $1002

.1005 60 rts

;****** End of listing

--line-numbers

This option creates a new column for showing line numbers for easier identification of source
origin. The line number is followed with an optional colon separated file number in case it
comes from a different file then the previous lines.

; 64tass Turbo Assembler Macro V1.5x listing file

; 64tass --line-numbers -L list.txt a.asm

; Fri Dec 9 19:13:25 2005

;Line ;Offset ;Hex ;Monitor ;Source

:1 ;****** Processing input file: a.asm

3 .1000 a2 00 ldx #$00 ldx #0

4 .1002 ca dex loop dex

5 .1003 d0 fd bne $1002 bne loop

6 .1005 60 rts rts

;****** End of listing

64tass v1.59 r3120 reference manual

63 of 79

--tab-size=<number>

By default the listing file is using a tab size of 8 to align the disassembly. This can be changed
to other more favorable values like 4. Only spaces are used if 1 is selected. Please note that
this has no effect on the source code on the right hand side.

--verbose-list

Normally the assembler tries to minimize listing output by omitting "unimportant" lines. But
sometimes it's better to just list everything including comments and empty lines.

; 64tass Turbo Assembler Macro V1.5x listing file

; 64tass --verbose-list -L list.txt a.asm

; Fri Dec 9 19:13:25 2005

;Offset ;Hex ;Monitor ;Source

;****** Processing input file: a.asm

 * = $1000

.1000 a2 00 ldx #$00 ldx #0

.1002 ca dex loop dex

.1003 d0 fd bne $1002 bne loop

.1005 60 rts rts

;****** End of listing

7.7 Other options

-?, --help

Give this help list. Prints help about command line options.

--usage

Give a short usage message. Prints short help about command line options.

-V, --version

Print program version

7.8 Command line from file

Command line arguments can be read from a file as well. This is useful to store common options for
multiple files in one place or to overcome the argument list length limitations of some systems.

The filename needs to be prefixed with an at sign, so “@argsfile” reads options from “argsfile”. It
will only work if there's not another file named “@argsfile”. The content is expanded in-place of
“@argsfile”.

Stored options must be separated by white space. Single or double quotes can be used in case
file names have white space in their names.

Backslash can be used to escape the character following it and it must be used to escape itself.
Single and double quotes need to be escaped if needed for string quoting.

Forward slashes can be used as a portable path separation on all systems.

8 Messages

Faults and warnings encountered are sent to the standard error for logging. To redirect them to a
file use the “-E” command line option. The message format is the following:

<filename>:<line>:<character>: <severity>: <message>

• filename: The name and path of source file where the error happened.
• line: Line number in file, starts from 1.
• character: Character in line, starts from 1. Tabs are not expanded.
• severity: Note, warning, error or fatal.
• message: The fault message itself.

The faulty line will be displayed after the message with a caret pointing to the error location unless

64tass v1.59 r3120 reference manual

64 of 79

this is disabled by using “--no-caret-diag” option.

a.asm:3:21: error: not defined symbol 'label'

 lda label

^

a.asm:3:21: note: searched in the global scope

This is helpful for macro expansions as it displays the processed line which usually looks different to
the one in the original source file.

Error buried deep in included files or macros display a backtrace of files after an “In file included
from” text where all the files and positions involved are listed down to the main file.

In file included from main.asm:3:3:

included.asm:2:11: error: not defined symbol 'test'

 #macro1 test

^

In file included from included.asm:2:3,

main.asm:3:3:

macros.asm:3:7: note: original location in an expanded macro was here

 lda test

^

Messages ending with “[-Wxxx]” are user controllable. This means that using “-Wno-xxx” on the com-
mand line will silence them and “-Werror=xxx” will turn them it into a fault. See Diagnostic options
for more details.

8.1 Warnings

aligned by ? bytes

alignment was necessary

approximate floating point

floating point comparisons are not exact and the numbers were close but maybe not quite

bank 0 address overflow

the calculated memory location address ended up outside of bank 0 and is now wrapped.

case ignored, value already handled

this value was already used in an earlier case so here it's ignored

compile offset overflow

compile continues at the bottom ($0000) as end of compile area was reached

constant result, possibly changeable to 'lda'

a pre-calculated value could be loaded instead as the result seems to be always the same

could be shorter by using 'xxx' instead

this shorter instruction gives the same result according to the optimizer

could be simpler by using 'xxx' instead

this instruction gives the same result but with less dependencies according to the optimizer

deprecated directive, only for TASM compatible mode

.goto and .lbl should only be used in TASM compatible mode and there are better ways to loop

deprecated equal operator, use '==' instead

single equal sign for comparisons is going away soon, update source

deprecated modulo operator, use '%' instead

double slash for modulo is going away soon, update source

deprecated not equal operator, use '!=' instead

non-standard not equal operators which will stop working in the future, update source

direct page address overflow

the calculated memory location address ended up outside of direct page and is now wrapped.

directive ignored

an assembler directive was ignored for compatibility reasons

expected ? values but got ? to unpack

64tass v1.59 r3120 reference manual

65 of 79

the number of variables must match the number of values when unpacking

file name uses reserved character '?'

do not use \ : * ? " < > | in file names as some operating systems don't like these

immediate addressing mode suggested

numeric constant was used as an address which was likely meant as an immediate value

implicit floating point rounding

a floating point number with fractional part was used for an integer parameter

independent result, possibly changeable to 'lda'

the result does not seem to depend on the input so it could be just loaded instead

instruction 'xxx' is an alias of 'xxx'

an alternative instruction name was used

label defined instead of variable multiplication for compatibility

move the '*=' construct to a separate line or define the variable first as this construct is am-
biguous

label not on left side

check if an instruction name was not mistyped and if the current CPU has it, or remove white
space before label

leading zeros ignored

leading zeros in front of decimals are redundant and don't denote an octal number

long branch used

branch distance was too long so long branch was used (bxx *+5 jmp)

memory location address overflow

the calculated memory location address ended up outside of the processors address space

over the boundary by ? bytes, aligned by ? bytes

crossed boundary so alignment was necessary

please separate @b, @w or @l from label or number for future compatibility

future versions will have longer symbols after “@” and so will interpret the immediately follow-
ing numbers and letters as part if the symbol. Please insert a space between @b, @w or @l and
the following label or number now to avoid surprises!

please use format("%d", ...) as '^' will change it's meaning

this operator will be changed to mean the bank byte later, please update your sources

possible jmp ($xxff) bug

some 6502 variants read don't increment the high byte on page cross and this may be unex-
pected

possibly redundant as ...

according to the optimizer this might not be needed

possibly redundant if last 'jsr' is changed to 'jmp'

tail call elimination possibility was detected

possibly redundant indexing with a constant value

the index register used seems to be constant and there's a way to eliminate indexing by a con-
stant offset

processor program counter crossed bank

pc address had crossed into another 64 KiB program bank

program bank address overflow

the calculated memory location address ended up outside of the current program bank and is
now wrapped.

symbol case mismatch '?'

the symbol is matching case insensitively but it's not all letters are exactly the same

the file's real name is not '?'

check if all characters match including their case as this is not the real name of the file

unused symbol '?'

this symbol has is not referred anywhere and therefore may be unused

use '/' as path separation '?'

backslash is not a path separator on all systems while forward slash will work independent of

64tass v1.59 r3120 reference manual

66 of 79

the host operating system

use relative path for '?'

file's path is absolute and depends on the file system layout and the source will not compile
without the exact same environment

8.2 Errors

'?' expected

something is missing

? argument is missing

not enough arguments supplied

address in different program bank

this instruction is only limited to access the current bank

address not in processor address space

value larger than current CPU address space

address out of section

moving the address around is fine as long as it does not end up before the start of the section

addressing mode too complex

too much indexing or indirection for a valid address

at least one byte is needed

the expression didn't yield any bytes but it's needed here

block to long for alignment by ? bytes

impossible to align if larger than or equals alignment interval

branch crosses page by ? bytes

page crossing was on branch was detected

branch too far by ? bytes

branches have limited range and this went over by some bytes

can't calculate stable value

somehow it's impossible to calculate this expression

can't calculate this

could not get any value, is this a circular reference?

can't encode character '?' ($xx) in encoding '?'

can't translate character in this encoding as no definition was given

can't get absolute value of

not possible to calculate the absolute value of this type

can't get boolean value of

not possible to determine if this value is true or false

can't get integer value of

this value is not a number

can't get length of

this type has no length

can't get sign of

this type does not have a sign as it's not a number

can't get size of

this type has no size

closing/opening directive '?' not found

couldn't find the other half of block directive pair

conflict

at least one feature is provided, which shouldn't be there

conversion of ? '?' to ? is not possible

this type conversion can't be done

crossing of ? byte page by ? bytes

the page directive detected a page cross between start and end directives

division by zero

64tass v1.59 r3120 reference manual

67 of 79

dividing with zero can't be done

double defined escape

escape sequence already defined in another .edef differently

double defined range

part of a character range was already defined by another .cdef and these ranges can't overlap

duplicate definition

symbol defined more than once

encoded value ? larger than 8 bit

the value for the end of character range for an encoding is too large

empty list not allowed

at least one element is required

empty range not allowed

invalid range but there must be at least one element

empty string not allowed

at least one character is required

expected exactly/at least/at most ? arguments, got ?

wrong number of function arguments used

expression syntax

syntax error

extra characters on line

there's some garbage on the end of line

floating point overflow

infinity reached during a calculation

format character expected

string ended before a format character was found

general syntax

can't do anything with this

index out of range

not enough elements in list

key not in dictionary

key not in the dictionary

label required

a label is mandatory for this directive

larger than original due to negative offset

if a negative offset is used the size gets larger than the original as this effectively adds bytes
to the front.

last byte must not be gap

.shift or .shiftl needs a normal byte at the end

logarithm of non-positive number

only positive numbers have a logarithm

macro call without prefix

macro call was found without a prefix and without parameters

more than a single character

no more than a single character is allowed

more than two characters

no more than two characters are allowed

most significant bit must be clear in byte

for .shift and .shiftl only 7 bit "bytes" are valid

must be used within a loop

.break or .continue must be used within a loop

must be defined later

remote alignment must placed before the aligned label

negative number raised on fractional power

64tass v1.59 r3120 reference manual

68 of 79

can't calculate this

no ? addressing mode for opcode 'xxx'

this addressing mode is not valid for this instruction

not a bank 0 address

value must be a bank zero address

not a data bank address

value must be a data bank address

not a direct page address

value must be a direct page address

not a key and value pair

dictionaries are built from key and value pairs separated by a colon

not a variable

only variables are changeable

not defined '?'

can't find this label at this point

not hashable

the type can't be used as a key in a dictionary

not in range -1.0 to 1.0

the function is only valid in the -1.0 to 1.0 range

not iterable

value is not a list or other iterable object

not measurable as start offset beyond size of original

the applied offset was larger than the original size. For example if size(data) is 2 then
size(data + 1) is 1. However size(data + 3) makes no sense as there's no such thing as a nega-
tive size.

offset out of range

code offset too much

operands could not be broadcast together with shapes ? and ?

list length must match or must have a single element only

ptext too long by ? bytes

.ptext is limited to 255 bytes maximum

requirements not met

not all features are provided, at least one is missing

reserved symbol name '?'

do not use this symbol name

shadow definition

symbol is defined in an upper scope as well and is used ambiguously

some operation '?' of type '?' and type '?' not possible

can't do this calculation with these values

square root of negative number

can't calculate the square root of a negative number

start ? not on same ? byte page as end ?

the endpage directive detected a mismatch of page to the page directive

too large for a ? bit signed/unsigned integer

value out of range

unexpected character '?'

unexpected control or Unicode character

unknown processor '?'

unknown CPU name

unknown argument name '?'

no parameter argument known like this

unknown format character '?'

no format character known like this

64tass v1.59 r3120 reference manual

69 of 79

use '?' instead of '?'

wrong sort of character was used. For example a left double quotation mark was used instead
of a regular quotation mark.

value needs to be non-negative

only positive numbers or zero is accepted here

wrong type <?>

wrong object type used

zero raised to negative power

can't calculate this

zero value not allowed

do not use zero for example with .null

8.3 Fatal errors

can't open file

cannot open file

can't write ? file '?'

cannot write an output file

compilation was interrupted

shows the line where the interruption happened

error reading file

error while reading

file recursion

wrong nesting of .include

function recursion too deep

wrong use of nested functions

macro recursion too deep

wrong use of nested macros

option '?' doesn't allow an argument

command line option doesn't need any argument

option '?' is ambiguous

command line option abbreviation is too short

option '?' not recognized

no such command line option

option '?' requires an argument

command line option needs an argument

out of memory

won't happen ;)

section '?' for output not found

the section given on command line couldn't be found

too many passes

with a carefully crafted source file it's possible to create unresolvable situations but try to
avoid this

unknown option '?'

option not known

weak recursion

excessive nesting of .weak

9 Credits

Original 6502tass written for DOS by Marek Matula of Taboo.

It was ported to ANSI C by BigFoot/Breeze. This is when it's name changed to 64tass.

Soci/Singular reworked the code over the years to the point that practically nothing was left from
original at this point.

64tass v1.59 r3120 reference manual

70 of 79

Improved TASS compatibility, PETSCII codes by Groepaz.

Additional code: my_getopt command-line argument parser by Benjamin Sittler, avl tree code by
Franck Bui-Huu, ternary tree code by Daniel Berlin, snprintf Alain Magloire, Amiga OS4 support
files by Janne Peräaho.

Pierre Zero helped to uncover a lot of faults by fuzzing. Also there were a lot of discussions with
oziphantom about the need of various features.

Main developer and maintainer: soci at c64.rulez.org

10 Default translation and escape sequences

10.1 Raw 8-bit source

By default raw 8-bit encoding is used and nothing is translated or escaped. This mode is for compil-
ing sources which are already PETSCII.

10.1.1 The “none” encoding for raw 8-bit

Does no translation at all, no translation table, no escape sequences.

10.1.2 The “screen” encoding for raw 8-bit

The following translation table applies, no escape sequences.

Table 36: Built-in PETSCII to PETSCII screen code translation table

Input Byte Input Byte
00–1F 80–9F 20–3F 20–3F

40–5F 00–1F 60–7F 40–5F

80–9F 80–9F A0–BF 60–7F

C0–FE 40–7E FF 5E

10.2 Unicode and ASCII source

Unicode encoding is used when the “-a” option is given on the command line.

10.2.1 The “none” encoding for Unicode

This is a Unicode to PETSCII mapping, including escape sequences for control codes.

Table 37: Built-in Unicode to PETSCII translation table

Glyph Unicode Byte Glyph Unicode Byte
 –@ U+0020–U+0040 20–40 A–Z U+0041–U+005A C1–DA

[U+005B 5B] U+005D 5D

a–z U+0061–U+007A 41–5A £ U+00A3 5C

π U+03C0 FF ← U+2190 5F

↑ U+2191 5E ─ U+2500 C0

│ U+2502 DD ┌ U+250C B0

┐ U+2510 AE └ U+2514 AD

┘ U+2518 BD ├ U+251C AB

┤ U+2524 B3 ┬ U+252C B2

┴ U+2534 B1 ┼ U+253C DB

╭ U+256D D5 ╮ U+256E C9

╯ U+256F CB ╰ U+2570 CA

╱ U+2571 CE ╲ U+2572 CD

╳ U+2573 D6 ▁ U+2581 A4

▂ U+2582 AF ▃ U+2583 B9

▄ U+2584 A2 ▌ U+258C A1

▍ U+258D B5 ▎ U+258E B4

▏ U+258F A5 ▒ U+2592 A6

▔ U+2594 A3 ▕ U+2595 A7

▖ U+2596 BB ▗ U+2597 AC

64tass v1.59 r3120 reference manual

71 of 79

Glyph Unicode Byte Glyph Unicode Byte
▘ U+2598 BE ▚ U+259A BF

▝ U+259D BC ○ U+25CB D7

● U+25CF D1 ◤ U+25E4 A9

◥ U+25E5 DF ♠ U+2660 C1

♣ U+2663 D8 ♥ U+2665 D3

♦ U+2666 DA ✓ U+2713 BA

🭰 U+1FB70 D4 🭱 U+1FB71 C7

🭲 U+1FB72 C2 🭳 U+1FB73 DD

🭴 U+1FB74 C8 🭵 U+1FB75 D9

🭶 U+1FB76 C5 🭷 U+1FB77 C4

🭸 U+1FB78 C3 🭹 U+1FB79 C0

🭺 U+1FB7A C6 🭻 U+1FB7B D2

🭼 U+1FB7C CC 🭽 U+1FB7D CF

🭾 U+1FB7E D0 🭿 U+1FB7F BA

🮂 U+1FB82 B7 🮃 U+1FB83 B8

🮇 U+1FB87 AA 🮈 U+1FB88 B6

🮌 U+1FB8C DC 🮏 U+1FB8F A8

🮕 U+1FB95 FF 🮘 U+1FB98 DF

🮙 U+1FB99 A9

Table 38: Built-in PETSCII escape sequences

Escape Byte Escape Byte Escape Byte
{bell} 07 {black} 90 {blk} 90

{blue} 1F {blu} 1F {brn} 95

{brown} 95 {cbm-*} DF {cbm-+} A6

{cbm--} DC {cbm-0} 30 {cbm-1} 81

{cbm-2} 95 {cbm-3} 96 {cbm-4} 97

{cbm-5} 98 {cbm-6} 99 {cbm-7} 9A

{cbm-8} 9B {cbm-9} 29 {cbm-@} A4

{cbm-^} DE {cbm-a} B0 {cbm-b} BF

{cbm-c} BC {cbm-d} AC {cbm-e} B1

{cbm-f} BB {cbm-g} A5 {cbm-h} B4

{cbm-i} A2 {cbm-j} B5 {cbm-k} A1

{cbm-l} B6 {cbm-m} A7 {cbm-n} AA

{cbm-o} B9 {cbm-pound} A8 {cbm-p} AF

{cbm-q} AB {cbm-r} B2 {cbm-s} AE

{cbm-t} A3 {cbm-up arrow} DE {cbm-u} B8

{cbm-v} BE {cbm-w} B3 {cbm-x} BD

{cbm-y} B7 {cbm-z} AD {clear} 93

{clr} 93 {control-0} 92 {control-1} 90

{control-2} 05 {control-3} 1C {control-4} 9F

{control-5} 9C {control-6} 1E {control-7} 1F

{control-8} 9E {control-9} 12 {control-:} 1B

{control-;} 1D {control-=} 1F {control-@} 00

{control-a} 01 {control-b} 02 {control-c} 03

{control-d} 04 {control-e} 05 {control-f} 06

{control-g} 07 {control-h} 08 {control-i} 09

{control-j} 0A {control-k} 0B {control-left arrow} 06

{control-l} 0C {control-m} 0D {control-n} 0E

{control-o} 0F {control-pound} 1C {control-p} 10

{control-q} 11 {control-r} 12 {control-s} 13

{control-t} 14 {control-up arrow} 1E {control-u} 15

{control-v} 16 {control-w} 17 {control-x} 18

{control-y} 19 {control-z} 1A {cr} 0D

{cyan} 9F {cyn} 9F {delete} 14

{del} 14 {dish} 08 {down} 11

{ensh} 09 {esc} 1B {f10} 82

{f11} 84 {f12} 8F {f1} 85

{f2} 89 {f3} 86 {f4} 8A

{f5} 87 {f6} 8B {f7} 88

64tass v1.59 r3120 reference manual

72 of 79

Escape Byte Escape Byte Escape Byte
{f8} 8C {f9} 80 {gray1} 97

{gray2} 98 {gray3} 9B {green} 1E

{grey1} 97 {grey2} 98 {grey3} 9B

{grn} 1E {gry1} 97 {gry2} 98

{gry3} 9B {help} 84 {home} 13

{insert} 94 {inst} 94 {lblu} 9A

{left arrow} 5F {left} 9D {lf} 0A

{lgrn} 99 {lower case} 0E {lred} 96

{lt blue} 9A {lt green} 99 {lt red} 96

{orange} 81 {orng} 81 {pi} FF

{pound} 5C {purple} 9C {pur} 9C

{red} 1C {return} 0D {reverse off} 92

{reverse on} 12 {rght} 1D {right} 1D

{run} 83 {rvof} 92 {rvon} 12

{rvs off} 92 {rvs on} 12 {shift return} 8D

{shift-*} C0 {shift-+} DB {shift-,} 3C

{shift--} DD {shift-.} 3E {shift-/} 3F

{shift-0} 30 {shift-1} 21 {shift-2} 22

{shift-3} 23 {shift-4} 24 {shift-5} 25

{shift-6} 26 {shift-7} 27 {shift-8} 28

{shift-9} 29 {shift-:} 5B {shift-;} 5D

{shift-@} BA {shift-^} DE {shift-a} C1

{shift-b} C2 {shift-c} C3 {shift-d} C4

{shift-e} C5 {shift-f} C6 {shift-g} C7

{shift-h} C8 {shift-i} C9 {shift-j} CA

{shift-k} CB {shift-l} CC {shift-m} CD

{shift-n} CE {shift-o} CF {shift-pound} A9

{shift-p} D0 {shift-q} D1 {shift-r} D2

{shift-space} A0 {shift-s} D3 {shift-t} D4

{shift-up arrow} DE {shift-u} D5 {shift-v} D6

{shift-w} D7 {shift-x} D8 {shift-y} D9

{shift-z} DA {space} 20 {sret} 8D

{stop} 03 {swlc} 0E {swuc} 8E

{tab} 09 {up arrow} 5E {up/lo lock off} 09

{up/lo lock on} 08 {upper case} 8E {up} 91

{white} 05 {wht} 05 {yellow} 9E

{yel} 9E

10.2.2 The “screen” encoding for Unicode

This is a Unicode to PETSCII screen code mapping, including escape sequences for control code
screen codes.

Table 39: Built-in Unicode to PETSCII screen code translation table

Glyph Unicode Translated Glyph Unicode Translated
 –? U+0020–U+003F 20–3F @ U+0040 00

A–Z U+0041–U+005A 41–5A [U+005B 1B

] U+005D 1D a–z U+0061–U+007A 01–1A

£ U+00A3 1C π U+03C0 5E

← U+2190 1F ↑ U+2191 1E

─ U+2500 40 │ U+2502 5D

┌ U+250C 70 ┐ U+2510 6E

└ U+2514 6D ┘ U+2518 7D

├ U+251C 6B ┤ U+2524 73

┬ U+252C 72 ┴ U+2534 71

┼ U+253C 5B ╭ U+256D 55

╮ U+256E 49 ╯ U+256F 4B

╰ U+2570 4A ╱ U+2571 4E

╲ U+2572 4D ╳ U+2573 56

▁ U+2581 64 ▂ U+2582 6F

64tass v1.59 r3120 reference manual

73 of 79

Glyph Unicode Translated Glyph Unicode Translated
▃ U+2583 79 ▄ U+2584 62

▌ U+258C 61 ▍ U+258D 75

▎ U+258E 74 ▏ U+258F 65

▒ U+2592 66 ▔ U+2594 63

▕ U+2595 67 ▖ U+2596 7B

▗ U+2597 6C ▘ U+2598 7E

▚ U+259A 7F ▝ U+259D 7C

○ U+25CB 57 ● U+25CF 51

◤ U+25E4 69 ◥ U+25E5 5F

♠ U+2660 41 ♣ U+2663 58

♥ U+2665 53 ♦ U+2666 5A

✓ U+2713 7A 🭰 U+1FB70 54

🭱 U+1FB71 47 🭲 U+1FB72 42

🭳 U+1FB73 5D 🭴 U+1FB74 48

🭵 U+1FB75 59 🭶 U+1FB76 45

🭷 U+1FB77 44 🭸 U+1FB78 43

🭹 U+1FB79 40 🭺 U+1FB7A 46

🭻 U+1FB7B 52 🭼 U+1FB7C 4C

🭽 U+1FB7D 4F 🭾 U+1FB7E 50

🭿 U+1FB7F 7A 🮂 U+1FB82 77

🮃 U+1FB83 78 🮇 U+1FB87 6A

🮈 U+1FB88 76 🮌 U+1FB8C 5C

🮏 U+1FB8F 68 🮕 U+1FB95 5E

🮘 U+1FB98 5F 🮙 U+1FB99 69

Table 40: Built-in PETSCII screen code escape sequences

Escape Byte Escape Byte Escape Byte
{cbm-*} 5F {cbm-+} 66 {cbm--} 5C

{cbm-0} 30 {cbm-9} 29 {cbm-@} 64

{cbm-^} 5E {cbm-a} 70 {cbm-b} 7F

{cbm-c} 7C {cbm-d} 6C {cbm-e} 71

{cbm-f} 7B {cbm-g} 65 {cbm-h} 74

{cbm-i} 62 {cbm-j} 75 {cbm-k} 61

{cbm-l} 76 {cbm-m} 67 {cbm-n} 6A

{cbm-o} 79 {cbm-pound} 68 {cbm-p} 6F

{cbm-q} 6B {cbm-r} 72 {cbm-s} 6E

{cbm-t} 63 {cbm-up arrow} 5E {cbm-u} 78

{cbm-v} 7E {cbm-w} 73 {cbm-x} 7D

{cbm-y} 77 {cbm-z} 6D {left arrow} 1F

{pi} 5E {pound} 1C {shift-*} 40

{shift-+} 5B {shift-,} 3C {shift--} 5D

{shift-.} 3E {shift-/} 3F {shift-0} 30

{shift-1} 21 {shift-2} 22 {shift-3} 23

{shift-4} 24 {shift-5} 25 {shift-6} 26

{shift-7} 27 {shift-8} 28 {shift-9} 29

{shift-:} 1B {shift-;} 1D {shift-@} 7A

{shift-^} 5E {shift-a} 41 {shift-b} 42

{shift-c} 43 {shift-d} 44 {shift-e} 45

{shift-f} 46 {shift-g} 47 {shift-h} 48

{shift-i} 49 {shift-j} 4A {shift-k} 4B

{shift-l} 4C {shift-m} 4D {shift-n} 4E

{shift-o} 4F {shift-pound} 69 {shift-p} 50

{shift-q} 51 {shift-r} 52 {shift-space} 60

{shift-s} 53 {shift-t} 54 {shift-up arrow} 5E

{shift-u} 55 {shift-v} 56 {shift-w} 57

{shift-x} 58 {shift-y} 59 {shift-z} 5A

{space} 20 {up arrow} 1E

11 Opcodes

64tass v1.59 r3120 reference manual

74 of 79

11.1 Standard 6502 opcodes

Table 41: The standard 6502 opcodes

ADC 61 65 69 6D 71 75 79 7D AND 21 25 29 2D 31 35 39 3D

ASL 06 0A 0E 16 1E BCC 90

BCS B0 BEQ F0

BIT 24 2C BMI 30

BNE D0 BPL 10

BRK 00 BVC 50

BVS 70 CLC 18

CLD D8 CLI 58

CLV B8 CMP C1 C5 C9 CD D1 D5 D9 DD

CPX E0 E4 EC CPY C0 C4 CC

DEC C6 CE D6 DE DEX CA

DEY 88 EOR 41 45 49 4D 51 55 59 5D

INC E6 EE F6 FE INX E8

INY C8 JMP 4C 6C

JSR 20 LDA A1 A5 A9 AD B1 B5 B9 BD

LDX A2 A6 AE B6 BE LDY A0 A4 AC B4 BC

LSR 46 4A 4E 56 5E NOP EA

ORA 01 05 09 0D 11 15 19 1D PHA 48

PHP 08 PLA 68

PLP 28 ROL 26 2A 2E 36 3E

ROR 66 6A 6E 76 7E RTI 40

RTS 60 SBC E1 E5 E9 ED F1 F5 F9 FD

SEC 38 SED F8

SEI 78 STA 81 85 8D 91 95 99 9D

STX 86 8E 96 STY 84 8C 94

TAX AA TAY A8

TSX BA TXA 8A

TXS 9A TYA 98

Table 42: Aliases, pseudo instructions

ASL 0A BGE B0

BLT 90 CPA C1 C5 C9 CD D1 D5 D9 DD

GCC 4C 90 GCS 4C B0

GEQ 4C F0 GGE 4C B0

GLT 4C 90 GMI 30 4C

GNE 4C D0 GPL 10 4C

GVC 4C 50 GVS 4C 70

LSR 4A ROL 2A

ROR 6A SHL 06 0A 0E 16 1E

SHR 46 4A 4E 56 5E

11.2 6502 illegal opcodes

This processor is a standard 6502 with the NMOS illegal opcodes.

Table 43: Additional opcodes

ANC 0B ANE 8B

ARR 6B ASR 4B

DCP C3 C7 CF D3 D7 DB DF ISB E3 E7 EF F3 F7 FB FF

JAM 02 LAX A3 A7 AB AF B3 B7 BF

LDS BB NOP 04 0C 14 1C 80

RLA 23 27 2F 33 37 3B 3F RRA 63 67 6F 73 77 7B 7F

SAX 83 87 8F 97 SBX CB

SHA 93 9F SHS 9B

SHX 9E SHY 9C

SLO 03 07 0F 13 17 1B 1F SRE 43 47 4F 53 57 5B 5F

Table 44: Additional aliases

AHX 93 9F ALR 4B

64tass v1.59 r3120 reference manual

75 of 79

AXS CB DCM C3 C7 CF D3 D7 DB DF

INS E3 E7 EF F3 F7 FB FF ISC E3 E7 EF F3 F7 FB FF

LAE BB LAS BB

LXA AB TAS 9B

XAA 8B

11.3 65DTV02 opcodes

This processor is an enhanced version of standard 6502 with some illegal opcodes.

Table 45: Additionally to 6502 illegal opcodes

BRA 12 SAC 32

SIR 42

Table 46: Additional pseudo instruction

GRA 12 4C

Table 47: These illegal opcodes are not valid

ANC 0B JAM 02

LDS BB NOP 04 0C 14 1C 80

SBX CB SHA 93 9F

SHS 9B SHX 9E

SHY 9C

Table 48: These aliases are not valid

AHX 93 9F AXS CB

LAE BB LAS BB

TAS 9B

11.4 Standard 65C02 opcodes

This processor is an enhanced version of standard 6502.

Table 49: Additional opcodes

ADC 72 AND 32

BIT 34 3C 89 BRA 80

CMP D2 DEC 3A

EOR 52 INC 1A

JMP 7C LDA B2

ORA 12 PHX DA

PHY 5A PLX FA

PLY 7A SBC F2

STA 92 STZ 64 74 9C 9E

TRB 14 1C TSB 04 0C

Table 50: Additional aliases and pseudo instructions

CLR 64 74 9C 9E CPA D2

DEA 3A GRA 4C 80

INA 1A

11.5 R65C02 opcodes

This processor is an enhanced version of standard 65C02.

Please note that the bit number is not part of the instruction name (like rmb7 $20). Instead it's the
first element of coma separated parameters (e.g. rmb 7,$20).

Table 51: Additional opcodes

BBR 0F 1F 2F 3F 4F 5F 6F 7F BBS 8F 9F AF BF CF DF EF FF

NOP 44 54 82 DC RMB 07 17 27 37 47 57 67 77

SMB 87 97 A7 B7 C7 D7 E7 F7

11.6 W65C02 opcodes

64tass v1.59 r3120 reference manual

76 of 79

This processor is an enhanced version of R65C02.

Table 52: Additional opcodes

STP DB WAI CB

Table 53: Additional aliases

HLT DB

11.7 W65816 opcodes

This processor is an enhanced version of 65C02.

Table 54: Additional opcodes

ADC 63 67 6F 73 77 7F AND 23 27 2F 33 37 3F

BRL 82 CMP C3 C7 CF D3 D7 DF

COP 02 EOR 43 47 4F 53 57 5F

JMP 5C DC JSL 22

JSR FC LDA A3 A7 AF B3 B7 BF

MVN 54 MVP 44

ORA 03 07 0F 13 17 1F PEA F4

PEI D4 PER 62

PHB 8B PHD 0B

PHK 4B PLB AB

PLD 2B REP C2

RTL 6B SBC E3 E7 EF F3 F7 FF

SEP E2 STA 83 87 8F 93 97 9F

STP DB TCD 5B

TCS 1B TDC 7B

TSC 3B TXY 9B

TYX BB WAI CB

WDM 42 XBA EB

XCE FB

Table 55: Additional aliases

CLP C2 CPA C3 C7 CF D3 D7 DF

CSP 02 HLT DB

JML 5C DC SWA EB

TAD 5B TAS 1B

TDA 7B TSA 3B

11.8 65EL02 opcodes

This processor is an enhanced version of standard 65C02.

Table 56: Additional opcodes

ADC 63 67 73 77 AND 23 27 33 37

CMP C3 C7 D3 D7 DIV 4F 5F 6F 7F

ENT 22 EOR 43 47 53 57

JSR FC LDA A3 A7 B3 B7

MMU EF MUL 0F 1F 2F 3F

NXA 42 NXT 02

ORA 03 07 13 17 PEA F4

PEI D4 PER 62

PHD DF PLD CF

REA 44 REI 54

REP C2 RER 82

RHA 4B RHI 0B

RHX 1B RHY 5B

RLA 6B RLI 2B

RLX 3B RLY 7B

SBC E3 E7 F3 F7 SEA 9F

SEP E2 STA 83 87 93 97

64tass v1.59 r3120 reference manual

77 of 79

STP DB SWA EB

TAD BF TDA AF

TIX DC TRX AB

TXI 5C TXR 8B

TXY 9B TYX BB

WAI CB XBA EB

XCE FB ZEA 8F

Table 57: Additional aliases

CLP C2 CPA C3 C7 D3 D7

HLT DB

11.9 65CE02 opcodes

This processor is an enhanced version of R65C02.

Table 58: Additional opcodes

ASR 43 44 54 ASW CB

BCC 93 BCS B3

BEQ F3 BMI 33

BNE D3 BPL 13

BRA 83 BSR 63

BVC 53 BVS 73

CLE 02 CPZ C2 D4 DC

DEW C3 DEZ 3B

INW E3 INZ 1B

JSR 22 23 LDA E2

LDZ A3 AB BB NEG 42

PHW F4 FC PHZ DB

PLZ FB ROW EB

RTS 62 SEE 03

STA 82 STX 9B

STY 8B TAB 5B

TAZ 4B TBA 7B

TSY 0B TYS 2B

TZA 6B

Table 59: Additional aliases

ASR 43 BGE B3

BLT 93 NEG 42

RTN 62

Table 60: This alias is not valid

CLR 64 74 9C 9E

11.10 CSG 4510 opcodes

This processor is an enhanced version of 65CE02.

Table 61: Additional opcodes

MAP 5C

Table 62: Additional aliases

EOM EA

12 Appendix

12.1 Assembler directives

.addr .al .align .alignblk .alignind .alignpageind .as .assert .autsiz .bend .binary .binclude

.bfor .block .break .breakif .brept .bwhile .byte .case .cdef .cerror .char .check .comment

64tass v1.59 r3120 reference manual

78 of 79

.continue .continueif .cpu .cwarn .databank .default .dint .dpage .dsection .dstruct .dunion

.dword .edef .elif .else .elsif .enc .encode .end .endblock .endc .endalignblk .endcomment

.endencode .endf .endfor .endfunction .endif .endlogical .endm .endmacro .endn .end-

namespace .endp .endpage .endproc .endrept .ends .endsection .endsegment .endstruct

.endswitch .endu .endunion .endv .endvirtual .endweak .endwhile .endwith .eor .error .fi

.fill .for .from .function .goto .here .hidemac .if .ifeq .ifmi .ifne .ifpl .include .lbl .lint

.logical .long .macro .mansiz .namespace .next .null .offs .option .page .pend .proc .proff

.pron .ptext .rept .rta .section .seed .segment .send .sfunction .shift .shiftl .showmac

.sint .struct .switch .tdef .text .union .var .virtual .warn .weak .while .with .word .xl .xs

12.2 Built-in functions

abs acos addr all any asin atan atan2 binary byte cbrt ceil char cos cosh deg dint

dword exp floor format frac hypot len lint log log10 long pow rad random range repr

round rta sign sin sinh sint size sort sqrt tan tanh trunc word

12.3 Built-in types

address bits bool bytes code dict float gap int list str tuple type

64tass v1.59 r3120 reference manual

79 of 79

